Mesure de l’incertitude associée aux estimateurs pour petits domaines basés sur un modèle
Section 2. Estimateurs EB

À la présente section, nous présentons les estimateurs EB pour les moyennes ou totaux de petit domaine, notés θ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaOGaaiilaaaa@3983@ pour m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@36EB@ domaines dont les échantillons sont de petite taille. Pour les modèles au niveau du domaine, nous supposons que les estimateurs directs θ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaaaaa@38D9@ et les covariables au niveau du domaine associées z i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOEamaaBa aaleaacaWGPbaabeaaaaa@3816@ sont disponibles pour les m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@36EB@ domaines, où z i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOEamaaBa aaleaacaWGPbaabeaaaaa@3816@ est un vecteur de dimension p × 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabgE na0kaaigdacaGGUaaaaa@3A72@ Dans le cas des modèles au niveau de l’unité, nous supposons que les données au niveau de l’unité { ( y i j , x i j ) , j = 1 , , n i ; i = 1 , , m } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaada qadaqaaiaadMhadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiilaiaa ysW7caWH4bWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawM caaiaacYcacaaMe8UaaGjbVlaadQgacqGH9aqpcaaIXaGaaiilaiaa ysW7cqWIMaYscaGGSaGaaGjbVlaad6gadaWgaaWcbaGaamyAaaqaba GccaGG7aGaaGjbVlaaysW7caWGPbGaeyypa0JaaGymaiaacYcacaaM e8UaeSOjGSKaaiilaiaaysW7caWGTbaacaGL7bGaayzFaaaaaa@5D58@ sont disponibles pour les domaines échantillonnés, où n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbaabeaaaaa@3806@ est la taille d’échantillon dans le domaine i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E7@ et x i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@3903@ est un vecteur de dimension p × 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabgE na0kaaigdaaaa@39C0@ de covariables qui peuvent inclure des covariables au niveau du domaine. Nous supposons que les moyennes de population de domaine X ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaybceWHyb GbaebadaWgaaWcbaGaamyAaaqabaaaaa@3894@ sont connues.

2.1  Modèle de base au niveau du domaine

Nous supposons que l’estimateur direct θ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaaaaa@38D9@ est sans biais sous le plan (soit exactement ou approximativement pour une grande taille d’échantillon global n ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaacM cacaGGUaaaaa@384B@ Par exemple, les estimateurs calés sur des moyennes globales connues de variables auxiliaires sont approximativement sans biais. Nous exprimons cette hypothèse sous forme d’un modèle d’échantillonnage θ ^ i = θ i + e i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcqaH4oqCdaWgaaWcbaGa amyAaaqabaGccqGHRaWkcaWGLbWaaSbaaSqaaiaadMgaaeqaaOGaai ilaaaa@4063@ où l’erreur d’échantillonnage e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbaabeaaaaa@37FD@ est de moyenne nulle et de variance ψ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaOGaaiOlaaaa@399D@ Nous supposons en outre que la variance d’échantillonnage ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaaaa@38E1@ est connue et non aléatoire. En pratique, les estimateurs des variances d’échantillonnage sont lissés et l’estimateur lissé résultant est considéré comme une approximation de ψ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaOGaaiOlaaaa@399D@ Beaumont et Bocci (2016) proposent une méthode de lissage des variances d’échantillonnage dans le contexte de l’EPA du Canada. Le modèle reliant les domaines repose sur l’hypothèse que les θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaaaa@38C9@ sont aléatoires et obéissent au modèle de liaison « correspondant » θ i = z i β + v i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaCOEamaaDaaaleaacaWGPbaa baqcLbwacWaGyBOmGikaaOGaaGjcVlaahk7acqGHRaWkcaWG2bWaaS baaSqaaiaadMgaaeqaaOGaaiilaaaa@4630@ où l’effet aléatoire de domaine v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGPbaabeaaaaa@380E@ est de moyenne nulle et de variance σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@39A0@ et est indépendant de l’erreur d’échantillonnage e i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbaabeaakiaac6caaaa@38B9@ Nous supposons en outre que v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGPbaabeaaaaa@380E@ et e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbaabeaaaaa@37FD@ suivent des lois normales.

La combinaison du modèle d’échantillonnage avec le modèle de liaison aboutit au modèle de base au niveau du domaine

θ ^ i = z i β + v i + e i , v i iid N ( 0 , σ v 2 ) , e i id N ( 0 , ψ i ) , i = 1 , , m . ( 2.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWH6bWaa0baaSqaaiaa dMgaaeaajugybiadaITHYaIOaaGccaWHYoGaey4kaSIaamODamaaBa aaleaacaWGPbaabeaakiabgUcaRiaadwgadaWgaaWcbaGaamyAaaqa baGccaGGSaGaaGjbVlaaysW7caWG2bWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVpaawagabeWcbeqaaiaabMgacaqGPbGaaeizaaqaaebbfv3y SLgzGueE0jxyaGqbaKqzGfGae8hpIOdaaOGaaGjbVlaad6eadaqada qaaiaaicdacaGGSaGaaGjbVlabeo8aZnaaDaaaleaacaWG2baabaGa aGOmaaaaaOGaayjkaiaawMcaaiaacYcacaaMe8UaaGjbVlaadwgada WgaaWcbaGaamyAaaqabaGccaaMe8+aaybyaeqaleqabaGaaeyAaiaa bsgaaeaajugybiab=XJi6aaakiaaysW7caWGobWaaeWaaeaacaaIWa GaaiilaiaaysW7cqaHipqEdaWgaaWcbaGaamyAaaqabaaakiaawIca caGLPaaacaGGSaGaaGjbVlaaysW7caWGPbGaeyypa0JaaGymaiaacY cacqWIMaYscaGGSaGaamyBaiaac6cacaaMf8UaaGzbVlaaywW7caaM f8UaaGzbVlaacIcacaaIYaGaaiOlaiaaigdacaGGPaaaaa@8E41@

Les principaux avantages du modèle (2.1) par rapport aux estimateurs directs découlent du fait qu’il tient compte du plan d’échantillonnage grâce au modèle d’échantillonnage et qu’il ne requiert que des covariables au niveau du domaine, qui s’obtiennent plus facilement que des covariables au niveau de l’unité.

Pour des paramètres du modèle connus ( β , σ v 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WHYoGaaiilaiaaysW7cqaHdpWCdaqhaaWcbaGaamODaaqaaiaaikda aaaakiaawIcacaGLPaaacaGGSaaaaa@3F5E@ le « meilleur » (noté B pour Best) estimateur de θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaaaa@38C9@ est donné par

θ ˜ i B = E ˜ ( θ i | θ ^ i , β , σ v 2 ) = γ i θ ^ i + ( 1 γ i ) z i β , ( 2.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaG aadaqhaaWcbaGaamyAaaqaaiaadkeaaaGccqGH9aqpceWGfbGbaGaa daqadaqaamaaeiaabaGaeqiUde3aaSbaaSqaaiaadMgaaeqaaOGaaG PaVdGaayjcSdGaaGPaVlqbeI7aXzaajaWaaSbaaSqaaiaadMgaaeqa aOGaaiilaiaaysW7caWHYoGaaiilaiaaysW7cqaHdpWCdaqhaaWcba GaamODaaqaaiaaikdaaaaakiaawIcacaGLPaaacqGH9aqpcqaHZoWz daWgaaWcbaGaamyAaaqabaGccaaMi8UafqiUdeNbaKaadaWgaaWcba GaamyAaaqabaGccqGHRaWkdaqadaqaaiaaigdacqGHsislcqaHZoWz daWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacaWH6bWaa0baaS qaaiaadMgaaeaajugybiadaITHYaIOaaGccaWHYoGaaiilaiaaywW7 caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGOmai aacMcaaaa@7322@

γ i = σ v 2 / ( σ v 2 + ψ i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaSGbaeaacqaHdpWCdaqhaaWc baGaamODaaqaaiaaikdaaaaakeaadaqadaqaaiabeo8aZnaaDaaale aacaWG2baabaGaaGOmaaaakiabgUcaRiabeI8a5naaBaaaleaacaWG PbaabeaaaOGaayjkaiaawMcaaaaacaGGUaaaaa@4751@ Le meilleur estimateur (2.2) est sans biais pour θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaaaa@38C9@ en ce sens que E ( θ ˜ i B θ i ) = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaabm aabaGafqiUdeNbaGaadaqhaaWcbaGaamyAaaqaaiaadkeaaaGccqGH sislcqaH4oqCdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacq GH9aqpcaaIWaGaaiilaaaa@4234@ où l’espérance est prise par rapport au modèle présumé (2.1), qui est l’espérance conjointe par rapport au modèle et au plan (Rubin-Bleuer et Schiopu-Kratina, 2005). Il découle de (2.2) que plus de poids est attribué à l’estimateur direct θ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaaaaa@38D9@ si la variance sous le modèle σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@39A0@ est grande comparativement à la variance d’échantillonnage ψ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaOGaaiilaaaa@399B@ et que plus de poids est accordé à l’estimateur synthétique z i β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOEamaaDa aaleaacaWGPbaabaqcLbwacWaGyBOmGikaaOGaaCOSdaaa@3D0E@ si la variance d’échantillonnage est grande.

L’erreur quadratique moyenne (EQM) du meilleur estimateur sous le modèle (2.1) est donnée par

EQM ( θ ˜ i B ) = E ( θ ˜ i B θ i ) 2 = γ i ψ i , ( 2.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiaabg facaqGnbWaaeWaaeaacuaH4oqCgaacamaaDaaaleaacaWGPbaabaGa amOqaaaaaOGaayjkaiaawMcaaiabg2da9iaadweadaqadaqaaiqbeI 7aXzaaiaWaa0baaSqaaiaadMgaaeaacaWGcbaaaOGaeyOeI0IaeqiU de3aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabe aacaaIYaaaaOGaeyypa0Jaeq4SdC2aaSbaaSqaaiaadMgaaeqaaOGa aGjcVlabeI8a5naaBaaaleaacaWGPbaabeaakiaacYcacaaMf8UaaG zbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaiodacaGG Paaaaa@5DB1@

où le terme γ i ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaadMgaaeqaaOGaaGjcVlabeI8a5naaBaaaleaacaWGPbaa beaaaaa@3D3D@ est souvent noté g 1 i ( σ v 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaaIXaGaamyAaaqabaGcdaqadaqaaiabeo8aZnaaDaaaleaa caWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaiaac6caaaa@3EB0@ Il découle de (2.3) que l’estimateur optimal donne lieu à une réduction importante de l’EQM par rapport à l’estimateur direct si γ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaadMgaaeqaaaaa@38BA@ est petit ou que la variance sous le modèle est relativement faible comparativement à la variance totale σ v 2 + ψ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaey4kaSIaeqiYdK3aaSbaaSqa aiaadMgaaeqaaOGaaiOlaaaa@3E30@ Ce résultat fournit une justification convaincante de l’utilisation de l’approche basée sur un modèle pour produire des estimations sur petits domaines.

En pratique, les paramètres du modèle sont inconnus et nous remplaçons les paramètres figurant dans (2.2) par les estimateurs du maximum de vraisemblance restreint (REML) ( β ^ , σ ^ v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaace WHYoGbaKaacaGGSaGaaGjbVlqbeo8aZzaajaWaa0baaSqaaiaadAha aeaacaaIYaaaaaGccaGLOaGaayzkaaaaaa@3ECE@ pour obtenir le meilleur estimateur empirique (estimateur EB):

θ ^ i EB = γ ^ i θ ^ i + ( 1 γ ^ i ) z i β ^ . ( 2.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabweacaqGcbaaaOGaeyypa0Jafq4S dCMbaKaadaWgaaWcbaGaamyAaaqabaGccaaMi8UafqiUdeNbaKaada WgaaWcbaGaamyAaaqabaGccqGHRaWkdaqadaqaaiaaigdacqGHsisl cuaHZoWzgaqcamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaai aaykW7caWH6bWaa0baaSqaaiaadMgaaeaajugybiadaITHYaIOaaGc ceWHYoGbaKaacaGGUaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7ca GGOaGaaGOmaiaac6cacaaI0aGaaiykaaaa@5E67@

Rao et Molina (2015), chapitre 6, décrivent en détail l’estimation du REML des paramètres du modèle.

2.2  Modèle de base au niveau de l’unité

Considérons maintenant un modèle de base au niveau de l’unité qui utilise des données d’échantillon au niveau de l’unité { ( y i j , x i j ) , j = 1 , , n i ; i = 1 , , m } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaada qadaqaaiaadMhadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiilaiaa ysW7caWH4bWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawM caaiaacYcacaaMe8UaaGjbVlaadQgacqGH9aqpcaaIXaGaaiilaiaa ysW7cqWIMaYscaGGSaGaaGjbVlaad6gadaWgaaWcbaGaamyAaaqaba GccaGG7aGaaGjbVlaaysW7caWGPbGaeyypa0JaaGymaiaacYcacaaM e8UaeSOjGSKaaiilaiaaysW7caWGTbaacaGL7bGaayzFaaGaaiilaa aa@5E08@ n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbaabeaaaaa@3806@ est la taille de l’échantillon dans le domaine i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaac6 caaaa@3799@ Nous supposons que les moyennes de population de domaine X ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCiwayaara WaaSbaaSqaaiaadMgaaeqaaaaa@380C@ sont connues. Nous émettons en outre l’hypothèse d’un modèle de régression linéaire à erreurs emboîtées de base au niveau de l’unité pour la population et supposons que le même modèle tient pour l’échantillon (Battese, Harter et Fuller, 1988). Le modèle d’échantillonnage est donné par

y i j = x i j β + v i + e i j , j = 1 , , n i ; i = 1 , , m , ( 2.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbGaamOAaaqabaGccqGH9aqpcaWH4bWaa0baaSqaaiaa dMgacaWGQbaabaqcLbwacWaGyBOmGikaaOGaaCOSdiabgUcaRiaadA hadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWGLbWaaSbaaSqaaiaa dMgacaWGQbaabeaakiaacYcacaaMe8UaaGjbVlaadQgacqGH9aqpca aIXaGaaiilaiaaysW7cqWIMaYscaGGSaGaaGjbVlaad6gadaWgaaWc baGaamyAaaqabaGccaGG7aGaaGjbVlaaysW7caWGPbGaeyypa0JaaG ymaiaacYcacaaMe8UaeSOjGSKaaiilaiaaysW7caWGTbGaaiilaiaa ywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaG ynaiaacMcaaaa@7030@

où les effets aléatoires de domaine v i iid N ( 0 , σ v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGPbaabeaakiaaysW7daGfGbqabSqabeaacaqGPbGaaeyA aiaabsgaaeaarqqr1ngBPrgifHhDYfgaiuaajugybiab=XJi6aaaki aaysW7caWGobWaaeWaaeaacaaIWaGaaiilaiaaysW7cqaHdpWCdaqh aaWcbaGaamODaaqaaiaaikdaaaaakiaawIcacaGLPaaaaaa@4E11@ sont présumés être indépendants des erreurs au niveau de l’unité e i j iid N ( 0 , σ e 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbGaamOAaaqabaGccaaMe8+aaybyaeqaleqabaGaaeyA aiaabMgacaqGKbaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbwacqWF8i IoaaGccaaMe8UaamOtamaabmaabaGaaGimaiaacYcacaaMe8Uaeq4W dm3aa0baaSqaaiaadwgaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaai Olaaaa@4F90@ Les modèles au niveau de l’unité peuvent mener à d’importants gains d’efficacité par rapport aux modèles au niveau du domaine, parce que les paramètres du modèle peuvent être estimés avec plus de précision en utilisant toutes les observations dans l’échantillon global, contrairement aux modèles au niveau du domaine.

Pour les paramètres connus ( β , σ v 2 , σ e 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WHYoGaaiilaiaaysW7cqaHdpWCdaqhaaWcbaGaamODaaqaaiaaikda aaGccaGGSaGaaGjbVlabeo8aZnaaDaaaleaacaWGLbaabaGaaGOmaa aaaOGaayjkaiaawMcaaiaacYcaaaa@453B@ le « meilleur » estimateur de la moyenne de domaine Y ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaara WaaSbaaSqaaiaadMgaaeqaaaaa@3809@ est donné par

Y ¯ ^ i B = E [ Y ¯ i | ( y i j , j = 1 , , n i ; x i j , j = 1 , , N i ) , β , σ v 2 , σ e 2 ] = X ¯ i β + a i ( y ¯ i x ¯ i β ) , ( 2.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaary aajaWaa0baaSqaaiaadMgaaeaacaWGcbaaaOGaeyypa0Jaamyramaa dmaabaWaaqGaaeaaceWGzbGbaebadaWgaaWcbaGaamyAaaqabaGcca aMc8oacaGLiWoacaaMc8+aaeWaaeaacaWG5bWaaSbaaSqaaiaadMga caWGQbaabeaakiaacYcacaaMe8UaamOAaiabg2da9iaaigdacaGGSa GaaGjbVlablAciljaacYcacaaMe8UaamOBamaaBaaaleaacaWGPbaa beaakiaacUdacaaMe8UaaCiEamaaBaaaleaacaWGPbGaamOAaaqaba GccaGGSaGaaGjbVlaadQgacqGH9aqpcaaIXaGaaiilaiaaysW7cqWI MaYscaGGSaGaaGjbVlaad6eadaWgaaWcbaGaamyAaaqabaaakiaawI cacaGLPaaacaGGSaGaaGjbVlaahk7acaGGSaGaaGjbVlabeo8aZnaa DaaaleaacaWG2baabaGaaGOmaaaakiaacYcacaaMe8Uaeq4Wdm3aa0 baaSqaaiaadwgaaeaacaaIYaaaaaGccaGLBbGaayzxaaGaeyypa0Ja bCiwayaaraWaa0baaSqaaiaadMgaaeaajugybiadaITHYaIOaaGcca WHYoGaey4kaSIaamyyamaaBaaaleaacaWGPbaabeaakmaabmaabaGa bmyEayaaraWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IabCiEayaara Waa0baaSqaaiaadMgaaeaajugybiadaITHYaIOaaGccaWHYoaacaGL OaGaayzkaaGaaiilaiaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaG OnaiaacMcaaaa@93FD@

y ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaara WaaSbaaSqaaiaadMgaaeqaaaaa@3829@ et x ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCiEayaara WaaSbaaSqaaiaadMgaaeqaaaaa@382C@ sont les moyennes d’échantillon, a i = ( 1 f i ) γ i + f i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGPbaabeaakiabg2da9maabmaabaGaaGymaiabgkHiTiaa dAgadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacqaHZoWzda WgaaWcbaGaamyAaaqabaGccqGHRaWkcaWGMbWaaSbaaSqaaiaadMga aeqaaaaa@43FB@ avec la fraction d’échantillonnage f i = n i / N i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGPbaabeaakiabg2da9maalyaabaGaamOBamaaBaaaleaa caWGPbaabeaaaOqaaiaad6eadaWgaaWcbaGaamyAaaqabaaaaaaa@3D28@ et γ i = σ v 2 / ( σ v 2 + σ e 2 / n i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaSGbaeaacqaHdpWCdaqhaaWc baGaamODaaqaaiaaikdaaaaakeaadaqadaqaamaalyaabaGaeq4Wdm 3aa0baaSqaaiaadAhaaeaacaaIYaaaaOGaey4kaSIaeq4Wdm3aa0ba aSqaaiaadwgaaeaacaaIYaaaaaGcbaGaamOBamaaBaaaleaacaWGPb aabeaaaaaakiaawIcacaGLPaaaaaGaaiilaaaa@4A2A@ et N i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGPbaabeaaaaa@37E6@ est le nombre d’unités de la population dans le domaine  i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E7@ (Rao et Molina, 2015, chapitre 7). Si la taille de la population du domaine N i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGPbaabeaaaaa@37E6@ est grande et que f i 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGPbaabeaakiabgIKi7kaaicdacaGGSaaaaa@3B23@ alors (2.6) se réduit à une combinaison pondérée de l’estimateur « par la régression sur l’échantillon » y ¯ i + ( X ¯ i x ¯ i ) β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaara WaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaeWaaeaaceWHybGbaeba daWgaaWcbaGaamyAaaqabaGccqGHsislceWH4bGbaebadaWgaaWcba GaamyAaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaKqzGfGamai2 gkdiIcaakiaahk7aaaa@4509@ et de l’estimateur par la régression synthétique X ¯ i β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCiwayaara Waa0baaSqaaiaadMgaaeaajugybiadaITHYaIOaaGccaWHYoaaaa@3D04@ avec les poids γ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaadMgaaeqaaaaa@38BA@ et 1 γ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiabeo7aNnaaBaaaleaacaWGPbaabeaakiaacYcaaaa@3B1C@ respectivement. Nous désignons cette approximation de Y ¯ ^ i B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaary aajaWaa0baaSqaaiaadMgaaeaacaWGcbaaaaaa@38E0@ par μ ^ i B . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0MbaK aadaqhaaWcbaGaamyAaaqaaiaadkeaaaGccaGGUaaaaa@3A5D@ À mesure qu’augmente la taille d’échantillon de domaine n i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiaacYcaaaa@38C0@ l’estimateur optimal donne plus de poids à l’estimateur par la régression sur l’échantillon. En pratique, nous remplaçons les paramètres du modèle par les estimateurs du REML ( β ^ , σ ^ v 2 , σ ^ e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaace WHYoGbaKaacaGGSaGaaGjbVlqbeo8aZzaajaWaa0baaSqaaiaadAha aeaacaaIYaaaaOGaaiilaiaaysW7cuaHdpWCgaqcamaaDaaaleaaca WGLbaabaGaaGOmaaaaaOGaayjkaiaawMcaaaaa@44BB@ pour obtenir l’estimateur EB Y ¯ ^ i EB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaary aajaWaa0baaSqaaiaadMgaaeaacaqGfbGaaeOqaaaaaaa@39A6@ ou μ ^ i EB . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0MbaK aadaqhaaWcbaGaamyAaaqaaiaabweacaqGcbaaaOGaaiOlaaaa@3B23@

L’estimateur EB sous le modèle au niveau de l’unité (2.5) ne tient pas compte des poids de sondage w i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGPbGaamOAaaqabaGccaGGSaaaaa@39B8@ contrairement au modèle au niveau du domaine. Par conséquent, l’estimateur EB n’est pas convergent sous le plan quand la taille d’échantillon de domaine augmente, à moins que les poids ne soient tous égaux à l’intérieur du domaine.

L’EQM de μ ^ i B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0MbaK aadaqhaaWcbaGaamyAaaqaaiaadkeaaaaaaa@39A1@ est égale à g 1 i ( σ v 2 , σ e 2 ) = γ i ( σ e 2 / n i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaaIXaGaamyAaaqabaGcdaqadaqaaiabeo8aZnaaDaaaleaa caWG2baabaGaaGOmaaaakiaacYcacaaMe8Uaeq4Wdm3aa0baaSqaai aadwgaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaeyypa0Jaeq4SdC2a aSbaaSqaaiaadMgaaeqaaOWaaeWaaeaadaWcgaqaaiabeo8aZnaaDa aaleaacaWGLbaabaGaaGOmaaaaaOqaaiaad6gadaWgaaWcbaGaamyA aaqabaaaaaGccaGLOaGaayzkaaGaaiilaaaa@4FB2@ tandis que l’EQM de l’estimateur par la régression sur l’échantillon est égal à σ e 2 / n i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamyzaaqaaiaaikdaaaaakeaacaWGUbWaaSba aSqaaiaadMgaaeqaaaaakiaac6caaaa@3C78@ Il s’ensuit maintenant que l’estimateur optimal donne lieu à une réduction importante de l’EQM par rapport à l’estimation par la régression sur l’échantillon si γ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaadMgaaeqaaaaa@38BA@ est petit ou que la variance du modèle σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@39A0@ est petite comparativement à la variance totale σ v 2 + σ e 2 / n i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vq=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaGccqGHRaWkcqaHdpWC daqhaaWcbaGaamyzaaqaaiaaikdaaaaakeaacaWGUbWaaSbaaSqaai aadMgaaeqaaaaakiaac6caaaa@410B@


Date de modification :