A short note on quantile and expectile estimation in unequal probability samples 2. Quantile estimation

We consider a finite population with N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@37DF@  elements and a continuous survey variable Y . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamywaiaac6 caaaa@389C@  We are interested in quantiles of the cumulative distribution function F ( y ) = i = 1 N 1 { Y i y } / N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaamyEaaGaayjkaiaawMcaaiaai2dadaaeWaqabSqaaiaadMga caaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakmaalyaabaGaaGymam aacmaabaGaamywamaaBaaaleaacaWGPbaabeaakiabgsMiJkaadMha aiaawUhacaGL9baaaeaacaWGobaaaaaa@48FF@  and define as

Q ( α ) inf { arg min q i = 1 N w α ( Y i q ) | Y i q | } ( 2.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyuamaabm aabaGaeqySdegacaGLOaGaayzkaaGaaGypaiaabMgacaqGUbGaaeOz amaacmaabaGaciyyaiaackhacaGGNbWaaCbeaeaaciGGTbGaaiyAai aac6gaaSqaaiaadghaaeqaaOWaaabCaeqaleaacaWGPbGaaGypaiaa igdaaeaacaWGobaaniabggHiLdGccaaMe8Uaam4DamaaBaaaleaacq aHXoqyaeqaaOWaaeWaaeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaOGa eyOeI0IaamyCaaGaayjkaiaawMcaamaaemaabaGaaGPaVlaadMfada WgaaWcbaGaamyAaaqabaGccqGHsislcaWGXbGaaGPaVdGaay5bSlaa wIa7aaGaay5Eaiaaw2haaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8 UaaiikaiaaikdacaGGUaGaaGymaiaacMcaaaa@6C5B@

the Quantile function of Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamywaaaa@37EA@ (see Koenker 2005), where

w α ( ε ) = ( α for ε > 0 1 α for ε 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacqaHXoqyaeqaaOWaaeWaaeaacqaH1oqzaiaawIcacaGLPaaa caaI9aWaaeqaaeaafaqaaeGacaaabaGaeqySdegabaGaaeOzaiaab+ gacaqGYbGaaGjbVlabew7aLjaai6dacaaIWaaabaGaaGymaiabgkHi Tiabeg7aHbqaaiaabAgacaqGVbGaaeOCaiaaysW7cqaH1oqzcqGHKj YOcaaIWaGaaGOlaaaaaiaawUhaaaaa@5492@

The “inf” argument in (2.1) is required in finite populations since the “arg min” is not unique. We draw a sample from the population with known inclusion probabilities π i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaadMgaaeqaaOGaaiilaaaa@3A9D@ i = 1, , N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2 dacaaIXaGaaGilaiablAciljaaiYcacaWGobGaaiOlaaaa@3D8F@ Denoting by y 1 , , y n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaaIXaaabeaakiaaiYcacqWIMaYscaaISaGaamyEamaaBaaa leaacaWGUbaabeaaaaa@3DA6@ the resulting sample, we estimate the quantile function by replacing (2.1) through its weighted sample version

Q ^ N ( α ) = inf { arg min q j = 1 n 1 π j w α , j | y j q | } ( 2.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyuayaaja WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacqaHXoqyaiaawIcacaGL PaaacaaI9aGaciyAaiaac6gacaGGMbWaaiWaaeaaciGGHbGaaiOCai aacEgadaWfqaqaaiGac2gacaGGPbGaaiOBaaWcbaGaamyCaaqabaGc daaeWbqabSqaaiaadQgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIu oakiaaysW7daWcaaqaaiaaigdaaeaacqaHapaCdaWgaaWcbaGaamOA aaqabaaaaOGaam4DamaaBaaaleaacqaHXoqycaaISaGaamOAaaqaba GcdaabdaqaaiaaykW7caWG5bWaaSbaaSqaaiaadQgaaeqaaOGaeyOe I0IaamyCaiaaykW7aiaawEa7caGLiWoaaiaawUhacaGL9baacaaMf8 UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaikda caGGPaaaaa@6DA0@

with w α , j = w α ( y j q ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacqaHXoqycaaISaGaamOAaaqabaGccaaI9aGaam4DamaaBaaa leaacqaHXoqyaeqaaOWaaeWaaeaacaWG5bWaaSbaaSqaaiaadQgaae qaaOGaeyOeI0IaamyCaaGaayjkaiaawMcaaaaa@44A9@ as defined above. It is easy to see that the sum in (2.2) is a design-unbiased estimate for the sum in Q ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyuamaabm aabaGaeqySdegacaGLOaGaayzkaaaaaa@3B0A@ given in (2.1). Nonetheless, because we take the “arg min” it follows that Q ^ N ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyuayaaja WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacqaHXoqyaiaawIcacaGL Paaaaaa@3C23@ is not unbiased for Q ( α ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyuamaabm aabaGaeqySdegacaGLOaGaayzkaaGaaiOlaaaa@3BBC@ We therefore look at consistency statements for Q ^ N ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyuayaaja WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacqaHXoqyaiaawIcacaGL Paaaaaa@3C23@ as follows. Let R i ( q ) = w α ( y i q ) | y i q | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGPbaabeaakmaabmaabaGaamyCaaGaayjkaiaawMcaaiaa i2dacaWG3bWaaSbaaSqaaiabeg7aHbqabaGcdaqadaqaaiaadMhada WgaaWcbaGaamyAaaqabaGccqGHsislcaWGXbaacaGLOaGaayzkaaWa aqWaaeaacaaMc8UaamyEamaaBaaaleaacaWGPbaabeaakiabgkHiTi aadghacaaMc8oacaGLhWUaayjcSdaaaa@4EE9@ and

R ¯ N ( q ) := 1 N i R i ( q ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOuayaara WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWGXbaacaGLOaGaayzk aaGaaGOoaiaai2dadaWcaaqaaiaaigdaaeaacaWGobaaamaaqafabe WcbaGaamyAaaqab0GaeyyeIuoakiaaysW7caWGsbWaaSbaaSqaaiaa dMgaaeqaaOWaaeWaaeaacaWGXbaacaGLOaGaayzkaaGaaGOlaaaa@4886@

We draw a sample from R i ( q ) , i = 1, , N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGPbaabeaakmaabmaabaGaamyCaaGaayjkaiaawMcaaiaa iYcacaWGPbGaaGypaiaaigdacaaISaGaeSOjGSKaaGilaiaad6eaaa a@420D@ and assume we apply a consistent sampling scheme in that

r ¯ n ( q ) := 1 N j = 1 n 1 π j r j ( q ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOCayaara WaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaacaWGXbaacaGLOaGaayzk aaGaaGOoaiaai2dadaWcaaqaaiaaigdaaeaacaWGobaaamaaqahabe WcbaGaamOAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOGaaGPa VpaalaaabaGaaGymaaqaaiabec8aWnaaBaaaleaacaWGQbaabeaaaa GccaWGYbWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaWGXbaacaGL OaGaayzkaaaaaa@4E6F@

is design-consistent for R ¯ N ( q ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOuayaara WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWGXbaacaGLOaGaayzk aaGaaiilaaaa@3C33@ where r j ( q ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaWGQbaabeaakmaabmaabaGaamyCaaGaayjkaiaawMcaaaaa @3BA7@ denotes the sample of R i ( q ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGPbaabeaakmaabmaabaGaamyCaaGaayjkaiaawMcaaiaa c6caaaa@3C38@ Note that r j ( q ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaWGQbaabeaakmaabmaabaGaamyCaaGaayjkaiaawMcaaaaa @3BA7@ and hence r ¯ n ( q ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOCayaara WaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaacaWGXbaacaGLOaGaayzk aaGaaiilaaaa@3C73@ R i ( q ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGPbaabeaakmaabmaabaGaamyCaaGaayjkaiaawMcaaaaa @3B86@ and R ¯ N ( q ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOuayaara WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWGXbaacaGLOaGaayzk aaaaaa@3B83@ also depend on α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@38AB@ which is suppressed in the notation for readability. Let q 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaaIWaaabeaaaaa@38E8@ be the minimum of R ¯ N ( q ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOuayaara WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWGXbaacaGLOaGaayzk aaaaaa@3B83@ which is not necessarily unique due to the finite structure of the population. We can take the “inf” argument, i.e., q 0 = inf { arg min R ¯ N ( q ) } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaaIWaaabeaakiaai2daciGGPbGaaiOBaiaacAgadaGadaqa aiaabggacaqGYbGaae4zaiaaykW7ciGGTbGaaiyAaiaac6gaceWGsb GbaebadaWgaaWcbaGaamOtaaqabaGcdaqadaqaaiaadghaaiaawIca caGLPaaaaiaawUhacaGL9baacaGGSaaaaa@4AFC@ but for simplicity we assume a superpopulation model (see Isaki and Fuller 1982) by considering the finite population to be a sample from an infinite superpopulation. In the latter we assume that survey variable Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamywaaaa@37EA@ has a continuous cumulative distribution function so q 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaaIWaaabeaaaaa@38E8@ results in a unique α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@38AB@ quantile. We get for δ > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaaG Opaiaaicdaaaa@3A33@

P ( r ¯ n ( q 0 ) < r ¯ n ( q 0 δ ) ) P ( 1 N j = 1 n 1 π j { r j ( q 0 ) r j ( q 0 δ ) } < 0 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiuamaabm aabaGabmOCayaaraWaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaacaWG XbWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaGaaGipaiqadk hagaqeamaaBaaaleaacaWGUbaabeaakmaabmaabaGaamyCamaaBaaa leaacaaIWaaabeaakiabgkHiTiabes7aKbGaayjkaiaawMcaaaGaay jkaiaawMcaaiabgsDiBlaadcfadaqadaqaamaalaaabaGaaGymaaqa aiaad6eaaaWaaabCaeqaleaacaWGQbGaaGypaiaaigdaaeaacaWGUb aaniabggHiLdGccaaMc8+aaSaaaeaacaaIXaaabaGaeqiWda3aaSba aSqaaiaadQgaaeqaaaaakmaacmaabaGaamOCamaaBaaaleaacaWGQb aabeaakmaabmaabaGaamyCamaaBaaaleaacaaIWaaabeaaaOGaayjk aiaawMcaaiabgkHiTiaadkhadaWgaaWcbaGaamOAaaqabaGcdaqada qaaiaadghadaWgaaWcbaGaaGimaaqabaGccqGHsislcqaH0oazaiaa wIcacaGLPaaaaiaawUhacaGL9baacaaI8aGaaGimaaGaayjkaiaawM caaiaai6caaaa@6C4E@

Note that the argument in the probability statement is a design-consistent estimate for R ¯ N ( q 0 ) R ¯ N ( q 0 δ ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOuayaara WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWGXbWaaSbaaSqaaiaa icdaaeqaaaGccaGLOaGaayzkaaGaeyOeI0IabmOuayaaraWaaSbaaS qaaiaad6eaaeqaaOWaaeWaaeaacaWGXbWaaSbaaSqaaiaaicdaaeqa aOGaeyOeI0IaeqiTdqgacaGLOaGaayzkaaGaaiilaaaa@4609@ which is less than zero since q 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaaIWaaabeaaaaa@38E8@ is the minimum of R ¯ N ( ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOuayaara WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacqGHflY1aiaawIcacaGL PaaacaGGUaaaaa@3D89@ Hence, the probability tends to one in the sense of design consistency defined in Isaki and Fuller (1982). The same holds of course for δ < 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaaG ipaiaaicdacaGGUaaaaa@3AE3@ With this statement we may conclude that the estimated minimum q ^ 0 = arg min j = 1 n 1 / π j r j ( q ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyCayaaja WaaSbaaSqaaiaaicdaaeqaaOGaaGypaiaabggacaqGYbGaae4zaiaa ykW7ciGGTbGaaiyAaiaac6gadaaeWaqabSqaaiaadQgacaaI9aGaaG ymaaqaaiaad6gaa0GaeyyeIuoakmaalyaabaGaaGymaaqaaiabec8a WnaaBaaaleaacaWGQbaabeaaaaGccaaMe8UaamOCamaaBaaaleaaca WGQbaabeaakmaabmaabaGaamyCaaGaayjkaiaawMcaaaaa@5035@ is a design-consistent estimate for q 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaaIWaaabeaaaaa@38E8@ so that Q ^ N ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyuayaaja WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacqaHXoqyaiaawIcacaGL Paaaaaa@3C23@ in (2.2) is in turn design-consistent for Q N ( α ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaWGobaabeaakmaabmaabaGaeqySdegacaGLOaGaayzkaaGa aiOlaaaa@3CC5@ It is easily shown that Q ^ N ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyuayaaja WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacqaHXoqyaiaawIcacaGL Paaaaaa@3C23@ is the inverse of the normed weighted cumulative distribution function

F ^ N ( y ) := j = 1 n 1 { y j y } / π j j = 1 n 1 / π j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWG5baacaGLOaGaayzk aaGaaGOoaiaai2dadaWcaaqaamaaqahabeWcbaGaamOAaiaai2daca aIXaaabaGaamOBaaqdcqGHris5aOGaaGPaVpaalyaabaGaaGymamaa cmaabaGaamyEamaaBaaaleaacaWGQbaabeaakiabgsMiJkaadMhaai aawUhacaGL9baaaeaacqaHapaCdaWgaaWcbaGaamOAaaqabaaaaaGc baWaaabCaeqaleaacaWGQbGaaGypaiaaigdaaeaacaWGUbaaniabgg HiLdGccaaMc8+aaSGbaeaacaaIXaaabaGaeqiWda3aaSbaaSqaaiaa dQgaaeqaaaaaaaaaaa@59EC@

using the same notation as in Kuk (1988). Note that F ^ N ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWG5baacaGLOaGaayzk aaaaaa@3B77@ is the Hajek (1971) estimate of the cumulative distribution function (see also Rao and Wu 2009) and as such not a Horvitz-Thompson estimate. As a consequence Q ^ N ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyuayaaja WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacqaHXoqyaiaawIcacaGL Paaaaaa@3C23@ is not design-unbiased. Nonetheless, F ^ N ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWG5baacaGLOaGaayzk aaaaaa@3B77@ is a valid distribution function, and hence it can be considered as normalized version of the Lahiri or Horvitz-Thompson estimator of the distribution function (see Lahiri 1951) which is denoted by

F ^ L ( y ) := 1 N j = 1 n 1 / π j 1 { y j y } . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYeaaeqaaOWaaeWaaeaacaWG5baacaGLOaGaayzk aaGaaGOoaiaai2dadaWcaaqaaiaaigdaaeaacaWGobaaamaaqahabe WcbaGaamOAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOWaaSGb aeaacaaIXaaabaGaeqiWda3aaSbaaSqaaiaadQgaaeqaaOGaaGymam aacmaabaGaamyEamaaBaaaleaacaWGQbaabeaakiabgsMiJkaadMha aiaawUhacaGL9baaaaGaaiOlaaaa@5075@

Kuk (1988) proposes to replace F ^ L ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYeaaeqaaOWaaeWaaeaacqGHflY1aiaawIcacaGL Paaaaaa@3CC1@ with alternative estimates of the distribution function: Instead of estimating the distribution function itself he suggests to estimate the complementary proportion S ^ R ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabm4uayaaja WaaSbaaSqaaiaadkfaaeqaaOWaaeWaaeaacaWG5baacaGLOaGaayzk aaaaaa@3B88@ which then leads to the estimate F ^ R ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadkfaaeqaaOWaaeWaaeaacaWG5baacaGLOaGaayzk aaaaaa@3B7B@ defined through

F ^ R ( y ) = 1 S ^ R ( y ) = 1 1 N j = 1 n 1 / π j 1 { y j > y } . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadkfaaeqaaOWaaeWaaeaacaWG5baacaGLOaGaayzk aaGaaGypaiaaigdacqGHsislceWGtbGbaKaadaWgaaWcbaGaamOuaa qabaGcdaqadaqaaiaadMhaaiaawIcacaGLPaaacaaI9aGaaGymaiab gkHiTmaalaaabaGaaGymaaqaaiaad6eaaaWaaabCaeqaleaacaWGQb GaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGcdaWcgaqaaiaaigda aeaacqaHapaCdaWgaaWcbaGaamOAaaqabaGccaaIXaWaaiWaaeaaca WG5bWaaSbaaSqaaiaadQgaaeqaaOGaaGOpaiaadMhaaiaawUhacaGL 9baaaaGaaGOlaaaa@5763@

Resulting directly from these definitions we can express F ^ R ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadkfaaeqaaOWaaeWaaeaacqGHflY1aiaawIcacaGL Paaaaaa@3CC7@ in terms of F ^ N ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacqGHflY1aiaawIcacaGL Paaaaaa@3CC3@ through

F ^ R = 1 1 N j = 1 n 1 / π j + F ^ L and F ^ L = j = 1 n 1 / π j N F ^ N . ( 2.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadkfaaeqaaOGaaGypaiaaigdacqGHsisldaWcaaqa aiaaigdaaeaacaWGobaaamaaqahabeWcbaGaamOAaiaai2dacaaIXa aabaGaamOBaaqdcqGHris5aOWaaSGbaeaacaaIXaaabaGaeqiWda3a aSbaaSqaaiaadQgaaeqaaOGaey4kaSIabmOrayaajaWaaSbaaSqaai aadYeaaeqaaaaakiaaywW7caqGHbGaaeOBaiaabsgacaaMf8UabmOr ayaajaWaaSbaaSqaaiaadYeaaeqaaOGaaGypamaalaaabaWaaabCae qaleaacaWGQbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGcdaWc gaqaaiaaigdaaeaacqaHapaCdaWgaaWcbaGaamOAaaqabaaaaaGcba GaamOtaaaaceWGgbGbaKaadaWgaaWcbaGaamOtaaqabaGccaaIUaGa aGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGOmaiaac6caca aIZaGaaiykaaaa@69D6@

Kuk (1988) shows that, under sampling with unequal probabilities, estimation of the median derived from F ^ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadkfaaeqaaaaa@38EA@ outperforms median estimates derived from F ^ N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaad6eaaeqaaaaa@38E6@ and F ^ L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYeaaeqaaaaa@38E4@ in terms of mean squared estimation error. Note that the estimators F ^ N , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaad6eaaeqaaOGaaiilaaaa@39A0@ F ^ L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadYeaaeqaaaaa@38E4@ and F ^ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja WaaSbaaSqaaiaadkfaaeqaaaaa@38EA@ coincide in the case of simple random sampling without replacement where π j = π = n / N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaadQgaaeqaaOGaaGypaiabec8aWjaai2dadaWcgaqaaiaa d6gaaeaacaWGobaaaiaac6caaaa@3FC7@

Report a problem on this page

Is something not working? Is there information outdated? Can't find what you're looking for?

Please contact us and let us know how we can help you.

Privacy notice

Date modified: