A short note on quantile and expectile estimation in unequal probability samples 4. From expectiles to the distribution function

Both, the quantile function Q ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyuamaabm aabaGaeqySdegacaGLOaGaayzkaaaaaa@3B0A@  and the expectile function M ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytamaabm aabaGaeqySdegacaGLOaGaayzkaaaaaa@3B06@  uniquely define a distribution function F ( . ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaaGOlaaGaayjkaiaawMcaaiaac6caaaa@3ACA@  While Q ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyuamaabm aabaGaeqySdegacaGLOaGaayzkaaaaaa@3B0A@  is just the inversion of F ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaaGOlaaGaayjkaiaawMcaaaaa@3A18@  the relation between M ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytamaabm aabaGaeqySdegacaGLOaGaayzkaaaaaa@3B06@  and F ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaaGOlaaGaayjkaiaawMcaaaaa@3A18@  is more complicated. Following Schnabel and Eilers (2009) and Yao and Tong (1996), we have the relation

M ( α ) = ( 1 α ) G ( M ( α ) ) + α { M ( 0.5 ) G ( M ( α ) ) } ( 1 α ) F ( M ( α ) ) + α { 1 F ( M ( α ) ) } , ( 4.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytamaabm aabaGaeqySdegacaGLOaGaayzkaaGaaGypamaalaaabaWaaeWaaeaa caaIXaGaeyOeI0IaeqySdegacaGLOaGaayzkaaGaam4ramaabmaaba GaamytamaabmaabaGaeqySdegacaGLOaGaayzkaaaacaGLOaGaayzk aaGaey4kaSIaeqySde2aaiWaaeaacaWGnbWaaeWaaeaacaaIWaGaaG OlaiaaiwdaaiaawIcacaGLPaaacqGHsislcaWGhbWaaeWaaeaacaWG nbWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaiaawIcacaGLPaaaai aawUhacaGL9baaaeaadaqadaqaaiaaigdacqGHsislcqaHXoqyaiaa wIcacaGLPaaacaWGgbWaaeWaaeaacaWGnbWaaeWaaeaacqaHXoqyai aawIcacaGLPaaaaiaawIcacaGLPaaacqGHRaWkcqaHXoqydaGadaqa aiaaigdacqGHsislcaWGgbWaaeWaaeaacaWGnbWaaeWaaeaacqaHXo qyaiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUhacaGL9baaaaGa aGilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaaisdaca GGUaGaaGymaiaacMcaaaa@7B3B@

where G ( m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaabm aabaGaamyBaaGaayjkaiaawMcaaaaa@3A53@ is the moment function defined through G ( m ) = i = 1 N Y i 1 { Y i m } / N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaabm aabaGaamyBaaGaayjkaiaawMcaaiaai2dadaaeWaqabSqaaiaadMga caaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakiaaykW7caWGzbWaaS baaSqaaiaadMgaaeqaaOWaaSGbaeaacaaIXaWaaiWaaeaacaWGzbWa aSbaaSqaaiaadMgaaeqaaOGaeyizImQaamyBaaGaay5Eaiaaw2haaa qaaiaad6eaaaGaaiOlaaaa@4D27@ Expression (4.1) gives the unique relation of function M ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytamaabm aabaGaeqySdegacaGLOaGaayzkaaaaaa@3B06@ to the distribution function F ( . ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaaGOlaaGaayjkaiaawMcaaiaac6caaaa@3ACA@ The idea is now to solve (4.1) for F ( . ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaaGOlaaGaayjkaiaawMcaaiaacYcaaaa@3AC8@ that is to express the distribution F ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaaGOlaaGaayjkaiaawMcaaaaa@3A18@ in terms of the expectile function M ( . ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytamaabm aabaGaaGOlaaGaayjkaiaawMcaaiaac6caaaa@3AD1@ Apparently, this is not possible in analytic form but it may be calculated numerically. To do so, we evaluate the fitted function M ^ ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmytayaaja WaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaa@3B16@ at a dense set of values 0 < α 1 < α 2 < α L < 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaaI8aGaeqySde2aaSba aSqaaiaaikdaaeqaaOGaeSOjGSKaaGipaiabeg7aHnaaBaaaleaaca WGmbaabeaakiaaiYdacaaIXaaaaa@4482@ and denote the fitted values as m ^ l = M ^ ( α l ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyBayaaja WaaSbaaSqaaiaadYgaaeqaaOGaaGypaiqad2eagaqcamaabmaabaGa eqySde2aaSbaaSqaaiaadYgaaeqaaaGccaGLOaGaayzkaaGaaiOlaa aa@3FDF@ We also define left and right bounds through m ^ o = m ^ 1 c 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyBayaaja WaaSbaaSqaaiaad+gaaeqaaOGaaGypaiqad2gagaqcamaaBaaaleaa caaIXaaabeaakiabgkHiTiaadogadaWgaaWcbaGaaGimaaqabaaaaa@3EAD@ and m ^ L + 1 = m ^ L + c L + 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyBayaaja WaaSbaaSqaaiaadYeacqGHRaWkcaaIXaaabeaakiaai2daceWGTbGb aKaadaWgaaWcbaGaamitaaqabaGccqGHRaWkcaWGJbWaaSbaaSqaai aadYeacqGHRaWkcaaIXaaabeaakiaacYcaaaa@42A0@ where c 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIWaaabeaaaaa@38DA@ and c L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGmbaabeaaaaa@38F1@ are some constants to be defined by the user. For instance, one may set c 0 = m ^ 2 m ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIWaaabeaakiaai2daceWGTbGbaKaadaWgaaWcbaGaaGOm aaqabaGccqGHsislceWGTbGbaKaadaWgaaWcbaGaaGymaaqabaaaaa@3E75@ and c L + 1 = m ^ L m ^ L 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGmbGaey4kaSIaaGymaaqabaGccaaI9aGabmyBayaajaWa aSbaaSqaaiaadYeaaeqaaOGaeyOeI0IabmyBayaajaWaaSbaaSqaai aadYeacqGHsislcaaIXaaabeaakiaac6caaaa@42B8@ By doing so we derive fitted values for the cumulative distribution function F ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaaGOlaaGaayjkaiaawMcaaaaa@3A18@ at m ^ l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyBayaaja WaaSbaaSqaaiaadYgaaeqaaaaa@392B@ which we write as F ^ l := F ^ ( m ^ l ) = j = 1 l δ ^ j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOGaaGOoaiaai2daceWGgbGbaKaadaqa daqaaiqad2gagaqcamaaBaaaleaacaWGSbaabeaaaOGaayjkaiaawM caaiaai2dadaaeWaqabSqaaiaadQgacaaI9aGaaGymaaqaaiaadYga a0GaeyyeIuoakiaaykW7cuaH0oazgaqcamaaBaaaleaacaWGQbaabe aaaaa@49B7@ for non-negative steps δ ^ j 0, j = 1, , L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiTdqMbaK aadaWgaaWcbaGaamOAaaqabaGccqGHLjYScaaIWaGaaGilaiaadQga caaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamitaaaa@42EC@ with j = 1 L δ ^ j 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaabmaeqale aacaWGQbGaaGypaiaaigdaaeaacaWGmbaaniabggHiLdGccaaMc8Ua fqiTdqMbaKaadaWgaaWcbaGaamOAaaqabaGccqGHKjYOcaaIXaGaai Olaaaa@43E2@ We define δ ^ L + 1 = 1 l = 1 L δ ^ l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiTdqMbaK aadaWgaaWcbaGaamitaiabgUcaRiaaigdaaeqaaOGaaGypaiaaigda cqGHsisldaaeWaqabSqaaiaadYgacaaI9aGaaGymaaqaaiaadYeaa0 GaeyyeIuoakiaaykW7cuaH0oazgaqcamaaBaaaleaacaWGSbaabeaa aaa@4782@ to make F ^ ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaeWaaeaacaaIUaaacaGLOaGaayzkaaaaaa@3A28@ a distribution function. Assuming a uniform distribution between the dense supporting points m ^ l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyBayaaja WaaSbaaSqaaiaadYgaaeqaaaaa@392B@ we may express the moment function G ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaabm aabaGaaGOlaaGaayjkaiaawMcaaaaa@3A19@ by simple stepwise integration as

G ^ l := G ^ ( m ^ l ) = m l x d F ^ ( x ) = j = 1 l d ^ j δ ^ l , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabm4rayaaja WaaSbaaSqaaiaadYgaaeqaaOGaaGOoaiaai2daceWGhbGbaKaadaqa daqaaiqad2gagaqcamaaBaaaleaacaWGSbaabeaaaOGaayjkaiaawM caaiaai2dadaWdXaqabSqaaiabgkHiTiabg6HiLcqaaiaad2gadaWg aaqaaiaadYgaaeqaaaqdcqGHRiI8aOGaamiEaiaaiccacaWGKbGabm OrayaajaWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaGypamaaqaha beWcbaGaamOAaiaai2dacaaIXaaabaGaamiBaaqdcqGHris5aOGaaG PaVlqadsgagaqcamaaBaaaleaacaWGQbaabeaakiqbes7aKzaajaWa aSbaaSqaaiaadYgaaeqaaOGaaGilaaaa@5A26@

where d ^ j = ( m ^ j m ^ j 1 ) / 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmizayaaja WaaSbaaSqaaiaadQgaaeqaaOGaaGypamaalyaabaWaaeWaaeaaceWG TbGbaKaadaWgaaWcbaGaamOAaaqabaGccqGHsislceWGTbGbaKaada WgaaWcbaGaamOAaiabgkHiTiaaigdaaeqaaaGccaGLOaGaayzkaaaa baGaaGOmaaaaaaa@432F@ with the constraint that G ^ L + 1 = M ^ ( 0.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabm4rayaaja WaaSbaaSqaaiaadYeacqGHRaWkcaaIXaaabeaakiaai2daceWGnbGb aKaadaqadaqaaiaaicdacaaIUaGaaGynaaGaayjkaiaawMcaaaaa@3FEF@ and M ^ ( 0.5 ) = j = 1 n ( y j / π j ) / j = 1 n ( 1 / π j ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmytayaaja WaaeWaaeaacaaIWaGaaGOlaiaaiwdaaiaawIcacaGLPaaacaaI9aWa aSGbaeaadaaeWaqabSqaaiaadQgacaaI9aGaaGymaaqaaiaad6gaa0 GaeyyeIuoakmaabmaabaWaaSGbaeaacaWG5bWaaSbaaSqaaiaadQga aeqaaaGcbaGaeqiWda3aaSbaaSqaaiaadQgaaeqaaaaaaOGaayjkai aawMcaaaqaamaaqadabeWcbaGaamOAaiaai2dacaaIXaaabaGaamOB aaqdcqGHris5aOWaaeWaaeaadaWcgaqaaiaaigdaaeaacqaHapaCda WgaaWcbaGaamOAaaqabaaaaaGccaGLOaGaayzkaaaaaiaac6caaaa@53F9@ With the steps δ ^ l , l = 1, , L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiTdqMbaK aadaWgaaWcbaGaamiBaaqabaGccaaISaGaamiBaiaai2dacaaIXaGa aGilaiablAciljaaiYcacaWGmbaaaa@4070@ we can now re-express (4.1) as

m ^ l  =  ( 1 α ) j = 1 l d ^ j δ ^ j + α ( M ^ ( 0.5 ) j = 1 l d ^ j δ ^ j ) ( 1 α ) j = 1 l δ ^ j + α ( 1 j = 1 l δ ^ j ) ,  l = 1, , L , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyBayaaja WaaSbaaSqaaiaadYgaaeqaaOGaaGypamaalaaabaWaaeWaaeaacaaI XaGaeyOeI0IaeqySdegacaGLOaGaayzkaaWaaabCaeqaleaacaWGQb GaaGypaiaaigdaaeaacaWGSbaaniabggHiLdGccaaMc8Uabmizayaa jaWaaSbaaSqaaiaadQgaaeqaaOGafqiTdqMbaKaadaWgaaWcbaGaam OAaaqabaGccqGHRaWkcqaHXoqydaqadaqaaiqad2eagaqcamaabmaa baGaaGimaiaai6cacaaI1aaacaGLOaGaayzkaaGaeyOeI0YaaabCae qaleaacaWGQbGaaGypaiaaigdaaeaacaWGSbaaniabggHiLdGccaaM c8UabmizayaajaWaaSbaaSqaaiaadQgaaeqaaOGafqiTdqMbaKaada WgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaaaeaadaqadaqaaiaa igdacqGHsislcqaHXoqyaiaawIcacaGLPaaadaaeWbqabSqaaiaadQ gacaaI9aGaaGymaaqaaiaadYgaa0GaeyyeIuoakiaaykW7cuaH0oaz gaqcamaaBaaaleaacaWGQbaabeaakiabgUcaRiabeg7aHnaabmaaba GaaGymaiabgkHiTmaaqahabeWcbaGaamOAaiaai2dacaaIXaaabaGa amiBaaqdcqGHris5aOGaaGPaVlqbes7aKzaajaWaaSbaaSqaaiaadQ gaaeqaaaGccaGLOaGaayzkaaaaaiaaiYcacaaIGaGaaGiiaiaaicca caaIGaGaamiBaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGmb GaaGilaaaa@8962@

which is then be solved for δ ^ 1 , , δ ^ L . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiTdqMbaK aadaWgaaWcbaGaaGymaaqabaGccaaISaGaeSOjGSKaaGilaiqbes7a KzaajaWaaSbaaSqaaiaadYeaaeqaaOGaaiOlaaaa@3FAE@ This is a numerical exercise which is conceptually relatively straightforward. Details can be found in Schulze Waltrup et al. (2014). Once we have calculated δ ^ 1 , , δ ^ L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiTdqMbaK aadaWgaaWcbaGaaGymaaqabaGccaaISaGaeSOjGSKaaGilaiqbes7a KzaajaWaaSbaaSqaaiaadYeaaeqaaaaa@3EF2@ we have an estimate for the cumulative distribution function which is denoted as F ^ N M ( y ) = l : m ^ l < y δ ^ l . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaad6eaaeaacaWGnbaaaOWaaeWaaeaacaWG5baacaGL OaGaayzkaaGaaGypamaaqababeWcbaGaamiBaiaaiQdaceWGTbGbaK aadaWgaaqaaiaadYgaaeqaaiaaiYdacaWG5baabeqdcqGHris5aOGa aGPaVlqbes7aKzaajaWaaSbaaSqaaiaadYgaaeqaaOGaaiOlaaaa@49A5@ We may also invert F ^ N M ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaad6eaaeaacaWGnbaaaOWaaeWaaeaacaaIUaaacaGL OaGaayzkaaaaaa@3C04@ which leads to a fitted quantile function which we denote with Q ^ N M ( α ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyuayaaja Waa0baaSqaaiaad6eaaeaacaWGnbaaaOWaaeWaaeaacqaHXoqyaiaa wIcacaGLPaaacaGGUaaaaa@3DA8@

As Kuk (1988) shows, both theoretically and empirically, F ^ R ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadkfaaeqaaOWaaeWaaeaacaaIUaaacaGLOaGaayzk aaaaaa@3B35@ is more efficient than F ^ N ( . ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaGGUaaacaGLOaGaayzk aaGaaiOlaaaa@3BDD@ We make use of this relationship and apply it to F ^ N M ( . ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaad6eaaeaacaWGnbaaaOWaaeWaaeaacaGGUaaacaGL OaGaayzkaaGaaiilaaaa@3CAE@ which yields the estimator

F ^ R M := 1 1 N j = 1 n 1 / π j + j = 1 n 1 / π j N F ^ N M . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadkfaaeaacaWGnbaaaOGaaGOoaiaai2dacaaIXaGa eyOeI0YaaSaaaeaacaaIXaaabaGaamOtaaaadaaeWbqabSqaaiaadQ gacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakmaalyaabaGaaGym aaqaaiabec8aWnaaBaaaleaacaWGQbaabeaaaaGccqGHRaWkdaWcaa qaamaaqahabeWcbaGaamOAaiaai2dacaaIXaaabaGaamOBaaqdcqGH ris5aOWaaSGbaeaacaaIXaaabaGaeqiWda3aaSbaaSqaaiaadQgaae qaaaaaaOqaaiaad6eaaaGabmOrayaajaWaa0baaSqaaiaad6eaaeaa caWGnbaaaOGaaGOlaaaa@5693@

In the next section we compare the quantiles calculated from the expectile based estimator F ^ R M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadkfaaeaacaWGnbaaaaaa@39BD@ with quantiles calculated from F ^ R . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadkfaaeqaaOGaaiOlaaaa@39A6@ Note that neither F ^ R M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadkfaaeaacaWGnbaaaaaa@39BD@ nor F ^ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadkfaaeqaaaaa@38EA@ are proper distribution functions since they are not normed to take values between 0 and 1.

Date modified: