A short note on quantile and expectile estimation in unequal probability samples 4. From expectiles to the distribution function

Both, the quantile function Q ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyuamaabm aabaGaeqySdegacaGLOaGaayzkaaaaaa@3B0A@  and the expectile function M ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytamaabm aabaGaeqySdegacaGLOaGaayzkaaaaaa@3B06@  uniquely define a distribution function F ( . ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaaGOlaaGaayjkaiaawMcaaiaac6caaaa@3ACA@  While Q ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyuamaabm aabaGaeqySdegacaGLOaGaayzkaaaaaa@3B0A@  is just the inversion of F ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaaGOlaaGaayjkaiaawMcaaaaa@3A18@  the relation between M ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytamaabm aabaGaeqySdegacaGLOaGaayzkaaaaaa@3B06@  and F ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaaGOlaaGaayjkaiaawMcaaaaa@3A18@  is more complicated. Following Schnabel and Eilers (2009) and Yao and Tong (1996), we have the relation

M ( α ) = ( 1 α ) G ( M ( α ) ) + α { M ( 0.5 ) G ( M ( α ) ) } ( 1 α ) F ( M ( α ) ) + α { 1 F ( M ( α ) ) } , ( 4.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytamaabm aabaGaeqySdegacaGLOaGaayzkaaGaaGypamaalaaabaWaaeWaaeaa caaIXaGaeyOeI0IaeqySdegacaGLOaGaayzkaaGaam4ramaabmaaba GaamytamaabmaabaGaeqySdegacaGLOaGaayzkaaaacaGLOaGaayzk aaGaey4kaSIaeqySde2aaiWaaeaacaWGnbWaaeWaaeaacaaIWaGaaG OlaiaaiwdaaiaawIcacaGLPaaacqGHsislcaWGhbWaaeWaaeaacaWG nbWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaiaawIcacaGLPaaaai aawUhacaGL9baaaeaadaqadaqaaiaaigdacqGHsislcqaHXoqyaiaa wIcacaGLPaaacaWGgbWaaeWaaeaacaWGnbWaaeWaaeaacqaHXoqyai aawIcacaGLPaaaaiaawIcacaGLPaaacqGHRaWkcqaHXoqydaGadaqa aiaaigdacqGHsislcaWGgbWaaeWaaeaacaWGnbWaaeWaaeaacqaHXo qyaiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUhacaGL9baaaaGa aGilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaaisdaca GGUaGaaGymaiaacMcaaaa@7B3B@

where G ( m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaabm aabaGaamyBaaGaayjkaiaawMcaaaaa@3A53@ is the moment function defined through G ( m ) = i = 1 N Y i 1 { Y i m } / N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaabm aabaGaamyBaaGaayjkaiaawMcaaiaai2dadaaeWaqabSqaaiaadMga caaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakiaaykW7caWGzbWaaS baaSqaaiaadMgaaeqaaOWaaSGbaeaacaaIXaWaaiWaaeaacaWGzbWa aSbaaSqaaiaadMgaaeqaaOGaeyizImQaamyBaaGaay5Eaiaaw2haaa qaaiaad6eaaaGaaiOlaaaa@4D27@ Expression (4.1) gives the unique relation of function M ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytamaabm aabaGaeqySdegacaGLOaGaayzkaaaaaa@3B06@ to the distribution function F ( . ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaaGOlaaGaayjkaiaawMcaaiaac6caaaa@3ACA@ The idea is now to solve (4.1) for F ( . ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaaGOlaaGaayjkaiaawMcaaiaacYcaaaa@3AC8@ that is to express the distribution F ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaaGOlaaGaayjkaiaawMcaaaaa@3A18@ in terms of the expectile function M ( . ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytamaabm aabaGaaGOlaaGaayjkaiaawMcaaiaac6caaaa@3AD1@ Apparently, this is not possible in analytic form but it may be calculated numerically. To do so, we evaluate the fitted function M ^ ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmytayaaja WaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaaa@3B16@ at a dense set of values 0 < α 1 < α 2 < α L < 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaaI8aGaeqySde2aaSba aSqaaiaaikdaaeqaaOGaeSOjGSKaaGipaiabeg7aHnaaBaaaleaaca WGmbaabeaakiaaiYdacaaIXaaaaa@4482@ and denote the fitted values as m ^ l = M ^ ( α l ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyBayaaja WaaSbaaSqaaiaadYgaaeqaaOGaaGypaiqad2eagaqcamaabmaabaGa eqySde2aaSbaaSqaaiaadYgaaeqaaaGccaGLOaGaayzkaaGaaiOlaa aa@3FDF@ We also define left and right bounds through m ^ o = m ^ 1 c 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyBayaaja WaaSbaaSqaaiaad+gaaeqaaOGaaGypaiqad2gagaqcamaaBaaaleaa caaIXaaabeaakiabgkHiTiaadogadaWgaaWcbaGaaGimaaqabaaaaa@3EAD@ and m ^ L + 1 = m ^ L + c L + 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyBayaaja WaaSbaaSqaaiaadYeacqGHRaWkcaaIXaaabeaakiaai2daceWGTbGb aKaadaWgaaWcbaGaamitaaqabaGccqGHRaWkcaWGJbWaaSbaaSqaai aadYeacqGHRaWkcaaIXaaabeaakiaacYcaaaa@42A0@ where c 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIWaaabeaaaaa@38DA@ and c L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGmbaabeaaaaa@38F1@ are some constants to be defined by the user. For instance, one may set c 0 = m ^ 2 m ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIWaaabeaakiaai2daceWGTbGbaKaadaWgaaWcbaGaaGOm aaqabaGccqGHsislceWGTbGbaKaadaWgaaWcbaGaaGymaaqabaaaaa@3E75@ and c L + 1 = m ^ L m ^ L 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGmbGaey4kaSIaaGymaaqabaGccaaI9aGabmyBayaajaWa aSbaaSqaaiaadYeaaeqaaOGaeyOeI0IabmyBayaajaWaaSbaaSqaai aadYeacqGHsislcaaIXaaabeaakiaac6caaaa@42B8@ By doing so we derive fitted values for the cumulative distribution function F ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaaGOlaaGaayjkaiaawMcaaaaa@3A18@ at m ^ l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyBayaaja WaaSbaaSqaaiaadYgaaeqaaaaa@392B@ which we write as F ^ l := F ^ ( m ^ l ) = j = 1 l δ ^ j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYgaaeqaaOGaaGOoaiaai2daceWGgbGbaKaadaqa daqaaiqad2gagaqcamaaBaaaleaacaWGSbaabeaaaOGaayjkaiaawM caaiaai2dadaaeWaqabSqaaiaadQgacaaI9aGaaGymaaqaaiaadYga a0GaeyyeIuoakiaaykW7cuaH0oazgaqcamaaBaaaleaacaWGQbaabe aaaaa@49B7@ for non-negative steps δ ^ j 0, j = 1, , L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiTdqMbaK aadaWgaaWcbaGaamOAaaqabaGccqGHLjYScaaIWaGaaGilaiaadQga caaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamitaaaa@42EC@ with j = 1 L δ ^ j 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaabmaeqale aacaWGQbGaaGypaiaaigdaaeaacaWGmbaaniabggHiLdGccaaMc8Ua fqiTdqMbaKaadaWgaaWcbaGaamOAaaqabaGccqGHKjYOcaaIXaGaai Olaaaa@43E2@ We define δ ^ L + 1 = 1 l = 1 L δ ^ l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiTdqMbaK aadaWgaaWcbaGaamitaiabgUcaRiaaigdaaeqaaOGaaGypaiaaigda cqGHsisldaaeWaqabSqaaiaadYgacaaI9aGaaGymaaqaaiaadYeaa0 GaeyyeIuoakiaaykW7cuaH0oazgaqcamaaBaaaleaacaWGSbaabeaa aaa@4782@ to make F ^ ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaeWaaeaacaaIUaaacaGLOaGaayzkaaaaaa@3A28@ a distribution function. Assuming a uniform distribution between the dense supporting points m ^ l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyBayaaja WaaSbaaSqaaiaadYgaaeqaaaaa@392B@ we may express the moment function G ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaabm aabaGaaGOlaaGaayjkaiaawMcaaaaa@3A19@ by simple stepwise integration as

G ^ l := G ^ ( m ^ l ) = m l x d F ^ ( x ) = j = 1 l d ^ j δ ^ l , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabm4rayaaja WaaSbaaSqaaiaadYgaaeqaaOGaaGOoaiaai2daceWGhbGbaKaadaqa daqaaiqad2gagaqcamaaBaaaleaacaWGSbaabeaaaOGaayjkaiaawM caaiaai2dadaWdXaqabSqaaiabgkHiTiabg6HiLcqaaiaad2gadaWg aaqaaiaadYgaaeqaaaqdcqGHRiI8aOGaamiEaiaaiccacaWGKbGabm OrayaajaWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaGypamaaqaha beWcbaGaamOAaiaai2dacaaIXaaabaGaamiBaaqdcqGHris5aOGaaG PaVlqadsgagaqcamaaBaaaleaacaWGQbaabeaakiqbes7aKzaajaWa aSbaaSqaaiaadYgaaeqaaOGaaGilaaaa@5A26@

where d ^ j = ( m ^ j m ^ j 1 ) / 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmizayaaja WaaSbaaSqaaiaadQgaaeqaaOGaaGypamaalyaabaWaaeWaaeaaceWG TbGbaKaadaWgaaWcbaGaamOAaaqabaGccqGHsislceWGTbGbaKaada WgaaWcbaGaamOAaiabgkHiTiaaigdaaeqaaaGccaGLOaGaayzkaaaa baGaaGOmaaaaaaa@432F@ with the constraint that G ^ L + 1 = M ^ ( 0.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabm4rayaaja WaaSbaaSqaaiaadYeacqGHRaWkcaaIXaaabeaakiaai2daceWGnbGb aKaadaqadaqaaiaaicdacaaIUaGaaGynaaGaayjkaiaawMcaaaaa@3FEF@ and M ^ ( 0.5 ) = j = 1 n ( y j / π j ) / j = 1 n ( 1 / π j ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmytayaaja WaaeWaaeaacaaIWaGaaGOlaiaaiwdaaiaawIcacaGLPaaacaaI9aWa aSGbaeaadaaeWaqabSqaaiaadQgacaaI9aGaaGymaaqaaiaad6gaa0 GaeyyeIuoakmaabmaabaWaaSGbaeaacaWG5bWaaSbaaSqaaiaadQga aeqaaaGcbaGaeqiWda3aaSbaaSqaaiaadQgaaeqaaaaaaOGaayjkai aawMcaaaqaamaaqadabeWcbaGaamOAaiaai2dacaaIXaaabaGaamOB aaqdcqGHris5aOWaaeWaaeaadaWcgaqaaiaaigdaaeaacqaHapaCda WgaaWcbaGaamOAaaqabaaaaaGccaGLOaGaayzkaaaaaiaac6caaaa@53F9@ With the steps δ ^ l , l = 1, , L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiTdqMbaK aadaWgaaWcbaGaamiBaaqabaGccaaISaGaamiBaiaai2dacaaIXaGa aGilaiablAciljaaiYcacaWGmbaaaa@4070@ we can now re-express (4.1) as

m ^ l  =  ( 1 α ) j = 1 l d ^ j δ ^ j + α ( M ^ ( 0.5 ) j = 1 l d ^ j δ ^ j ) ( 1 α ) j = 1 l δ ^ j + α ( 1 j = 1 l δ ^ j ) ,  l = 1, , L , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyBayaaja WaaSbaaSqaaiaadYgaaeqaaOGaaGypamaalaaabaWaaeWaaeaacaaI XaGaeyOeI0IaeqySdegacaGLOaGaayzkaaWaaabCaeqaleaacaWGQb GaaGypaiaaigdaaeaacaWGSbaaniabggHiLdGccaaMc8Uabmizayaa jaWaaSbaaSqaaiaadQgaaeqaaOGafqiTdqMbaKaadaWgaaWcbaGaam OAaaqabaGccqGHRaWkcqaHXoqydaqadaqaaiqad2eagaqcamaabmaa baGaaGimaiaai6cacaaI1aaacaGLOaGaayzkaaGaeyOeI0YaaabCae qaleaacaWGQbGaaGypaiaaigdaaeaacaWGSbaaniabggHiLdGccaaM c8UabmizayaajaWaaSbaaSqaaiaadQgaaeqaaOGafqiTdqMbaKaada WgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaaaeaadaqadaqaaiaa igdacqGHsislcqaHXoqyaiaawIcacaGLPaaadaaeWbqabSqaaiaadQ gacaaI9aGaaGymaaqaaiaadYgaa0GaeyyeIuoakiaaykW7cuaH0oaz gaqcamaaBaaaleaacaWGQbaabeaakiabgUcaRiabeg7aHnaabmaaba GaaGymaiabgkHiTmaaqahabeWcbaGaamOAaiaai2dacaaIXaaabaGa amiBaaqdcqGHris5aOGaaGPaVlqbes7aKzaajaWaaSbaaSqaaiaadQ gaaeqaaaGccaGLOaGaayzkaaaaaiaaiYcacaaIGaGaaGiiaiaaicca caaIGaGaamiBaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGmb GaaGilaaaa@8962@

which is then be solved for δ ^ 1 , , δ ^ L . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiTdqMbaK aadaWgaaWcbaGaaGymaaqabaGccaaISaGaeSOjGSKaaGilaiqbes7a KzaajaWaaSbaaSqaaiaadYeaaeqaaOGaaiOlaaaa@3FAE@ This is a numerical exercise which is conceptually relatively straightforward. Details can be found in Schulze Waltrup et al. (2014). Once we have calculated δ ^ 1 , , δ ^ L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiTdqMbaK aadaWgaaWcbaGaaGymaaqabaGccaaISaGaeSOjGSKaaGilaiqbes7a KzaajaWaaSbaaSqaaiaadYeaaeqaaaaa@3EF2@ we have an estimate for the cumulative distribution function which is denoted as F ^ N M ( y ) = l : m ^ l < y δ ^ l . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaad6eaaeaacaWGnbaaaOWaaeWaaeaacaWG5baacaGL OaGaayzkaaGaaGypamaaqababeWcbaGaamiBaiaaiQdaceWGTbGbaK aadaWgaaqaaiaadYgaaeqaaiaaiYdacaWG5baabeqdcqGHris5aOGa aGPaVlqbes7aKzaajaWaaSbaaSqaaiaadYgaaeqaaOGaaiOlaaaa@49A5@ We may also invert F ^ N M ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaad6eaaeaacaWGnbaaaOWaaeWaaeaacaaIUaaacaGL OaGaayzkaaaaaa@3C04@ which leads to a fitted quantile function which we denote with Q ^ N M ( α ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyuayaaja Waa0baaSqaaiaad6eaaeaacaWGnbaaaOWaaeWaaeaacqaHXoqyaiaa wIcacaGLPaaacaGGUaaaaa@3DA8@

As Kuk (1988) shows, both theoretically and empirically, F ^ R ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadkfaaeqaaOWaaeWaaeaacaaIUaaacaGLOaGaayzk aaaaaa@3B35@ is more efficient than F ^ N ( . ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaGGUaaacaGLOaGaayzk aaGaaiOlaaaa@3BDD@ We make use of this relationship and apply it to F ^ N M ( . ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaad6eaaeaacaWGnbaaaOWaaeWaaeaacaGGUaaacaGL OaGaayzkaaGaaiilaaaa@3CAE@ which yields the estimator

F ^ R M := 1 1 N j = 1 n 1 / π j + j = 1 n 1 / π j N F ^ N M . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadkfaaeaacaWGnbaaaOGaaGOoaiaai2dacaaIXaGa eyOeI0YaaSaaaeaacaaIXaaabaGaamOtaaaadaaeWbqabSqaaiaadQ gacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakmaalyaabaGaaGym aaqaaiabec8aWnaaBaaaleaacaWGQbaabeaaaaGccqGHRaWkdaWcaa qaamaaqahabeWcbaGaamOAaiaai2dacaaIXaaabaGaamOBaaqdcqGH ris5aOWaaSGbaeaacaaIXaaabaGaeqiWda3aaSbaaSqaaiaadQgaae qaaaaaaOqaaiaad6eaaaGabmOrayaajaWaa0baaSqaaiaad6eaaeaa caWGnbaaaOGaaGOlaaaa@5693@

In the next section we compare the quantiles calculated from the expectile based estimator F ^ R M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadkfaaeaacaWGnbaaaaaa@39BD@ with quantiles calculated from F ^ R . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadkfaaeqaaOGaaiOlaaaa@39A6@ Note that neither F ^ R M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja Waa0baaSqaaiaadkfaaeaacaWGnbaaaaaa@39BD@ nor F ^ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadkfaaeqaaaaa@38EA@ are proper distribution functions since they are not normed to take values between 0 and 1.

Report a problem on this page

Is something not working? Is there information outdated? Can't find what you're looking for?

Please contact us and let us know how we can help you.

Privacy notice

Date modified: