Pondération et estimation
Filtrer les résultats par
Aide à la rechercheMot(s)-clé(s)
Type
Enquête ou programme statistique
- Enquête sur la dynamique du travail et du revenu (5)
- Recensement de la population (5)
- Enquête sur les dépenses des ménages (2)
- Étude longitudinale et internationale des adultes (2)
- Enquête sur l'emploi, la rémunération et les heures de travail (1)
- Registre canadien du cancer (1)
- Enquête sur la santé dans les collectivités canadiennes - Composante annuelle (1)
- Programme de déclaration uniforme de la criminalité (1)
- Estimations démographiques trimestrielles (1)
- Estimations démographiques annuelles: Canada, provinces et territoires (1)
- Estimations de la population selon l'état matrimonial ou l'état matrimonial légal, l'âge et le sexe au 1er juillet, Canada, provinces et territoires (1)
- Estimations du nombre de familles de recensement au 1er juillet, Canada, provinces et territoires (1)
- Enquête sur la population active (1)
- Banque de données administratives longitudinales (1)
- Enquête sociale générale - Identité sociale (1)
- Enquête sur la santé dans les collectivités canadiennes - Nutrition (1)
- Enquête canadienne sur le revenu (1)
- Valeurs des propriétés résidentielles (1)
- Enquête canadienne sur la situation des entreprises (1)
Résultats
Tout (589)
Tout (589) (0 à 10 de 589 résultats)
- Articles et rapports : 75-005-M2024003Description : Ce document décrit brièvement la méthodologie d’estimation sur petits domaines développée pour produire des estimations mensuelles de l’emploi et du taux de chômage dans les régions métropolitaines de recensement, dans les agglomérations de recensement et dans zones de travail autonome en utilisant les données de l'Enquête sur la population active, les statistiques de l'assurance-emploi et les projections démographiques.Date de diffusion : 2024-09-17
- Articles et rapports : 12-001-X202400100001Description : Inspirés par les deux excellentes discussions de notre article, nous offrons un regard nouveau et présentons de nouvelles avancées sur le problème de l’estimation des probabilités de participation pour des échantillons non probabilistes. Tout d’abord, nous proposons une amélioration de la méthode de Chen, Li et Wu (2020), fondée sur la théorie de la meilleure estimation linéaire sans biais, qui tire plus efficacement parti des données disponibles des échantillons probabiliste et non probabiliste. De plus, nous élaborons une méthode de vraisemblance de l’échantillon, dont l’idée est semblable à la méthode d’Elliott (2009), qui tient adéquatement compte du chevauchement entre les deux échantillons quand il est possible de l’identifier dans au moins un des échantillons. Nous utilisons la théorie de la meilleure prédiction linéaire sans biais pour traiter le scénario où le chevauchement est inconnu. Il est intéressant de constater que les deux méthodes que nous proposons coïncident quand le chevauchement est inconnu. Ensuite, nous montrons que de nombreuses méthodes existantes peuvent être obtenues comme cas particulier d’une fonction d’estimation sans biais générale. Enfin, nous concluons en formulant quelques commentaires sur l’estimation non paramétrique des probabilités de participation.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202400100002Description : Nous proposons des comparaisons entre trois méthodes paramétriques d’estimation des probabilités de participation ainsi que de brefs commentaires à propos des groupes homogènes et de la poststratification.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202400100003Description : Beaumont, Bosa, Brennan, Charlebois et Chu (2024) proposent des méthodes novatrices de sélection de modèles aux fins d’estimation des probabilités de participation pour des unités d’échantillonnage non probabiliste. Notre examen portera principalement sur le choix de la vraisemblance et du paramétrage du modèle, qui sont essentiels à l’efficacité des techniques proposées dans l’article. Nous examinons d’autres méthodes fondées sur la vraisemblance et la pseudo-vraisemblance pour estimer les probabilités de participation et nous présentons des simulations mettant en œuvre et comparant la sélection de variables fondée sur le critère d’information d’Akaike (AIC). Nous démontrons que, dans des scénarios pratiques importants, la méthode fondée sur une vraisemblance formulée sur les échantillons non probabiliste et probabiliste groupés qui sont observés offre un meilleur rendement que les autres solutions fondées sur la pseudo-vraisemblance. La différence de sensibilité du AIC est particulièrement grande en cas de petites tailles de l’échantillon probabiliste et de petit chevauchement dans les domaines de covariables.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202400100004Description : Les organismes nationaux de statistique étudient de plus en plus la possibilité d’utiliser des échantillons non probabilistes comme solution de rechange aux échantillons probabilistes. Toutefois, il est bien connu que l’utilisation d’un échantillon non probabiliste seul peut produire des estimations présentant un biais important en raison de la nature inconnue du mécanisme de sélection sous-jacent. Il est possible de réduire le biais en intégrant les données de l’échantillon non probabiliste aux données d’un échantillon probabiliste, à condition que les deux échantillons contiennent des variables auxiliaires communes. Nous nous concentrons sur les méthodes de pondération par l’inverse de la probabilité, lesquelles consistent à modéliser la probabilité de participation à l’échantillon non probabiliste. Premièrement, nous examinons le modèle logistique ainsi que l’estimation par la méthode du pseudo maximum de vraisemblance. Nous proposons une procédure de sélection de variables en fonction d’un critère d’information d’Akaike (AIC) modifié qui tient compte de la structure des données et du plan d’échantillonnage probabiliste. Nous proposons également une méthode simple fondée sur le rang pour former des strates a posteriori homogènes. Ensuite, nous adaptons l’algorithme des arbres de classification et de régression (CART) à ce scénario d’intégration de données, tout en tenant compte, encore une fois, du plan d’échantillonnage probabiliste. Nous proposons un estimateur de la variance bootstrap qui tient compte de deux sources de variabilité : le plan d’échantillonnage probabiliste et le modèle de participation. Nos méthodes sont illustrées au moyen de données recueillies par approche participative et de données d’enquête de Statistique Canada.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202400100005Description : Dans cette réplique, je réponds aux commentaires des participants à l’analyse, M. Takumi Saegusa, M. Jae-Kwang Kim et Mme Yonghyun Kwon. Les commentaires de M. Saegusa, qui portent sur les différences entre l’hypothèse d’échangeabilité conditionnelle (EC) pour les inférences causales et l’hypothèse d’EC pour les inférences de population finie au moyen d’échantillons non probabilistes ainsi que sur la distinction entre les méthodes fondées sur le plan et celles fondées sur un modèle pour l’inférence de population finie au moyen d’échantillons non probabilistes, sont examinés et clarifiés dans le contexte de mon article. Je réponds ensuite au cadre exhaustif de M. Kim et de Mme Kwon pour classer les méthodes actuelles d’estimation des scores de propension (SP) en méthodes conditionnelles et inconditionnelles. J’étends leurs études par simulations pour varier les poids de sondage, permettre des modèles de SP incorrectement précisés, et inclure un estimateur supplémentaire, à savoir l’estimateur par la propension logistique ajustée mis à l’échelle (Wang, Valliant et Li (2021), noté sWBS). Dans mes simulations, on observe que l’estimateur sWBS dépasse de façon constante les autres estimateurs ou leur est comparable dans le modèle de SP incorrectement précisé. L’estimateur sWBS, ainsi que les estimateurs WBS ou ABS décrits dans mon article, ne supposent pas que les unités superposées dans les échantillons de référence probabiliste et non probabiliste sont négligeables, et ils n’exigent pas non plus l’identification des unités superposées, comme le nécessitent les estimateurs proposés par M. Kim et Mme Kwon.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202400100006Description : Dans certains articles sur les échantillons non probabilistes, l’hypothèse de l’échangeabilité conditionnelle est jugée nécessaire pour une inférence statistique valide. Cette hypothèse repose sur une inférence causale, bien que son cadre de résultat potentiel diffère grandement de celui des échantillons non probabilistes. Nous décrivons les similitudes et les différences entre deux cadres et abordons les enjeux à prendre en considération lors de l’adoption de l’hypothèse d’échangeabilité conditionnelle dans les configurations d’échantillons non probabilistes. Nous examinons aussi le rôle de l’inférence de la population finie dans différentes approches de scores de propension et de modélisation de régression des résultats à l’égard des échantillons non probabilistes.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202400100007Description : La construction de pseudo-poids pour l’intégration des données peut être comprise dans le cadre de l’échantillonnage à deux phases. Au moyen du cadre d’échantillonnage à deux phases, nous abordons deux approches de l’estimation des scores de propension et mettons au point une nouvelle façon de construire la fonction de score de propension pour l’intégration des données en utilisant la méthode de maximum de vraisemblance conditionnelle. Les résultats d’une étude de simulation limitée sont aussi présentés.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202400100008Description : Des échantillons non probabilistes émergent rapidement pour aborder des sujets prioritaires urgents dans différents domaines. Ces données sont actuelles, mais sujettes à un biais de sélection. Afin de réduire le biais de sélection, une littérature abondante portant sur la recherche sur les enquêtes a étudié l’utilisation de méthodes d’ajustement par le score de propension (SP) pour améliorer la représentativité de la population des échantillons non probabilistes, au moyen d’échantillons d’enquête probabilistes utilisés comme références externes. L’hypothèse d’échangeabilité conditionnelle (EC) est l’une des principales hypothèses requises par les méthodes d’ajustement fondées sur le SP. Dans le présent article, j’examine d’abord la validité de l’hypothèse de l’EC conditionnellement à plusieurs estimations de scores d’équilibrage qui sont utilisées dans les méthodes d’ajustement fondées sur le SP existantes. Un score d’équilibrage adaptatif est proposé aux fins d’estimation sans biais des moyennes de population. Les estimateurs de la moyenne de population selon les trois hypothèses de l’EC sont évalués au moyen d’études de simulation de Monte Carlo et illustrés au moyen de l’étude sur la séroprévalence du SRAS-CoV-2 des National Institutes of Health pour estimer la proportion d’adultes aux États-Unis qui présentaient des anticorps de la COVID-19 du 1er avril au 4 août 2020.Date de diffusion : 2024-06-25
- Articles et rapports : 18-001-X2024001Description : Cette étude applique l’estimation sur petits domaines (EPD) et un nouveau concept géographique appelé Zone de travail autonome (ZTA) à l'Enquête canadienne sur la situation des entreprises (ECSE) en mettant l'accent sur les opportunités de travail à distance sur les marchés du travail ruraux. Grâce à la modélisation EPD, nous avons estimé les proportions d'entreprises, classées par secteur industriel général (prestataires de services et producteurs de biens), qui offriraient principalement des opportunités de travail à distance à leur main-d'œuvre.Date de diffusion : 2024-04-22
- Précédent Go to previous page of Tout results
- 1 (actuel) Aller à la page 1 des résultats «!tag»
- 2 Aller à la page 2 des résultats «!tag»
- 3 Aller à la page 3 des résultats «!tag»
- 4 Aller à la page 4 des résultats «!tag»
- 5 Aller à la page 5 des résultats «!tag»
- 6 Aller à la page 6 des résultats «!tag»
- 7 Aller à la page 7 des résultats «!tag»
- ...
- 59 Aller à la page 59 des résultats «!tag»
- Suivant Go to next page of Tout results
Données (0)
Données (0) (0 résultat)
Aucun contenu disponible actuellement
Analyses (562)
Analyses (562) (0 à 10 de 562 résultats)
- Articles et rapports : 75-005-M2024003Description : Ce document décrit brièvement la méthodologie d’estimation sur petits domaines développée pour produire des estimations mensuelles de l’emploi et du taux de chômage dans les régions métropolitaines de recensement, dans les agglomérations de recensement et dans zones de travail autonome en utilisant les données de l'Enquête sur la population active, les statistiques de l'assurance-emploi et les projections démographiques.Date de diffusion : 2024-09-17
- Articles et rapports : 12-001-X202400100001Description : Inspirés par les deux excellentes discussions de notre article, nous offrons un regard nouveau et présentons de nouvelles avancées sur le problème de l’estimation des probabilités de participation pour des échantillons non probabilistes. Tout d’abord, nous proposons une amélioration de la méthode de Chen, Li et Wu (2020), fondée sur la théorie de la meilleure estimation linéaire sans biais, qui tire plus efficacement parti des données disponibles des échantillons probabiliste et non probabiliste. De plus, nous élaborons une méthode de vraisemblance de l’échantillon, dont l’idée est semblable à la méthode d’Elliott (2009), qui tient adéquatement compte du chevauchement entre les deux échantillons quand il est possible de l’identifier dans au moins un des échantillons. Nous utilisons la théorie de la meilleure prédiction linéaire sans biais pour traiter le scénario où le chevauchement est inconnu. Il est intéressant de constater que les deux méthodes que nous proposons coïncident quand le chevauchement est inconnu. Ensuite, nous montrons que de nombreuses méthodes existantes peuvent être obtenues comme cas particulier d’une fonction d’estimation sans biais générale. Enfin, nous concluons en formulant quelques commentaires sur l’estimation non paramétrique des probabilités de participation.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202400100002Description : Nous proposons des comparaisons entre trois méthodes paramétriques d’estimation des probabilités de participation ainsi que de brefs commentaires à propos des groupes homogènes et de la poststratification.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202400100003Description : Beaumont, Bosa, Brennan, Charlebois et Chu (2024) proposent des méthodes novatrices de sélection de modèles aux fins d’estimation des probabilités de participation pour des unités d’échantillonnage non probabiliste. Notre examen portera principalement sur le choix de la vraisemblance et du paramétrage du modèle, qui sont essentiels à l’efficacité des techniques proposées dans l’article. Nous examinons d’autres méthodes fondées sur la vraisemblance et la pseudo-vraisemblance pour estimer les probabilités de participation et nous présentons des simulations mettant en œuvre et comparant la sélection de variables fondée sur le critère d’information d’Akaike (AIC). Nous démontrons que, dans des scénarios pratiques importants, la méthode fondée sur une vraisemblance formulée sur les échantillons non probabiliste et probabiliste groupés qui sont observés offre un meilleur rendement que les autres solutions fondées sur la pseudo-vraisemblance. La différence de sensibilité du AIC est particulièrement grande en cas de petites tailles de l’échantillon probabiliste et de petit chevauchement dans les domaines de covariables.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202400100004Description : Les organismes nationaux de statistique étudient de plus en plus la possibilité d’utiliser des échantillons non probabilistes comme solution de rechange aux échantillons probabilistes. Toutefois, il est bien connu que l’utilisation d’un échantillon non probabiliste seul peut produire des estimations présentant un biais important en raison de la nature inconnue du mécanisme de sélection sous-jacent. Il est possible de réduire le biais en intégrant les données de l’échantillon non probabiliste aux données d’un échantillon probabiliste, à condition que les deux échantillons contiennent des variables auxiliaires communes. Nous nous concentrons sur les méthodes de pondération par l’inverse de la probabilité, lesquelles consistent à modéliser la probabilité de participation à l’échantillon non probabiliste. Premièrement, nous examinons le modèle logistique ainsi que l’estimation par la méthode du pseudo maximum de vraisemblance. Nous proposons une procédure de sélection de variables en fonction d’un critère d’information d’Akaike (AIC) modifié qui tient compte de la structure des données et du plan d’échantillonnage probabiliste. Nous proposons également une méthode simple fondée sur le rang pour former des strates a posteriori homogènes. Ensuite, nous adaptons l’algorithme des arbres de classification et de régression (CART) à ce scénario d’intégration de données, tout en tenant compte, encore une fois, du plan d’échantillonnage probabiliste. Nous proposons un estimateur de la variance bootstrap qui tient compte de deux sources de variabilité : le plan d’échantillonnage probabiliste et le modèle de participation. Nos méthodes sont illustrées au moyen de données recueillies par approche participative et de données d’enquête de Statistique Canada.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202400100005Description : Dans cette réplique, je réponds aux commentaires des participants à l’analyse, M. Takumi Saegusa, M. Jae-Kwang Kim et Mme Yonghyun Kwon. Les commentaires de M. Saegusa, qui portent sur les différences entre l’hypothèse d’échangeabilité conditionnelle (EC) pour les inférences causales et l’hypothèse d’EC pour les inférences de population finie au moyen d’échantillons non probabilistes ainsi que sur la distinction entre les méthodes fondées sur le plan et celles fondées sur un modèle pour l’inférence de population finie au moyen d’échantillons non probabilistes, sont examinés et clarifiés dans le contexte de mon article. Je réponds ensuite au cadre exhaustif de M. Kim et de Mme Kwon pour classer les méthodes actuelles d’estimation des scores de propension (SP) en méthodes conditionnelles et inconditionnelles. J’étends leurs études par simulations pour varier les poids de sondage, permettre des modèles de SP incorrectement précisés, et inclure un estimateur supplémentaire, à savoir l’estimateur par la propension logistique ajustée mis à l’échelle (Wang, Valliant et Li (2021), noté sWBS). Dans mes simulations, on observe que l’estimateur sWBS dépasse de façon constante les autres estimateurs ou leur est comparable dans le modèle de SP incorrectement précisé. L’estimateur sWBS, ainsi que les estimateurs WBS ou ABS décrits dans mon article, ne supposent pas que les unités superposées dans les échantillons de référence probabiliste et non probabiliste sont négligeables, et ils n’exigent pas non plus l’identification des unités superposées, comme le nécessitent les estimateurs proposés par M. Kim et Mme Kwon.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202400100006Description : Dans certains articles sur les échantillons non probabilistes, l’hypothèse de l’échangeabilité conditionnelle est jugée nécessaire pour une inférence statistique valide. Cette hypothèse repose sur une inférence causale, bien que son cadre de résultat potentiel diffère grandement de celui des échantillons non probabilistes. Nous décrivons les similitudes et les différences entre deux cadres et abordons les enjeux à prendre en considération lors de l’adoption de l’hypothèse d’échangeabilité conditionnelle dans les configurations d’échantillons non probabilistes. Nous examinons aussi le rôle de l’inférence de la population finie dans différentes approches de scores de propension et de modélisation de régression des résultats à l’égard des échantillons non probabilistes.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202400100007Description : La construction de pseudo-poids pour l’intégration des données peut être comprise dans le cadre de l’échantillonnage à deux phases. Au moyen du cadre d’échantillonnage à deux phases, nous abordons deux approches de l’estimation des scores de propension et mettons au point une nouvelle façon de construire la fonction de score de propension pour l’intégration des données en utilisant la méthode de maximum de vraisemblance conditionnelle. Les résultats d’une étude de simulation limitée sont aussi présentés.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202400100008Description : Des échantillons non probabilistes émergent rapidement pour aborder des sujets prioritaires urgents dans différents domaines. Ces données sont actuelles, mais sujettes à un biais de sélection. Afin de réduire le biais de sélection, une littérature abondante portant sur la recherche sur les enquêtes a étudié l’utilisation de méthodes d’ajustement par le score de propension (SP) pour améliorer la représentativité de la population des échantillons non probabilistes, au moyen d’échantillons d’enquête probabilistes utilisés comme références externes. L’hypothèse d’échangeabilité conditionnelle (EC) est l’une des principales hypothèses requises par les méthodes d’ajustement fondées sur le SP. Dans le présent article, j’examine d’abord la validité de l’hypothèse de l’EC conditionnellement à plusieurs estimations de scores d’équilibrage qui sont utilisées dans les méthodes d’ajustement fondées sur le SP existantes. Un score d’équilibrage adaptatif est proposé aux fins d’estimation sans biais des moyennes de population. Les estimateurs de la moyenne de population selon les trois hypothèses de l’EC sont évalués au moyen d’études de simulation de Monte Carlo et illustrés au moyen de l’étude sur la séroprévalence du SRAS-CoV-2 des National Institutes of Health pour estimer la proportion d’adultes aux États-Unis qui présentaient des anticorps de la COVID-19 du 1er avril au 4 août 2020.Date de diffusion : 2024-06-25
- Articles et rapports : 18-001-X2024001Description : Cette étude applique l’estimation sur petits domaines (EPD) et un nouveau concept géographique appelé Zone de travail autonome (ZTA) à l'Enquête canadienne sur la situation des entreprises (ECSE) en mettant l'accent sur les opportunités de travail à distance sur les marchés du travail ruraux. Grâce à la modélisation EPD, nous avons estimé les proportions d'entreprises, classées par secteur industriel général (prestataires de services et producteurs de biens), qui offriraient principalement des opportunités de travail à distance à leur main-d'œuvre.Date de diffusion : 2024-04-22
- Précédent Go to previous page of Analyses results
- 1 (actuel) Aller à la page 1 des résultats «!tag»
- 2 Aller à la page 2 des résultats «!tag»
- 3 Aller à la page 3 des résultats «!tag»
- 4 Aller à la page 4 des résultats «!tag»
- 5 Aller à la page 5 des résultats «!tag»
- 6 Aller à la page 6 des résultats «!tag»
- 7 Aller à la page 7 des résultats «!tag»
- ...
- 57 Aller à la page 57 des résultats «!tag»
- Suivant Go to next page of Analyses results
Références (27)
Références (27) (0 à 10 de 27 résultats)
- Enquêtes et programmes statistiques — Documentation : 98-306-XDescription :
Ce rapport donne une description des méthodes d'échantillonnage, de pondération et d'estimation utilisées pour le Recensement de la population. Il fournit les justifications opérationnelles et théoriques et présente les résultats des évaluations de ces méthodes.
Date de diffusion : 2023-10-04 - Avis et consultations : 75F0002M2019006Description :
En 2018, Statistique Canada a diffusé deux nouveaux tableaux de données présentant des estimations des taux d’imposition et de transfert effectifs des déclarants et des familles de recensement. Ces estimations sont tirées de la Banque de données administratives longitudinales. La publication fournit une description détaillée des méthodes utilisées pour produire les estimations des taux d’imposition et de transfert effectifs.
Date de diffusion : 2019-04-16 - Enquêtes et programmes statistiques — Documentation : 75F0002M2015003Description :
Cette note porte sur les estimations révisées du revenu tirées de l’Enquête sur la dynamique du travail et du revenu (EDTR). Les révisions aux estimations de l’EDTR permettent de comparer les résultats de l’Enquête canadienne sur le revenu (ECR) à ceux des années précédentes puisqu’elles offrent une solution aux problèmes associés aux différences méthodologiques entre l’EDTR et l’ECR.
Date de diffusion : 2015-12-17 - Enquêtes et programmes statistiques — Documentation : 91-528-XDescription :
Ce manuel offre des descriptions détaillées des sources de données et des méthodes utilisées par Statistique Canada pour produire des estimations de la population. Elles comportent : les estimations postcensitaires et intercensitaires de la population; la population de départ; les naissances et les décès; l'immigration; les émigrations; les résidents non permanents; la migration interprovinciale; les estimations infraprovinciales de la population; les estimations de la population selon l'âge, le sexe et l'état matrimonial et les estimations des familles de recensement. Un glossaire des termes courants est inclus à la fin du manuel, suivi de la notation normalisée utilisée.
Auparavant, la documentation sur les changements méthodologiques pour le calcul des estimations était éparpillée dans plusieurs publications et documents d'information de Statistique Canada. Ce manuel offre aux utilisateurs de statistiques démographiques un recueil exhaustif des procédures actuelles utilisées par Statistique Canada pour élaborer des estimations de la population et des familles.
Date de diffusion : 2015-11-17 - Enquêtes et programmes statistiques — Documentation : 13-605-X201500414166Description :
Estimations de l’économie souterraine par province et territoire pour la période 2007 à 2012 sont maintenant disponibles pour la première fois. L’objet de cette note technique est d’expliquer comment la méthodologie utilisée afin de calculer les estimations de l’activité économique souterraine à la borne supérieure pour les provinces et les territoires diffère de celle utilisée afin de calculer les estimations nationales.
Date de diffusion : 2015-04-29 - Enquêtes et programmes statistiques — Documentation : 99-002-X2011001Description :
Ce rapport donne une description des méthodes d'échantillonnage et de pondération utilisées pour l’Enquête nationale auprès des ménages de 2011. Il fournit les justifications opérationnelles et théoriques et présente les résultats des études d'évaluation de ces méthodes.
Date de diffusion : 2015-01-28 - Enquêtes et programmes statistiques — Documentation : 99-002-XDescription : Ce rapport donne une description des méthodes d'échantillonnage et de pondération utilisées pour l’Enquête nationale auprès des ménages de 2011. Il fournit les justifications opérationnelles et théoriques et présente les résultats des études d'évaluation de ces méthodes.Date de diffusion : 2015-01-28
- Enquêtes et programmes statistiques — Documentation : 92-568-XDescription :
Ce rapport donne une description des méthodes d'échantillonnage et de pondération utilisées pour le Recensement de 2006. Il fournit un historique de l'application de ces méthodes aux recensements du Canada ainsi que les fondements opérationnels et théoriques de ces méthodes, et présente les résultats des études d'évaluation.
Date de diffusion : 2009-08-11 - Enquêtes et programmes statistiques — Documentation : 71F0031X2006003Description :
Cet article est une introduction ainsi qu'une discussion sur les modifications apportées aux estimations de l'Enquête sur la population active en janvier 2006. Parmi ces modifications on retrouve notamment l'ajustement des estimations des chiffres de la population, des améliorations aux estimations des secteurs public et privé, ainsi que des mises à jour historiques de plusieurs petites agglomérations de recensement (AR).
Date de diffusion : 2006-01-25 - Enquêtes et programmes statistiques — Documentation : 62F0026M2005002Description :
Le présent document fournit un aperçu des différences entre l'ancienne et la nouvelle méthodologie de pondération, ainsi que des effets du nouveau système de pondération sur les estimations.
Date de diffusion : 2005-06-30
- Date de modification :