A short note on quantile and expectile estimation in unequal probability samples
2. Quantile estimationA short note on quantile and expectile estimation in unequal probability samples
2. Quantile estimation
We consider a finite
population with
N
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@37DF@
elements and a continuous survey variable
Y
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamywaiaac6
caaaa@389C@
We are interested in quantiles of the
cumulative distribution function
F
(
y
)
=
∑
i
=
1
N
1
{
Y
i
≤
y
}
/
N
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOramaabm
aabaGaamyEaaGaayjkaiaawMcaaiaai2dadaaeWaqabSqaaiaadMga
caaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakmaalyaabaGaaGymam
aacmaabaGaamywamaaBaaaleaacaWGPbaabeaakiabgsMiJkaadMha
aiaawUhacaGL9baaaeaacaWGobaaaaaa@48FF@
and define as
Q
(
α
)
=
inf
{
arg
min
q
∑
i
=
1
N
w
α
(
Y
i
−
q
)
|
Y
i
−
q
|
}
(
2.1
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyuamaabm
aabaGaeqySdegacaGLOaGaayzkaaGaaGypaiaabMgacaqGUbGaaeOz
amaacmaabaGaciyyaiaackhacaGGNbWaaCbeaeaaciGGTbGaaiyAai
aac6gaaSqaaiaadghaaeqaaOWaaabCaeqaleaacaWGPbGaaGypaiaa
igdaaeaacaWGobaaniabggHiLdGccaaMe8Uaam4DamaaBaaaleaacq
aHXoqyaeqaaOWaaeWaaeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaOGa
eyOeI0IaamyCaaGaayjkaiaawMcaamaaemaabaGaaGPaVlaadMfada
WgaaWcbaGaamyAaaqabaGccqGHsislcaWGXbGaaGPaVdGaay5bSlaa
wIa7aaGaay5Eaiaaw2haaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8
UaaiikaiaaikdacaGGUaGaaGymaiaacMcaaaa@6C5B@
the Quantile function of
Y
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamywaaaa@37EA@
(see Koenker 2005), where
w
α
(
ε
)
=
(
α
for
ε
>
0
1
−
α
for
ε
≤
0.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa
aaleaacqaHXoqyaeqaaOWaaeWaaeaacqaH1oqzaiaawIcacaGLPaaa
caaI9aWaaeqaaeaafaqaaeGacaaabaGaeqySdegabaGaaeOzaiaab+
gacaqGYbGaaGjbVlabew7aLjaai6dacaaIWaaabaGaaGymaiabgkHi
Tiabeg7aHbqaaiaabAgacaqGVbGaaeOCaiaaysW7cqaH1oqzcqGHKj
YOcaaIWaGaaGOlaaaaaiaawUhaaaaa@5492@
The “inf”
argument in (2.1) is required in finite populations since the “arg min” is not
unique. We draw a sample from the population with known inclusion probabilities
π
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaaiaadMgaaeqaaOGaaiilaaaa@3A9D@
i
=
1,
…
,
N
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2
dacaaIXaGaaGilaiablAciljaaiYcacaWGobGaaiOlaaaa@3D8F@
Denoting by
y
1
,
…
,
y
n
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa
aaleaacaaIXaaabeaakiaaiYcacqWIMaYscaaISaGaamyEamaaBaaa
leaacaWGUbaabeaaaaa@3DA6@
the resulting sample, we estimate the quantile
function by replacing (2.1) through its weighted sample version
Q
^
N
(
α
)
=
inf
{
arg
min
q
∑
j
=
1
n
1
π
j
w
α
,
j
|
y
j
−
q
|
}
(
2.2
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyuayaaja
WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacqaHXoqyaiaawIcacaGL
PaaacaaI9aGaciyAaiaac6gacaGGMbWaaiWaaeaaciGGHbGaaiOCai
aacEgadaWfqaqaaiGac2gacaGGPbGaaiOBaaWcbaGaamyCaaqabaGc
daaeWbqabSqaaiaadQgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIu
oakiaaysW7daWcaaqaaiaaigdaaeaacqaHapaCdaWgaaWcbaGaamOA
aaqabaaaaOGaam4DamaaBaaaleaacqaHXoqycaaISaGaamOAaaqaba
GcdaabdaqaaiaaykW7caWG5bWaaSbaaSqaaiaadQgaaeqaaOGaeyOe
I0IaamyCaiaaykW7aiaawEa7caGLiWoaaiaawUhacaGL9baacaaMf8
UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaikda
caGGPaaaaa@6DA0@
with
w
α
,
j
=
w
α
(
y
j
−
q
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa
aaleaacqaHXoqycaaISaGaamOAaaqabaGccaaI9aGaam4DamaaBaaa
leaacqaHXoqyaeqaaOWaaeWaaeaacaWG5bWaaSbaaSqaaiaadQgaae
qaaOGaeyOeI0IaamyCaaGaayjkaiaawMcaaaaa@44A9@
as defined above. It is easy to see that the
sum in (2.2) is a design-unbiased estimate for the sum in
Q
(
α
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyuamaabm
aabaGaeqySdegacaGLOaGaayzkaaaaaa@3B0A@
given in (2.1). Nonetheless, because we take
the “arg min” it follows that
Q
^
N
(
α
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyuayaaja
WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacqaHXoqyaiaawIcacaGL
Paaaaaa@3C23@
is not unbiased for
Q
(
α
)
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyuamaabm
aabaGaeqySdegacaGLOaGaayzkaaGaaiOlaaaa@3BBC@
We therefore look at consistency statements
for
Q
^
N
(
α
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyuayaaja
WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacqaHXoqyaiaawIcacaGL
Paaaaaa@3C23@
as follows. Let
R
i
(
q
)
=
w
α
(
y
i
−
q
)
|
y
i
−
q
|
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa
aaleaacaWGPbaabeaakmaabmaabaGaamyCaaGaayjkaiaawMcaaiaa
i2dacaWG3bWaaSbaaSqaaiabeg7aHbqabaGcdaqadaqaaiaadMhada
WgaaWcbaGaamyAaaqabaGccqGHsislcaWGXbaacaGLOaGaayzkaaWa
aqWaaeaacaaMc8UaamyEamaaBaaaleaacaWGPbaabeaakiabgkHiTi
aadghacaaMc8oacaGLhWUaayjcSdaaaa@4EE9@
and
R
¯
N
(
q
)
:=
1
N
∑
i
R
i
(
q
)
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOuayaara
WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWGXbaacaGLOaGaayzk
aaGaaGOoaiaai2dadaWcaaqaaiaaigdaaeaacaWGobaaamaaqafabe
WcbaGaamyAaaqab0GaeyyeIuoakiaaysW7caWGsbWaaSbaaSqaaiaa
dMgaaeqaaOWaaeWaaeaacaWGXbaacaGLOaGaayzkaaGaaGOlaaaa@4886@
We draw a sample from
R
i
(
q
)
,
i
=
1,
…
,
N
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa
aaleaacaWGPbaabeaakmaabmaabaGaamyCaaGaayjkaiaawMcaaiaa
iYcacaWGPbGaaGypaiaaigdacaaISaGaeSOjGSKaaGilaiaad6eaaa
a@420D@
and assume we apply a consistent sampling
scheme in that
r
¯
n
(
q
)
:=
1
N
∑
j
=
1
n
1
π
j
r
j
(
q
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOCayaara
WaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaacaWGXbaacaGLOaGaayzk
aaGaaGOoaiaai2dadaWcaaqaaiaaigdaaeaacaWGobaaamaaqahabe
WcbaGaamOAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOGaaGPa
VpaalaaabaGaaGymaaqaaiabec8aWnaaBaaaleaacaWGQbaabeaaaa
GccaWGYbWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaWGXbaacaGL
OaGaayzkaaaaaa@4E6F@
is
design-consistent for
R
¯
N
(
q
)
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOuayaara
WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWGXbaacaGLOaGaayzk
aaGaaiilaaaa@3C33@
where
r
j
(
q
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa
aaleaacaWGQbaabeaakmaabmaabaGaamyCaaGaayjkaiaawMcaaaaa
@3BA7@
denotes the sample of
R
i
(
q
)
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa
aaleaacaWGPbaabeaakmaabmaabaGaamyCaaGaayjkaiaawMcaaiaa
c6caaaa@3C38@
Note that
r
j
(
q
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa
aaleaacaWGQbaabeaakmaabmaabaGaamyCaaGaayjkaiaawMcaaaaa
@3BA7@
and hence
r
¯
n
(
q
)
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOCayaara
WaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaacaWGXbaacaGLOaGaayzk
aaGaaiilaaaa@3C73@
R
i
(
q
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa
aaleaacaWGPbaabeaakmaabmaabaGaamyCaaGaayjkaiaawMcaaaaa
@3B86@
and
R
¯
N
(
q
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOuayaara
WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWGXbaacaGLOaGaayzk
aaaaaa@3B83@
also depend on
α
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@38AB@
which is suppressed in the notation for
readability. Let
q
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa
aaleaacaaIWaaabeaaaaa@38E8@
be the minimum of
R
¯
N
(
q
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOuayaara
WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWGXbaacaGLOaGaayzk
aaaaaa@3B83@
which is not necessarily unique due to the
finite structure of the population. We can take the “inf” argument, i.e. ,
q
0
=
inf
{
arg
min
R
¯
N
(
q
)
}
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa
aaleaacaaIWaaabeaakiaai2daciGGPbGaaiOBaiaacAgadaGadaqa
aiaabggacaqGYbGaae4zaiaaykW7ciGGTbGaaiyAaiaac6gaceWGsb
GbaebadaWgaaWcbaGaamOtaaqabaGcdaqadaqaaiaadghaaiaawIca
caGLPaaaaiaawUhacaGL9baacaGGSaaaaa@4AFC@
but for simplicity we assume a superpopulation
model (see Isaki and Fuller 1982) by considering the finite population to be a
sample from an infinite superpopulation. In the latter we assume that survey
variable
Y
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamywaaaa@37EA@
has a continuous cumulative distribution
function so
q
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa
aaleaacaaIWaaabeaaaaa@38E8@
results in a unique
α
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@38AB@
quantile. We get for
δ
>
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaaG
Opaiaaicdaaaa@3A33@
P
(
r
¯
n
(
q
0
)
<
r
¯
n
(
q
0
−
δ
)
)
⇔
P
(
1
N
∑
j
=
1
n
1
π
j
{
r
j
(
q
0
)
−
r
j
(
q
0
−
δ
)
}
<
0
)
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiuamaabm
aabaGabmOCayaaraWaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaacaWG
XbWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaGaaGipaiqadk
hagaqeamaaBaaaleaacaWGUbaabeaakmaabmaabaGaamyCamaaBaaa
leaacaaIWaaabeaakiabgkHiTiabes7aKbGaayjkaiaawMcaaaGaay
jkaiaawMcaaiabgsDiBlaadcfadaqadaqaamaalaaabaGaaGymaaqa
aiaad6eaaaWaaabCaeqaleaacaWGQbGaaGypaiaaigdaaeaacaWGUb
aaniabggHiLdGccaaMc8+aaSaaaeaacaaIXaaabaGaeqiWda3aaSba
aSqaaiaadQgaaeqaaaaakmaacmaabaGaamOCamaaBaaaleaacaWGQb
aabeaakmaabmaabaGaamyCamaaBaaaleaacaaIWaaabeaaaOGaayjk
aiaawMcaaiabgkHiTiaadkhadaWgaaWcbaGaamOAaaqabaGcdaqada
qaaiaadghadaWgaaWcbaGaaGimaaqabaGccqGHsislcqaH0oazaiaa
wIcacaGLPaaaaiaawUhacaGL9baacaaI8aGaaGimaaGaayjkaiaawM
caaiaai6caaaa@6C4E@
Note that the
argument in the probability statement is a design-consistent estimate for
R
¯
N
(
q
0
)
−
R
¯
N
(
q
0
−
δ
)
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOuayaara
WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWGXbWaaSbaaSqaaiaa
icdaaeqaaaGccaGLOaGaayzkaaGaeyOeI0IabmOuayaaraWaaSbaaS
qaaiaad6eaaeqaaOWaaeWaaeaacaWGXbWaaSbaaSqaaiaaicdaaeqa
aOGaeyOeI0IaeqiTdqgacaGLOaGaayzkaaGaaiilaaaa@4609@
which is less than zero since
q
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa
aaleaacaaIWaaabeaaaaa@38E8@
is the minimum of
R
¯
N
(
⋅
)
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOuayaara
WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacqGHflY1aiaawIcacaGL
PaaacaGGUaaaaa@3D89@
Hence, the probability tends to one in the
sense of design consistency defined in Isaki and Fuller (1982). The same holds
of course for
δ
<
0.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaaG
ipaiaaicdacaGGUaaaaa@3AE3@
With this statement we may conclude that the
estimated minimum
q
^
0
=
arg
min
∑
j
=
1
n
1
/
π
j
r
j
(
q
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyCayaaja
WaaSbaaSqaaiaaicdaaeqaaOGaaGypaiaabggacaqGYbGaae4zaiaa
ykW7ciGGTbGaaiyAaiaac6gadaaeWaqabSqaaiaadQgacaaI9aGaaG
ymaaqaaiaad6gaa0GaeyyeIuoakmaalyaabaGaaGymaaqaaiabec8a
WnaaBaaaleaacaWGQbaabeaaaaGccaaMe8UaamOCamaaBaaaleaaca
WGQbaabeaakmaabmaabaGaamyCaaGaayjkaiaawMcaaaaa@5035@
is a design-consistent estimate for
q
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa
aaleaacaaIWaaabeaaaaa@38E8@
so that
Q
^
N
(
α
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyuayaaja
WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacqaHXoqyaiaawIcacaGL
Paaaaaa@3C23@
in (2.2) is in turn design-consistent for
Q
N
(
α
)
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa
aaleaacaWGobaabeaakmaabmaabaGaeqySdegacaGLOaGaayzkaaGa
aiOlaaaa@3CC5@
It is easily shown that
Q
^
N
(
α
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyuayaaja
WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacqaHXoqyaiaawIcacaGL
Paaaaaa@3C23@
is the inverse of the normed weighted
cumulative distribution function
F
^
N
(
y
)
:=
∑
j
=
1
n
1
{
y
j
≤
y
}
/
π
j
∑
j
=
1
n
1
/
π
j
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja
WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWG5baacaGLOaGaayzk
aaGaaGOoaiaai2dadaWcaaqaamaaqahabeWcbaGaamOAaiaai2daca
aIXaaabaGaamOBaaqdcqGHris5aOGaaGPaVpaalyaabaGaaGymamaa
cmaabaGaamyEamaaBaaaleaacaWGQbaabeaakiabgsMiJkaadMhaai
aawUhacaGL9baaaeaacqaHapaCdaWgaaWcbaGaamOAaaqabaaaaaGc
baWaaabCaeqaleaacaWGQbGaaGypaiaaigdaaeaacaWGUbaaniabgg
HiLdGccaaMc8+aaSGbaeaacaaIXaaabaGaeqiWda3aaSbaaSqaaiaa
dQgaaeqaaaaaaaaaaa@59EC@
using the same
notation as in Kuk (1988). Note that
F
^
N
(
y
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja
WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWG5baacaGLOaGaayzk
aaaaaa@3B77@
is the Hajek (1971) estimate of the cumulative
distribution function (see also Rao and Wu 2009) and as such not a
Horvitz-Thompson estimate. As a consequence
Q
^
N
(
α
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyuayaaja
WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacqaHXoqyaiaawIcacaGL
Paaaaaa@3C23@
is not design-unbiased. Nonetheless,
F
^
N
(
y
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja
WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacaWG5baacaGLOaGaayzk
aaaaaa@3B77@
is a valid distribution function, and hence it
can be considered as normalized version of the Lahiri or Horvitz-Thompson
estimator of the distribution function (see Lahiri 1951) which is denoted by
F
^
L
(
y
)
:=
1
N
∑
j
=
1
n
1
/
π
j
1
{
y
j
≤
y
}
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja
WaaSbaaSqaaiaadYeaaeqaaOWaaeWaaeaacaWG5baacaGLOaGaayzk
aaGaaGOoaiaai2dadaWcaaqaaiaaigdaaeaacaWGobaaamaaqahabe
WcbaGaamOAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOWaaSGb
aeaacaaIXaaabaGaeqiWda3aaSbaaSqaaiaadQgaaeqaaOGaaGymam
aacmaabaGaamyEamaaBaaaleaacaWGQbaabeaakiabgsMiJkaadMha
aiaawUhacaGL9baaaaGaaiOlaaaa@5075@
Kuk (1988)
proposes to replace
F
^
L
(
⋅
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja
WaaSbaaSqaaiaadYeaaeqaaOWaaeWaaeaacqGHflY1aiaawIcacaGL
Paaaaaa@3CC1@
with alternative estimates of the distribution
function: Instead of estimating the distribution function itself he suggests to
estimate the complementary proportion
S
^
R
(
y
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabm4uayaaja
WaaSbaaSqaaiaadkfaaeqaaOWaaeWaaeaacaWG5baacaGLOaGaayzk
aaaaaa@3B88@
which then leads to the estimate
F
^
R
(
y
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja
WaaSbaaSqaaiaadkfaaeqaaOWaaeWaaeaacaWG5baacaGLOaGaayzk
aaaaaa@3B7B@
defined through
F
^
R
(
y
)
=
1
−
S
^
R
(
y
)
=
1
−
1
N
∑
j
=
1
n
1
/
π
j
1
{
y
j
>
y
}
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja
WaaSbaaSqaaiaadkfaaeqaaOWaaeWaaeaacaWG5baacaGLOaGaayzk
aaGaaGypaiaaigdacqGHsislceWGtbGbaKaadaWgaaWcbaGaamOuaa
qabaGcdaqadaqaaiaadMhaaiaawIcacaGLPaaacaaI9aGaaGymaiab
gkHiTmaalaaabaGaaGymaaqaaiaad6eaaaWaaabCaeqaleaacaWGQb
GaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGcdaWcgaqaaiaaigda
aeaacqaHapaCdaWgaaWcbaGaamOAaaqabaGccaaIXaWaaiWaaeaaca
WG5bWaaSbaaSqaaiaadQgaaeqaaOGaaGOpaiaadMhaaiaawUhacaGL
9baaaaGaaGOlaaaa@5763@
Resulting directly from these definitions we can express
F
^
R
(
⋅
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja
WaaSbaaSqaaiaadkfaaeqaaOWaaeWaaeaacqGHflY1aiaawIcacaGL
Paaaaaa@3CC7@
in terms of
F
^
N
(
⋅
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja
WaaSbaaSqaaiaad6eaaeqaaOWaaeWaaeaacqGHflY1aiaawIcacaGL
Paaaaaa@3CC3@
through
F
^
R
=
1
−
1
N
∑
j
=
1
n
1
/
π
j
+
F
^
L
and
F
^
L
=
∑
j
=
1
n
1
/
π
j
N
F
^
N
.
(
2.3
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja
WaaSbaaSqaaiaadkfaaeqaaOGaaGypaiaaigdacqGHsisldaWcaaqa
aiaaigdaaeaacaWGobaaamaaqahabeWcbaGaamOAaiaai2dacaaIXa
aabaGaamOBaaqdcqGHris5aOWaaSGbaeaacaaIXaaabaGaeqiWda3a
aSbaaSqaaiaadQgaaeqaaOGaey4kaSIabmOrayaajaWaaSbaaSqaai
aadYeaaeqaaaaakiaaywW7caqGHbGaaeOBaiaabsgacaaMf8UabmOr
ayaajaWaaSbaaSqaaiaadYeaaeqaaOGaaGypamaalaaabaWaaabCae
qaleaacaWGQbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGcdaWc
gaqaaiaaigdaaeaacqaHapaCdaWgaaWcbaGaamOAaaqabaaaaaGcba
GaamOtaaaaceWGgbGbaKaadaWgaaWcbaGaamOtaaqabaGccaaIUaGa
aGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGOmaiaac6caca
aIZaGaaiykaaaa@69D6@
Kuk (1988)
shows that, under sampling with unequal probabilities, estimation of the median
derived from
F
^
R
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja
WaaSbaaSqaaiaadkfaaeqaaaaa@38EA@
outperforms median estimates derived from
F
^
N
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja
WaaSbaaSqaaiaad6eaaeqaaaaa@38E6@
and
F
^
L
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja
WaaSbaaSqaaiaadYeaaeqaaaaa@38E4@
in terms of mean squared estimation error.
Note that the estimators
F
^
N
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja
WaaSbaaSqaaiaad6eaaeqaaOGaaiilaaaa@39A0@
F
^
L
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja
WaaSbaaSqaaiaadYeaaeqaaaaa@38E4@
and
F
^
R
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOrayaaja
WaaSbaaSqaaiaadkfaaeqaaaaa@38EA@
coincide in the case of simple random sampling
without replacement where
π
j
=
π
=
n
/
N
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaaiaadQgaaeqaaOGaaGypaiabec8aWjaai2dadaWcgaqaaiaa
d6gaaeaacaWGobaaaiaac6caaaa@3FC7@
ISSN : 1492-0921
Editorial policy
Survey Methodology publishes articles dealing with various aspects of statistical development relevant to a statistical agency, such as design issues in the context of practical constraints, use of different data sources and collection techniques, total survey error, survey evaluation, research in survey methodology, time series analysis, seasonal adjustment, demographic studies, data integration, estimation and data analysis methods, and general survey systems development. The emphasis is placed on the development and evaluation of specific methodologies as applied to data collection or the data themselves. All papers will be refereed. However, the authors retain full responsibility for the contents of their papers and opinions expressed are not necessarily those of the Editorial Board or of Statistics Canada.
Submission of Manuscripts
Survey Methodology is published twice a year in electronic format. Authors are invited to submit their articles in English or French in electronic form, preferably in Word to the Editor, (statcan.smj-rte.statcan@canada.ca , Statistics Canada, 150 Tunney’s Pasture Driveway, Ottawa, Ontario, Canada, K1A 0T6). For formatting instructions, please see the guidelines provided in the journal and on the web site (www.statcan.gc.ca/SurveyMethodology).
Note of appreciation
Canada owes the success of its statistical system to a long-standing partnership between Statistics Canada, the citizens of Canada, its businesses, governments and other institutions. Accurate and timely statistical information could not be produced without their continued co-operation and goodwill.
Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt, reliable and courteous manner. To this end, the Agency has developed standards of service which its employees observe in serving its clients.
Copyright
Published by authority of the Minister responsible for Statistics Canada.
© Minister of Industry, 2016
All rights reserved. Use of this publication is governed by the Statistics Canada Open Licence Agreement .
Catalogue No. 12-001-X
Frequency: semi-annual
Ottawa
Report a problem on this page
Is something not working? Is there information outdated? Can't find what you're looking for?
Please contact us and let us know how we can help you.
Privacy notice
Date modified:
2016-06-22