Réponse et non-réponse

Filtrer les résultats par

Aide à la recherche
Currently selected filters that can be removed

Mot(s)-clé(s)

Géographie

1 facets displayed. 0 facets selected.

Contenu

1 facets displayed. 0 facets selected.
Aide à l'ordre
entrées

Résultats

Tout (124)

Tout (124) (0 à 10 de 124 résultats)

  • Articles et rapports : 12-001-X201900200005
    Description :

    Nous exposons une méthode d’imputation de valeurs manquantes dans des données catégoriques multivariées emboîtées au sein des ménages. Cette méthode reposant sur un modèle à classes latentes (i) permet des variables au double niveau des ménages et des particuliers, (ii) attribue dans ce modèle une probabilité nulle aux configurations impossibles des ménages et (iii) peut préserver les distributions multivariées à la fois dans et entre les ménages. Nous présentons un échantillonneur de Gibbs pour l’estimation du modèle et la production des imputations. Nous décrivons en outre des stratégies d’amélioration de l’efficacité de calcul pour l’estimation du modèle. Nous illustrons enfin le rendement de la méthode à l’aide de données imitant les variables recueillies dans des recensements types de la population.

    Date de diffusion : 2019-06-27

  • Articles et rapports : 12-001-X201900200008
    Description :

    De nos jours, il y a une non-réponse élevée dans de nombreuses enquêtes-échantillons, y compris d’importantes enquêtes menées par des organismes statistiques gouvernementaux. Une collecte de données adaptative peut être avantageuse dans cette situation : il est possible de réduire le biais de non-réponse dans les estimations de l’enquête, jusqu’à un certain point, en produisant un ensemble de répondants bien équilibré. Les variables auxiliaires ont un double objectif. Utilisées au cours de la phase d’estimation, elles réduisent le biais, sans toutefois l’éliminer complètement, par une pondération ajustée par calage. Au cours de la phase précédente de collecte de données adaptative, les variables auxiliaires jouent également un rôle important : elles contribuent à réduire le déséquilibre dans l’ensemble final de répondants. Dans le contexte de cette utilisation combinée de variables auxiliaires, le présent article est consacré à un examen de l’écart entre l’estimation par calage et l’estimation sans biais (réponse complète). Nous montrons que cet écart est la somme de deux composantes. La composante réductible peut être réduite, par la collecte de données adaptative, jusqu’à zéro si une réponse parfaitement équilibrée est obtenue par rapport à un vecteur auxiliaire choisi. En revanche, la composante résistante ne varie pas ou varie peu sous l’effet d’une réponse mieux équilibrée; elle représente une partie de l’écart qu’un plan adaptatif ne permet pas d’éliminer. La taille relative de cette première composante est un indicateur de l’avantage qu’on peut tirer d’un plan de sondage adaptatif.

    Date de diffusion : 2019-06-27

  • Articles et rapports : 12-001-X201900200009
    Description :

    Ces dernières années, les mesures indirectes du biais de non-réponse dans les enquêtes ou d’autres formes de collecte de données ont suscité un vif intérêt, en raison de la diminution progressive des propensions à répondre aux enquêtes et des pressions exercées sur les budgets d’enquête. Ces changements ont poussé les sondeurs à se concentrer davantage sur la représentativité ou l’équilibre des unités échantillonnées répondantes par rapport à des variables auxiliaires pertinentes. Un exemple de mesure est l’indicateur de représentativité, ou indicateur R. Cet indicateur est basé sur la variation d’échantillon pondérée selon le plan de sondage des propensions à répondre estimées. Cela suppose que l’on dispose de données auxiliaires appariées. L’une des critiques de l’indicateur est qu’il ne peut pas être utilisé si l’information auxiliaire est disponible uniquement au niveau de la population. Dans le présent article, nous proposons une nouvelle méthode d’estimation des propensions à répondre qui ne requiert pas d’information auxiliaire pour les non-répondants à l’enquête et qui est fondée sur de l’information auxiliaire pour la population. Ces propensions à répondre basées sur la population peuvent alors être utilisées pour élaborer des indicateurs R faisant appel à des tableaux de contingence de population ou à des fréquences de population. Nous discutons des propriétés statistiques des indicateurs, et évaluons leur performance au moyen d’une étude portant sur des données réelles de recensement et d’une application à la Dutch Health Survey.

    Date de diffusion : 2019-06-27

  • Articles et rapports : 12-001-X201900100002
    Description :

    La non-réponse partielle se produit fréquemment dans les enquêtes-échantillons. On utilise couramment l’imputation hot deck pour remplacer les valeurs des items manquants dans des groupes homogènes appelés classes d’imputation. Nous proposons une procédure d’imputation hot deck fractionnaire et une vraisemblance empirique associée pour l’inférence sur la moyenne de population d’une fonction d’une variable d’intérêt présentant des données manquantes selon un échantillonnage avec probabilité proportionnelle à la taille avec fractions d’échantillonnage négligeables. Nous calculons les distributions limites de l’estimateur du maximum de vraisemblance empirique et du rapport de vraisemblance empirique, et nous proposons deux procédures bootstrap asymptotiques valides afin de construire des intervalles de confiance pour la moyenne de population. Les études par simulations montrent que les procédures bootstrap proposées donnent de meilleurs résultats que les procédures bootstrap habituelles, qui se révèlent asymptotiquement incorrectes quand le nombre de tirages aléatoires de l’imputation fractionnaire est fixe. De plus, la procédure bootstrap proposée, fondée sur le rapport de vraisemblance empirique, semble donner des résultats significativement meilleurs que la méthode fondée sur la distribution limite de l’estimateur du maximum de vraisemblance empirique en cas de grande variation des probabilités d’inclusion ou d’échantillon de petite taille.

    Date de diffusion : 2019-05-07

  • Articles et rapports : 12-001-X201800254952
    Description :

    Les enquêtes par panel sont souvent utilisées pour mesurer l’évolution de paramètres au cours du temps. Ces enquêtes peuvent souffrir de différentes formes de non-réponse totale, situation que l’on traite à l’heure actuelle en estimant les probabilités de réponse et en effectuant une nouvelle pondération des répondants. La présente étude porte sur l’estimation, ainsi que l’estimation de la variance en cas de non-réponse totale dans les enquêtes par panel. En étendant les travaux de Kim et Kim (2007) à plusieurs périodes, nous considérons un estimateur ajusté par un score de propension qui tient compte de la non-réponse initiale et de l’attrition, et proposons un estimateur de variance approprié. Nous étendons ensuite cet estimateur afin de couvrir la plupart des estimateurs utilisés dans les enquêtes, y compris les estimateurs calés, les estimateurs de paramètres complexes et les estimateurs longitudinaux. Les propriétés de l’estimateur de variance proposé et d’un estimateur de variance simplifié sont évaluées au moyen d’une étude en simulation. Une illustration de la méthode proposée sur des données provenant de l’enquête ELFE est également présentée.

    Date de diffusion : 2018-12-20

  • Articles et rapports : 12-001-X201800254957
    Description :

    Lorsqu’une méthode d’imputation linéaire est utilisée pour corriger la non-réponse, et sous certaines hypothèses, on peut attribuer au niveau des unités non-répondantes la variance totale. L’imputation linéaire n’est pas aussi restrictive qu’il n’y paraît car les méthodes les plus populaires comme l’imputation par ratio; donneur; moyenne et valeur auxiliaire sont toutes des méthodes d’imputation linéaires. Le cadre théorique ainsi que l’expression donnant la décomposition de la variance due à la non-réponse au niveau de l’unité seront présentés. Des résultats par simulation seront aussi présentés. Cette décomposition peut être utilisée pour prioriser le suivi de non-réponse, prioriser les corrections manuelles ou simplement orienter l’analyse des données.

    Date de diffusion : 2018-12-20

  • Articles et rapports : 12-001-X201800154929
    Description :

    Le U.S. Census Bureau étudie des stratégies de sous-échantillonnage des non-répondants en prévision de l’Economic Census de 2017. Les contraintes imposées au plan de sondage comprennent une borne inférieure obligatoire pour le taux de réponse totale, ainsi que des taux de réponse cibles par industrie. Le présent article expose la recherche sur les procédures de répartition de l’échantillon pour le sous-échantillonnage des non-répondants conditionnellement à ce que ce sous-échantillonnage soit systématique. Nous considérons deux approches, à savoir 1) l’échantillonnage avec probabilités égales et 2) la répartition optimisée avec contraintes sur les taux de réponse totale et la taille d’échantillon, avec pour objectif la sélection de plus grands échantillons dans les industries qui, au départ, affichent des taux de réponse plus faibles. Nous présentons une étude en simulation qui examine le biais relatif et l’erreur quadratique moyenne pour les répartitions proposées, en évaluant la sensibilité de chaque procédure à la taille du sous-échantillon, aux propensions à répondre et à la procédure d’estimation

    Date de diffusion : 2018-06-21

  • Articles et rapports : 12-001-X201700114820
    Description :

    Les erreurs de mesure peuvent provoquer un biais de l’estimation des transitions, donnant lieu à des conclusions erronées au sujet de la dynamique du marché du travail. La littérature traditionnelle sur l’estimation des mouvements bruts est basée sur la supposition que les erreurs de mesure ne sont pas corrélées au fil du temps. Cette supposition n’est pas réaliste dans bien des contextes, en raison du plan d’enquête et des stratégies de collecte de données. Dans le présent document, nous utilisons une approche basée sur un modèle pour corriger les mouvements bruts observés des erreurs de classification au moyen de modèles markoviens à classes latentes. Nous nous reportons aux données recueillies dans le cadre de l’enquête italienne continue sur la population active, qui est transversale et trimestrielle et qui comporte un plan de renouvellement de type 2-2-2. Le questionnaire nous permet d’utiliser plusieurs indicateurs des états de la population active pour chaque trimestre : deux recueillis au cours de la première interview, et un troisième recueilli un an plus tard. Notre approche fournit une méthode pour estimer la mobilité sur le marché du travail, en tenant compte des erreurs corrélées et du plan par renouvellement de l’enquête. Le modèle qui convient le mieux est un modèle markovien mixte à classes latentes, avec des covariables touchant les transitions latentes et des erreurs corrélées parmi les indicateurs; les composantes mixtes sont de type mobile-stable. Le caractère plus approprié de la spécification du modèle mixte est attribuable à des transitions latentes estimées avec une plus grande précision.

    Date de diffusion : 2017-06-22

  • Articles et rapports : 12-001-X201600214661
    Description :

    Un exemple présenté par Jean-Claude Deville en 2005 est soumis à trois méthodes d’estimation : la méthode des moments, la méthode du maximum de vraisemblance et le calage généralisé. Les trois méthodes donnent exactement les mêmes résultats pour les deux modèles de non-réponse. On discute ensuite de la manière de choisir le modèle le plus adéquat

    Date de diffusion : 2016-12-20

  • Articles et rapports : 12-001-X201600214677
    Description :

    Comment savoir si les ajustements de la pondération réduisent ou non le biais de non-réponse ? Si une variable est mesurée pour toutes les unités de l’échantillon sélectionné, on peut calculer une estimation approximativement sans biais de la moyenne ou du total de population pour cette variable en se servant des poids de sondage. Une seconde estimation de la moyenne ou du total de population peut être obtenue en se basant uniquement sur les répondants à l’enquête et en utilisant des poids ajustés pour tenir compte de la non-réponse. Si les deux estimations ne concordent pas, il y a des raisons de penser que les ajustements des poids n’ont peut-être pas éliminé le biais de non-réponse pour la variable en question. Dans le présent article, nous développons les propriétés théoriques des estimateurs de variance par linéarisation et par jackknife en vue d’évaluer le biais d’une estimation de la moyenne ou du total de population par comparaison des estimations obtenues pour des sous-ensembles chevauchants des mêmes données avec différents ensembles de poids, quand la poststratification ou la pondération par l’inverse de la propension à répondre servent à ajuster les poids pour tenir compte de la non-réponse. Nous donnons les conditions suffisantes sur la population, l’échantillon et le mécanisme de réponse pour que les estimateurs de variance soient convergents, et démontrons les propriétés de ces derniers pour un petit échantillon au moyen d’une étude par simulation.

    Date de diffusion : 2016-12-20
Données (0)

Données (0) (0 résultat)

Aucun contenu disponible actuellement

Analyses (119)

Analyses (119) (0 à 10 de 119 résultats)

  • Articles et rapports : 12-001-X201900200005
    Description :

    Nous exposons une méthode d’imputation de valeurs manquantes dans des données catégoriques multivariées emboîtées au sein des ménages. Cette méthode reposant sur un modèle à classes latentes (i) permet des variables au double niveau des ménages et des particuliers, (ii) attribue dans ce modèle une probabilité nulle aux configurations impossibles des ménages et (iii) peut préserver les distributions multivariées à la fois dans et entre les ménages. Nous présentons un échantillonneur de Gibbs pour l’estimation du modèle et la production des imputations. Nous décrivons en outre des stratégies d’amélioration de l’efficacité de calcul pour l’estimation du modèle. Nous illustrons enfin le rendement de la méthode à l’aide de données imitant les variables recueillies dans des recensements types de la population.

    Date de diffusion : 2019-06-27

  • Articles et rapports : 12-001-X201900200008
    Description :

    De nos jours, il y a une non-réponse élevée dans de nombreuses enquêtes-échantillons, y compris d’importantes enquêtes menées par des organismes statistiques gouvernementaux. Une collecte de données adaptative peut être avantageuse dans cette situation : il est possible de réduire le biais de non-réponse dans les estimations de l’enquête, jusqu’à un certain point, en produisant un ensemble de répondants bien équilibré. Les variables auxiliaires ont un double objectif. Utilisées au cours de la phase d’estimation, elles réduisent le biais, sans toutefois l’éliminer complètement, par une pondération ajustée par calage. Au cours de la phase précédente de collecte de données adaptative, les variables auxiliaires jouent également un rôle important : elles contribuent à réduire le déséquilibre dans l’ensemble final de répondants. Dans le contexte de cette utilisation combinée de variables auxiliaires, le présent article est consacré à un examen de l’écart entre l’estimation par calage et l’estimation sans biais (réponse complète). Nous montrons que cet écart est la somme de deux composantes. La composante réductible peut être réduite, par la collecte de données adaptative, jusqu’à zéro si une réponse parfaitement équilibrée est obtenue par rapport à un vecteur auxiliaire choisi. En revanche, la composante résistante ne varie pas ou varie peu sous l’effet d’une réponse mieux équilibrée; elle représente une partie de l’écart qu’un plan adaptatif ne permet pas d’éliminer. La taille relative de cette première composante est un indicateur de l’avantage qu’on peut tirer d’un plan de sondage adaptatif.

    Date de diffusion : 2019-06-27

  • Articles et rapports : 12-001-X201900200009
    Description :

    Ces dernières années, les mesures indirectes du biais de non-réponse dans les enquêtes ou d’autres formes de collecte de données ont suscité un vif intérêt, en raison de la diminution progressive des propensions à répondre aux enquêtes et des pressions exercées sur les budgets d’enquête. Ces changements ont poussé les sondeurs à se concentrer davantage sur la représentativité ou l’équilibre des unités échantillonnées répondantes par rapport à des variables auxiliaires pertinentes. Un exemple de mesure est l’indicateur de représentativité, ou indicateur R. Cet indicateur est basé sur la variation d’échantillon pondérée selon le plan de sondage des propensions à répondre estimées. Cela suppose que l’on dispose de données auxiliaires appariées. L’une des critiques de l’indicateur est qu’il ne peut pas être utilisé si l’information auxiliaire est disponible uniquement au niveau de la population. Dans le présent article, nous proposons une nouvelle méthode d’estimation des propensions à répondre qui ne requiert pas d’information auxiliaire pour les non-répondants à l’enquête et qui est fondée sur de l’information auxiliaire pour la population. Ces propensions à répondre basées sur la population peuvent alors être utilisées pour élaborer des indicateurs R faisant appel à des tableaux de contingence de population ou à des fréquences de population. Nous discutons des propriétés statistiques des indicateurs, et évaluons leur performance au moyen d’une étude portant sur des données réelles de recensement et d’une application à la Dutch Health Survey.

    Date de diffusion : 2019-06-27

  • Articles et rapports : 12-001-X201900100002
    Description :

    La non-réponse partielle se produit fréquemment dans les enquêtes-échantillons. On utilise couramment l’imputation hot deck pour remplacer les valeurs des items manquants dans des groupes homogènes appelés classes d’imputation. Nous proposons une procédure d’imputation hot deck fractionnaire et une vraisemblance empirique associée pour l’inférence sur la moyenne de population d’une fonction d’une variable d’intérêt présentant des données manquantes selon un échantillonnage avec probabilité proportionnelle à la taille avec fractions d’échantillonnage négligeables. Nous calculons les distributions limites de l’estimateur du maximum de vraisemblance empirique et du rapport de vraisemblance empirique, et nous proposons deux procédures bootstrap asymptotiques valides afin de construire des intervalles de confiance pour la moyenne de population. Les études par simulations montrent que les procédures bootstrap proposées donnent de meilleurs résultats que les procédures bootstrap habituelles, qui se révèlent asymptotiquement incorrectes quand le nombre de tirages aléatoires de l’imputation fractionnaire est fixe. De plus, la procédure bootstrap proposée, fondée sur le rapport de vraisemblance empirique, semble donner des résultats significativement meilleurs que la méthode fondée sur la distribution limite de l’estimateur du maximum de vraisemblance empirique en cas de grande variation des probabilités d’inclusion ou d’échantillon de petite taille.

    Date de diffusion : 2019-05-07

  • Articles et rapports : 12-001-X201800254952
    Description :

    Les enquêtes par panel sont souvent utilisées pour mesurer l’évolution de paramètres au cours du temps. Ces enquêtes peuvent souffrir de différentes formes de non-réponse totale, situation que l’on traite à l’heure actuelle en estimant les probabilités de réponse et en effectuant une nouvelle pondération des répondants. La présente étude porte sur l’estimation, ainsi que l’estimation de la variance en cas de non-réponse totale dans les enquêtes par panel. En étendant les travaux de Kim et Kim (2007) à plusieurs périodes, nous considérons un estimateur ajusté par un score de propension qui tient compte de la non-réponse initiale et de l’attrition, et proposons un estimateur de variance approprié. Nous étendons ensuite cet estimateur afin de couvrir la plupart des estimateurs utilisés dans les enquêtes, y compris les estimateurs calés, les estimateurs de paramètres complexes et les estimateurs longitudinaux. Les propriétés de l’estimateur de variance proposé et d’un estimateur de variance simplifié sont évaluées au moyen d’une étude en simulation. Une illustration de la méthode proposée sur des données provenant de l’enquête ELFE est également présentée.

    Date de diffusion : 2018-12-20

  • Articles et rapports : 12-001-X201800254957
    Description :

    Lorsqu’une méthode d’imputation linéaire est utilisée pour corriger la non-réponse, et sous certaines hypothèses, on peut attribuer au niveau des unités non-répondantes la variance totale. L’imputation linéaire n’est pas aussi restrictive qu’il n’y paraît car les méthodes les plus populaires comme l’imputation par ratio; donneur; moyenne et valeur auxiliaire sont toutes des méthodes d’imputation linéaires. Le cadre théorique ainsi que l’expression donnant la décomposition de la variance due à la non-réponse au niveau de l’unité seront présentés. Des résultats par simulation seront aussi présentés. Cette décomposition peut être utilisée pour prioriser le suivi de non-réponse, prioriser les corrections manuelles ou simplement orienter l’analyse des données.

    Date de diffusion : 2018-12-20

  • Articles et rapports : 12-001-X201800154929
    Description :

    Le U.S. Census Bureau étudie des stratégies de sous-échantillonnage des non-répondants en prévision de l’Economic Census de 2017. Les contraintes imposées au plan de sondage comprennent une borne inférieure obligatoire pour le taux de réponse totale, ainsi que des taux de réponse cibles par industrie. Le présent article expose la recherche sur les procédures de répartition de l’échantillon pour le sous-échantillonnage des non-répondants conditionnellement à ce que ce sous-échantillonnage soit systématique. Nous considérons deux approches, à savoir 1) l’échantillonnage avec probabilités égales et 2) la répartition optimisée avec contraintes sur les taux de réponse totale et la taille d’échantillon, avec pour objectif la sélection de plus grands échantillons dans les industries qui, au départ, affichent des taux de réponse plus faibles. Nous présentons une étude en simulation qui examine le biais relatif et l’erreur quadratique moyenne pour les répartitions proposées, en évaluant la sensibilité de chaque procédure à la taille du sous-échantillon, aux propensions à répondre et à la procédure d’estimation

    Date de diffusion : 2018-06-21

  • Articles et rapports : 12-001-X201700114820
    Description :

    Les erreurs de mesure peuvent provoquer un biais de l’estimation des transitions, donnant lieu à des conclusions erronées au sujet de la dynamique du marché du travail. La littérature traditionnelle sur l’estimation des mouvements bruts est basée sur la supposition que les erreurs de mesure ne sont pas corrélées au fil du temps. Cette supposition n’est pas réaliste dans bien des contextes, en raison du plan d’enquête et des stratégies de collecte de données. Dans le présent document, nous utilisons une approche basée sur un modèle pour corriger les mouvements bruts observés des erreurs de classification au moyen de modèles markoviens à classes latentes. Nous nous reportons aux données recueillies dans le cadre de l’enquête italienne continue sur la population active, qui est transversale et trimestrielle et qui comporte un plan de renouvellement de type 2-2-2. Le questionnaire nous permet d’utiliser plusieurs indicateurs des états de la population active pour chaque trimestre : deux recueillis au cours de la première interview, et un troisième recueilli un an plus tard. Notre approche fournit une méthode pour estimer la mobilité sur le marché du travail, en tenant compte des erreurs corrélées et du plan par renouvellement de l’enquête. Le modèle qui convient le mieux est un modèle markovien mixte à classes latentes, avec des covariables touchant les transitions latentes et des erreurs corrélées parmi les indicateurs; les composantes mixtes sont de type mobile-stable. Le caractère plus approprié de la spécification du modèle mixte est attribuable à des transitions latentes estimées avec une plus grande précision.

    Date de diffusion : 2017-06-22

  • Articles et rapports : 12-001-X201600214661
    Description :

    Un exemple présenté par Jean-Claude Deville en 2005 est soumis à trois méthodes d’estimation : la méthode des moments, la méthode du maximum de vraisemblance et le calage généralisé. Les trois méthodes donnent exactement les mêmes résultats pour les deux modèles de non-réponse. On discute ensuite de la manière de choisir le modèle le plus adéquat

    Date de diffusion : 2016-12-20

  • Articles et rapports : 12-001-X201600214677
    Description :

    Comment savoir si les ajustements de la pondération réduisent ou non le biais de non-réponse ? Si une variable est mesurée pour toutes les unités de l’échantillon sélectionné, on peut calculer une estimation approximativement sans biais de la moyenne ou du total de population pour cette variable en se servant des poids de sondage. Une seconde estimation de la moyenne ou du total de population peut être obtenue en se basant uniquement sur les répondants à l’enquête et en utilisant des poids ajustés pour tenir compte de la non-réponse. Si les deux estimations ne concordent pas, il y a des raisons de penser que les ajustements des poids n’ont peut-être pas éliminé le biais de non-réponse pour la variable en question. Dans le présent article, nous développons les propriétés théoriques des estimateurs de variance par linéarisation et par jackknife en vue d’évaluer le biais d’une estimation de la moyenne ou du total de population par comparaison des estimations obtenues pour des sous-ensembles chevauchants des mêmes données avec différents ensembles de poids, quand la poststratification ou la pondération par l’inverse de la propension à répondre servent à ajuster les poids pour tenir compte de la non-réponse. Nous donnons les conditions suffisantes sur la population, l’échantillon et le mécanisme de réponse pour que les estimateurs de variance soient convergents, et démontrons les propriétés de ces derniers pour un petit échantillon au moyen d’une étude par simulation.

    Date de diffusion : 2016-12-20
Références (8)

Références (8) ((8 résultats))

  • Enquêtes et programmes statistiques — Documentation : 12-001-X201200211755
    Description :

    La question de la non-réponse dans les études longitudinales est abordée en évaluant l'exactitude des modèles de propension à répondre construits pour distinguer et prédire les divers types de non-réponse. Une attention particulière est accordée aux mesures sommaires dérivées des courbes de la fonction d'efficacité du receveur, ou courbes ROC (de l'anglais receiver operating characteristics), ainsi que des courbes de type logit sur rangs. Les concepts sont appliqués à des données provenant de la Millennium Cohort Study du Royaume-Uni. Selon les résultats, la capacité de faire la distinction entre les divers types de non-répondants et de les prévoir n'est pas grande. Les poids produits au moyen des modèles de propension à répondre ne donnent lieu qu'à de faibles corrections des transitions entre situations d'emploi. Des conclusions sont tirées quant aux possibilités d'intervention en vue de prévenir la non-réponse.

    Date de diffusion : 2012-12-19

  • Enquêtes et programmes statistiques — Documentation : 12-001-X201200111688
    Description :

    Nous étudions le problème de la non-réponse non ignorable dans un tableau de contingence bidimensionnel qui peut être créé individuellement pour plusieurs petits domaines en présence de non-réponse partielle ainsi que totale. En général, le fait de prendre en considération les deux types de non-réponse dans les données sur les petits domaines accroît considérablement la complexité de l'estimation des paramètres du modèle. Dans le présent article, nous conceptualisons le tableau complet des données pour chaque domaine comme étant constitué d'un tableau contenant les données complètes et de trois tableaux supplémentaires pour les données de ligne manquantes, les données de colonne manquantes et les données de ligne et de colonne manquantes, respectivement. Dans des conditions de non-réponse non ignorable, les probabilités totales de cellule peuvent varier en fonction du domaine, de la cellule et de ces trois types de « données manquantes ». Les probabilités de cellule sous-jacentes (c'est-à-dire celles qui s'appliqueraient s'il était toujours possible d'obtenir une classification complète) sont produites pour chaque domaine à partir d'une loi commune et leur similarité entre les domaines est quantifiée paramétriquement. Notre approche est une extension de l'approche de sélection sous non-réponse non ignorable étudiée par Nandram et Choi (2002a, b) pour les données binaires ; cette extension crée une complexité supplémentaire qui découle de la nature multivariée des données et de la structure des petits domaines. Comme dans les travaux antérieurs, nous utilisons un modèle d'extension centré sur un modèle de non-réponse ignorable de sorte que la probabilité totale de cellule dépend de la catégorie qui représente la réponse. Notre étude s'appuie sur des modèles hiérarchiques bayésiens et des méthodes Monte Carlo par chaîne de Markov pour l'inférence a posteriori. Nous nous servons de données provenant de la troisième édition de la National Health and Nutrition Examination Survey pour illustrer les modèles et les méthodes.

    Date de diffusion : 2012-06-27

  • Enquêtes et programmes statistiques — Documentation : 12-001-X200900211037
    Description :

    Les stratégies fondées sur la réponse aléatoire, qui ont été élaborées au départ à titre de méthodes statistiques destinées à réduire la non-réponse ainsi que la réponse mensongère, peuvent aussi être appliquées dans le domaine du contrôle de la divulgation statistique dans les fichiers de microdonnées à grande diffusion. Le présent article décrit une standardisation des méthodes de réponse aléatoire en vue d'estimer des proportions pour des attributs identificatoires ou sensibles. Les propriétés statistiques de l'estimateur standardisé sont établies dans le cas de l'échantillonnage probabiliste général. Afin d'analyser l'effet du choix des « paramètres de plan » implicites de la méthode sur la performance de l'estimateur, nous incluons dans l'étude des mesures de la protection de la vie privée. Nous obtenons ainsi des paramètres de plan qui optimisent la variance, sachant le niveau de protection de la vie privée. Pour cela, les variables doivent être classées dans diverses catégories de sensibilité. Un exemple fondé sur des données réelles illustre l'application de la méthode à une enquête sur la tricherie chez les étudiants.

    Date de diffusion : 2009-12-23

  • Enquêtes et programmes statistiques — Documentation : 12-001-X20000025532
    Description :

    Lorsque le mécanisme de réponse dans une enquête dépend d'une variable d'intérêt mesurée dans cette même enquête et qui n'est observée que pour une partie de l'échantillon seulement, on dit qu'on est en présence de non-réponse non-ignorable. Dans une telle situation, ne pas tenir compte de la non-réponse peut engendrer un biais important dans l'estimation d'une moyenne ou d'un total. Pour contrer ce problème, on peut modéliser conjointement le mécanisme de réponse et la variable d'intérêt et effectuer l'estimation par la méthode du maximum de vraisemblance. La critique principale de cette méthode est que l'estimation par la méthode du maximum de vraisemblance est basée sur l'hypothèse difficilement vérifiable de normalité des erreurs pour le modèle impliquant la variable d'intérêt. Dans cet article, on propose une méthode d'estimation robuste par rapport à l'hypothèse de normalité puisqu'elle est construite de telle sorte qu'elle n'exige pas de spécifier la distribution des erreurs. La méthode est évaluée au moyen de simulations de Monte Carlo. On propose également une méthode simple permettant de vérifier la validité de l'hypothèse de normalité des erreurs quand la non-réponse n'est pas ignorable.

    Date de diffusion : 2001-02-28

  • Enquêtes et programmes statistiques — Documentation : 12-001-X20000015183
    Description :

    Pour les enquêtes dont la collecte des données comprend plus d'une étape, on recommande, comme méthode de correction des poids selon la non-réponse (après la première étape de la collecte des données), d'utiliser des variables auxiliaires (tirées des étapes antérieures de la collecte des données) qui sont reconnues comme des prédicteurs de la non-réponse.

    Date de diffusion : 2000-08-30

  • Enquêtes et programmes statistiques — Documentation : 12-001-X19980024349
    Description :

    La mesure des flux bruts de la population active est un objectif important des enquêtes continues sur la population active effectuées par un grand nombre d'offices nationaux de la statistique. Cependant, il est bien connu que l'estimation de ces flux peut être compliquée par une non-réponse, des erreurs de mesure, un renouvellement de l'échantillon et des effets complexes du plan de sondage. Le présent article, inspiré par des modèles de non-réponse dans les enquêtes sur les ménages, porte sur l'estimation des flux bruts tout en apportant des ajustements en fonction de la non-réponse dont il faut tenir compte. Les approches antérieures basées sur un modèle en ce qui concerne l'estimation des flux bruts supposaient que la non-réponse était un processus au niveau de la personne. Nous proposons une catégorie de modèles qui permettent une non-réponse dont il faut tenir compte au niveau du ménage. On a recours à une étude en simulation pour démontrer que les estimations des flux bruts de la population active au niveau de la personne provenant des données d'enquêtes sur les ménages peuvent être biaisées et que les estimations en fonction de modèles au niveau du ménage peuvent permettre de réduire ce biais.

    Date de diffusion : 1999-01-14

  • Enquêtes et programmes statistiques — Documentation : 12-001-X19980024352
    Description :

    L'Enquête nationale sur la santé de la population (ENSP) est l'une des trois principales enquêtes-ménages longitudinales que mène Statistique Canada à une grande échelle auprès de la population canadienne. Depuis vingt ans, tous les deux ans, on a suivi un panel constitué d'environ 17 000 personnes. Les données provenant de l'enquête sont utilisées pour des analyses longitudinales, même si l'un des objectifs important est la production d'estimations transversales. Pour chaque cycle, les panélistes fournissent des renseignements détaillés sur leur santé (S) pendant qu'au même moment, pour augmenter l'échantillon transversal, des données socio-démographiques et quelques renseignements sur la santé sont recueillis (G) auprès de tous les membres des ménages. Cette stratégie de collecte présente différents schémas de réponse pour les panélistes après deux cycles: GS-GS, GS-G*, GS-**, G*-GS, G*-G* et G*-**, où * indique une portion de données manquantes. Le présent article explique la méthodologie élaborée pour traiter ces types de non-réponse longitudinale de même que la non-réponse d'une perspective transversale. L'utilisation de facteurs de pondération pour la non-réponse et la création de cellules d'ajustement pour la pondération à l'aide de l'algorithme CHAID sont expliquées ici.

    Date de diffusion : 1999-01-14

  • Enquêtes et programmes statistiques — Documentation : 12-001-X19970013103
    Description :

    Les auteurs décrivent certaines méthodes diagnostiques simples utilisées pour guider la construction de cellules de correction pour la non-réponse. S'inspirant des travaux de Little (1986), ils étudient la construction de cellules de correction par regroupement d'unités d'échantillonnage selon la probabilité estimée de réponse ou selon la réponse estimée aux questions de l'enquête. Ils examinent plus particulièrement l'évaluation de la sensibilité des estimations corrigées de la moyenne à la variation de k, c'est-à-dire le nombre de cellules utilisées, le dépistage de cellules particulières qui nécessitent une mise au point supplémentaire, la comparaison des estimations corrigées et non corrigées de la moyenne et la comparaison des estimations obtenues au moyen des cellules fondées sur la probabilité estimée de réponse, d'une part, et sur la réponse estimée aux questions, d'autre part. Les auteurs justifient les méthodes proposées et les illustrent par une application à l'estimation du revenu moyen des unités de la U.S. Consumer Expenditure Survey.

    Date de diffusion : 1997-08-18
Date de modification :