Keyword search

Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Survey or statistical program

702 facets displayed. 0 facets selected.

Content

1 facets displayed. 0 facets selected.
Sort Help
entries

Results

All (24,399)

All (24,399) (0 to 10 of 24,399 results)

Data (12,036)

Data (12,036) (11,970 to 11,980 of 12,036 results)

Analysis (9,996)

Analysis (9,996) (30 to 40 of 9,996 results)

  • Stats in brief: 11-001-X202417822588
    Description: Release published in The Daily – Statistics Canada’s official release bulletin
    Release date: 2024-06-26

  • Stats in brief: 11-001-X20241783389
    Description: Release published in The Daily – Statistics Canada’s official release bulletin
    Release date: 2024-06-26

  • Journals and periodicals: 36-28-0001
    Description: Economic and Social Reports includes in-depth research, brief analyses, and current economic updates on a variety of topics, such as labour, immigration, education and skills, income mobility, well-being, aging, firm dynamics, productivity, economic transitions, and economic geography. All the papers are institutionally reviewed and the research and analytical papers undergo peer review to ensure that they conform to Statistics Canada's mandate as a governmental statistical agency and adhere to generally accepted standards of good professional practice.
    Release date: 2024-06-26

  • Articles and reports: 12-001-X202400100001
    Description: Inspired by the two excellent discussions of our paper, we offer some new insights and developments into the problem of estimating participation probabilities for non-probability samples. First, we propose an improvement of the method of Chen, Li and Wu (2020), based on best linear unbiased estimation theory, that more efficiently leverages the available probability and non-probability sample data. We also develop a sample likelihood approach, similar in spirit to the method of Elliott (2009), that properly accounts for the overlap between both samples when it can be identified in at least one of the samples. We use best linear unbiased prediction theory to handle the scenario where the overlap is unknown. Interestingly, our two proposed approaches coincide in the case of unknown overlap. Then, we show that many existing methods can be obtained as a special case of a general unbiased estimating function. Finally, we conclude with some comments on nonparametric estimation of participation probabilities.
    Release date: 2024-06-25

  • Articles and reports: 12-001-X202400100002
    Description: We provide comparisons among three parametric methods for the estimation of participation probabilities and some brief comments on homogeneous groups and post-stratification.
    Release date: 2024-06-25

  • Articles and reports: 12-001-X202400100003
    Description: Beaumont, Bosa, Brennan, Charlebois and Chu (2024) propose innovative model selection approaches for estimation of participation probabilities for non-probability sample units. We focus our discussion on the choice of a likelihood and parameterization of the model, which are key for the effectiveness of the techniques developed in the paper. We consider alternative likelihood and pseudo-likelihood based methods for estimation of participation probabilities and present simulations implementing and comparing the AIC based variable selection. We demonstrate that, under important practical scenarios, the approach based on a likelihood formulated over the observed pooled non-probability and probability samples performed better than the pseudo-likelihood based alternatives. The contrast in sensitivity of the AIC criteria is especially large for small probability sample sizes and low overlap in covariates domains.
    Release date: 2024-06-25

  • Articles and reports: 12-001-X202400100004
    Description: Non-probability samples are being increasingly explored in National Statistical Offices as an alternative to probability samples. However, it is well known that the use of a non-probability sample alone may produce estimates with significant bias due to the unknown nature of the underlying selection mechanism. Bias reduction can be achieved by integrating data from the non-probability sample with data from a probability sample provided that both samples contain auxiliary variables in common. We focus on inverse probability weighting methods, which involve modelling the probability of participation in the non-probability sample. First, we consider the logistic model along with pseudo maximum likelihood estimation. We propose a variable selection procedure based on a modified Akaike Information Criterion (AIC) that properly accounts for the data structure and the probability sampling design. We also propose a simple rank-based method of forming homogeneous post-strata. Then, we extend the Classification and Regression Trees (CART) algorithm to this data integration scenario, while again properly accounting for the probability sampling design. A bootstrap variance estimator is proposed that reflects two sources of variability: the probability sampling design and the participation model. Our methods are illustrated using Statistics Canada’s crowdsourcing and survey data.
    Release date: 2024-06-25

  • Articles and reports: 12-001-X202400100005
    Description: In this rejoinder, I address the comments from the discussants, Dr. Takumi Saegusa, Dr. Jae-Kwang Kim and Ms. Yonghyun Kwon. Dr. Saegusa’s comments about the differences between the conditional exchangeability (CE) assumption for causal inferences versus the CE assumption for finite population inferences using nonprobability samples, and the distinction between design-based versus model-based approaches for finite population inference using nonprobability samples, are elaborated and clarified in the context of my paper. Subsequently, I respond to Dr. Kim and Ms. Kwon’s comprehensive framework for categorizing existing approaches for estimating propensity scores (PS) into conditional and unconditional approaches. I expand their simulation studies to vary the sampling weights, allow for misspecified PS models, and include an additional estimator, i.e., scaled adjusted logistic propensity estimator (Wang, Valliant and Li (2021), denoted by sWBS). In my simulations, it is observed that the sWBS estimator consistently outperforms or is comparable to the other estimators under the misspecified PS model. The sWBS, as well as WBS or ABS described in my paper, do not assume that the overlapped units in both the nonprobability and probability reference samples are negligible, nor do they require the identification of overlap units as needed by the estimators proposed by Dr. Kim and Ms. Kwon.
    Release date: 2024-06-25

  • Articles and reports: 12-001-X202400100006
    Description: In some of non-probability sample literature, the conditional exchangeability assumption is considered to be necessary for valid statistical inference. This assumption is rooted in causal inference though its potential outcome framework differs greatly from that of non-probability samples. We describe similarities and differences of two frameworks and discuss issues to consider when adopting the conditional exchangeability assumption in non-probability sample setups. We also discuss the role of finite population inference in different approaches of propensity scores and outcome regression modeling to non-probability samples.
    Release date: 2024-06-25

  • Articles and reports: 12-001-X202400100007
    Description: Pseudo weight construction for data integration can be understood in the two-phase sampling framework. Using the two-phase sampling framework, we discuss two approaches to the estimation of propensity scores and develop a new way to construct the propensity score function for data integration using the conditional maximum likelihood method. Results from a limited simulation study are also presented.
    Release date: 2024-06-25
Reference (1,892)

Reference (1,892) (1,890 to 1,900 of 1,892 results)

  • Surveys and statistical programs – Documentation: 8013
    Description: The Longitudinal Employment Analysis Program (LEAP) is a database that contains annual employment information for each employer business in Canada, starting with the 1983 reference year.

  • Surveys and statistical programs – Documentation: 8014
    Description: This study will be used to determine which method would be the most effective to select households in Canada for any given survey that is conducted by Statistics Canada.
Date modified: