A short note on quantile and expectile estimation in unequal probability samples 1. Introduction

Quantile estimation and quantile regression have seen a number of new developments in recent years with Koenker (2005) as a central reference. The principle idea is thereby to estimate an inverted cumulative distribution function, generally called the quantile function Q ( α ) = F 1 ( α ) for α ( 0,1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyuamaabm aabaGaeqySdegacaGLOaGaayzkaaGaaGypaiaadAeadaahaaWcbeqa aiabgkHiTiaaigdaaaGcdaqadaqaaiabeg7aHbGaayjkaiaawMcaai aaysW7caaMc8UaaeOzaiaab+gacaqGYbGaaGjbVlaaykW7cqaHXoqy cqGHiiIZdaqadaqaaiaaicdacaaISaGaaGymaaGaayjkaiaawMcaai aacYcaaaa@522A@  where the 0.5 quantile Q ( 0.5 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyuamaabm aabaGaaGimaiaai6cacaaI1aaacaGLOaGaayzkaaGaaiilaaaa@3C4C@  the median, plays a central role. For survey data tracing from an unequal probability sample with known probabilities of inclusion Kuk (1988) shows how to estimate quantiles taking the inclusion probabilities into account. The central idea is to estimate a distribution function of the variable of interest and invert this in a second step to obtain the quantile function. Chambers and Dunstan (1986) propose a model-based estimator of the distribution function. Rao, Kovar and Mantel (1990) propose a design-based estimator of the cumulative distribution function using auxiliary information. Bayesian approaches in this direction have recently been proposed in Chen, Elliott, and Little (2010) and Chen, Elliott, and Little (2012).

Quantile estimation results from minimizing an L 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIXaaabeaaaaa@38C4@ loss function as demonstrated in Koenker (2005). If the L 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIXaaabeaaaaa@38C4@ loss is replaced by the L 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaaaaa@38C5@ loss function one obtains so called expectiles as introduced in Aigner, Amemiya and Poirier (1976) or Newey and Powell (1987). For α ( 0,1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI48aaeWaaeaacaaIWaGaaGilaiaaigdaaiaawIcacaGLPaaacaGG Saaaaa@3E93@ this leads to the expectile function M ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytamaabm aabaGaeqySdegacaGLOaGaayzkaaaaaa@3B06@ which, like the quantile function Q ( α ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyuamaabm aabaGaeqySdegacaGLOaGaayzkaaGaaiilaaaa@3BBA@ uniquely defines the cumulative distribution function F ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG5bGaaGykaaaa@3A39@ . Expectiles are relatively easy to estimate and they have recently gained some interest, see e.g., Schnabel and Eilers (2009), Pratesi, Ranalli, and Salvati (2009), Sobotka and Kneib (2012) and Guo and Härdle (2013). However since expectiles lack a simple interpretation their acceptance and usage in statistics is less developed than quantiles, see Kneib (2013). Quantiles and expectiles are connected in that a unique and invertible transformation function h y : [ 0,1 ] [ 0,1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaWG5baabeaakiaaiQdadaWadaqaaiaaicdacaaISaGaaGym aaGaay5waiaaw2faaiabgkziUoaadmaabaGaaGimaiaaiYcacaaIXa aacaGLBbGaayzxaaaaaa@4418@ exists so that M ( h ( α ) ) = Q ( α ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytamaabm aabaGaamiAamaabmaabaGaeqySdegacaGLOaGaayzkaaaacaGLOaGa ayzkaaGaaGypaiaadgfadaqadaqaaiabeg7aHbGaayjkaiaawMcaai aacYcaaaa@42F1@ see Yao and Tong (1996) and De Rossi and Harvey (2009). This connection can be used to estimate quantiles from a set of fitted expectiles. The idea has been used in Schulze Waltrup, Sobotka, Kneib and Kauermann (2014) and the authors show empirically that the resulting quantiles can be more efficient than empirical quantiles, even if a smoothing step is applied to the latter (see Jones 1992). An intuitive explanation for this is that expectiles account for all the data while quantiles based on the empirical distribution function only take the left (or the right) hand side of the data into account. That is, the median is defined by the 50% left (or 50% right) part of the data while the mean (as 50% expectile) is a function of all data points. In this note we extend these findings and demonstrate how expectiles can be estimated for unequal probability samples and how to obtain a fitted distribution function from fitted expectiles.

The paper is organized as follows. In Section 2 we give the necessary notation and discuss quantile regression in unequal probability sampling. This is extended in Section 3 towards expectile estimation. Section 4 utilizes the connection between expectiles and quantiles and demonstrates how to derive quantiles from fitted expectiles. Section 5 demonstrates in simulations the efficiency gain in quantiles derived from expectiles and a discussion concludes the paper in Section 6.

Report a problem on this page

Is something not working? Is there information outdated? Can't find what you're looking for?

Please contact us and let us know how we can help you.

Privacy notice

Date modified: