Inference and foundations

Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Geography

1 facets displayed. 0 facets selected.

Survey or statistical program

2 facets displayed. 0 facets selected.

Content

1 facets displayed. 0 facets selected.
Sort Help
entries

Results

All (105)

All (105) (70 to 80 of 105 results)

  • Articles and reports: 11-522-X20020016750
    Description:

    Analyses of data from social and economic surveys sometimes use generalized variance function models to approximate the design variance of point estimators of population means and proportions. Analysts may use the resulting standard error estimates to compute associated confidence intervals or test statistics for the means and proportions of interest. In comparison with design-based variance estimators computed directly from survey microdata, generalized variance function models have several potential advantages, as will be discussed in this paper, including operational simplicity; increased stability of standard errors; and, for cases involving public-use datasets, reduction of disclosure limitation problems arising from the public release of stratum and cluster indicators.

    These potential advantages, however, may be offset in part by several inferential issues. First, the properties of inferential statistics based on generalized variance functions (e.g., confidence interval coverage rates and widths) depend heavily on the relative empirical magnitudes of the components of variability associated, respectively, with:

    (a) the random selection of a subset of items used in estimation of the generalized variance function model(b) the selection of sample units under a complex sample design (c) the lack of fit of the generalized variance function model (d) the generation of a finite population under a superpopulation model.

    Second, under conditions, one may link each of components (a) through (d) with different empirical measures of the predictive adequacy of a generalized variance function model. Consequently, these measures of predictive adequacy can offer us some insight into the extent to which a given generalized variance function model may be appropriate for inferential use in specific applications.

    Some of the proposed diagnostics are applied to data from the US Survey of Doctoral Recipients and the US Current Employment Survey. For the Survey of Doctoral Recipients, components (a), (c) and (d) are of principal concern. For the Current Employment Survey, components (b), (c) and (d) receive principal attention, and the availability of population microdata allow the development of especially detailed models for components (b) and (c).

    Release date: 2004-09-13

  • Articles and reports: 12-001-X20030026785
    Description:

    To avoid disclosures, one approach is to release partially synthetic, public use microdata sets. These comprise the units originally surveyed, but some collected values, for example sensitive values at high risk of disclosure or values of key identifiers, are replaced with multiple imputations. Although partially synthetic approaches are currently used to protect public use data, valid methods of inference have not been developed for them. This article presents such methods. They are based on the concepts of multiple imputation for missing data but use different rules for combining point and variance estimates. The combining rules also differ from those for fully synthetic data sets developed by Raghunathan, Reiter and Rubin (2003). The validity of these new rules is illustrated in simulation studies.

    Release date: 2004-01-27

  • Articles and reports: 12-001-X20030016610
    Description:

    In the presence of item nonreponse, unweighted imputation methods are often used in practice but they generally lead to biased estimators under uniform response within imputation classes. Following Skinner and Rao (2002), we propose a bias-adjusted estimator of a population mean under unweighted ratio imputation and random hot-deck imputation and derive linearization variance estimators. A small simulation study is conducted to study the performance of the methods in terms of bias and mean square error. Relative bias and relative stability of the variance estimators are also studied.

    Release date: 2003-07-31

  • Articles and reports: 92F0138M2003002
    Description:

    This working paper describes the preliminary 2006 census metropolitan areas and census agglomerations and is presented for user feedback. The paper briefly describes the factors that have resulted in changes to some of the census metropolitan areas and census agglomerations and includes tables and maps that list and illustrate these changes to their limits and to the component census subdivisions.

    Release date: 2003-07-11

  • Articles and reports: 92F0138M2003001
    Description:

    The goal of this working paper is to assess how well Canada's current method of delineating Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs) reflects the metropolitan nature of these geographic areas according to the facilities and services they provide. The effectiveness of Canada's delineation methodology can be evaluated by applying a functional model to Statistics Canada's CMAs and CAs.

    As a consequence of the research undertaken for this working paper, Statistics Canada has proposed lowering the urban core population threshold it uses to define CMAs: a CA will be promoted to a CMA if it has a total population of at least 100,000, of which 50,000 or more live in the urban core. User consultation on this proposal took place in the fall of 2002 as part of the 2006 Census content determination process.

    Release date: 2003-03-31

  • Articles and reports: 11F0019M2003199
    Geography: Canada
    Description:

    Using a nationally representative sample of establishments, we have examined whether selected alternative work practices (AWPs) tend to reduce quit rates. Overall, our analysis provides strong evidence of a negative association between these AWPs and quit rates among establishments of more than 10 employees operating in high-skill services. We also found some evidence of a negative association in low-skill services. However, the magnitude of this negative association was reduced substantially when we added an indicator of whether the workplace has a formal policy of information sharing. There was very little evidence of a negative association in manufacturing. While establishments with self-directed workgroups have lower quit rates than others, none of the bundles of work practices considered yielded a negative and statistically significant effect. We surmise that key AWPs might be more successful in reducing labour turnover in technologically complex environments than in low-skill ones.

    Release date: 2003-03-17

  • Articles and reports: 12-001-X20020026428
    Description:

    The analysis of survey data from different geographical areas where the data from each area are polychotomous can be easily performed using hierarchical Bayesian models, even if there are small cell counts in some of these areas. However, there are difficulties when the survey data have missing information in the form of non-response, especially when the characteristics of the respondents differ from the non-respondents. We use the selection approach for estimation when there are non-respondents because it permits inference for all the parameters. Specifically, we describe a hierarchical Bayesian model to analyse multinomial non-ignorable non-response data from different geographical areas; some of them can be small. For the model, we use a Dirichlet prior density for the multinomial probabilities and a beta prior density for the response probabilities. This permits a 'borrowing of strength' of the data from larger areas to improve the reliability in the estimates of the model parameters corresponding to the smaller areas. Because the joint posterior density of all the parameters is complex, inference is sampling-based and Markov chain Monte Carlo methods are used. We apply our method to provide an analysis of body mass index (BMI) data from the third National Health and Nutrition Examination Survey (NHANES III). For simplicity, the BMI is categorized into 3 natural levels, and this is done for each of 8 age-race-sex domains and 34 counties. We assess the performance of our model using the NHANES III data and simulated examples, which show our model works reasonably well.

    Release date: 2003-01-29

  • Articles and reports: 11-522-X20010016277
    Description:

    This paper discusses in detail issues dealing with the technical aspects of designing and conducting surveys. It is intended for an audience of survey methodologists.

    The advent of computerized record-linkage methodology has facilitated the conduct of cohort mortality studies in which exposure data in one database are electronically linked with mortality data from another database. In this article, the impact of linkage errors on estimates of epidemiological indicators of risk, such as standardized mortality ratios and relative risk regression model parameters, is explored. It is shown that these indicators can be subject to bias and additional variability in the presence of linkage errors, with false links and non-links leading to positive and negative bias, respectively, in estimates of the standardized mortality ratio. Although linkage errors always increase the uncertainty in the estimates, bias can be effectively eliminated in the special case in which the false positive rate equals the false negative rate within homogeneous states defined by cross-classification of the covariates of interest.

    Release date: 2002-09-12

  • Surveys and statistical programs – Documentation: 13F0026M2001003
    Description:

    Initial results from the Survey of Financial Security (SFS), which provides information on the net worth of Canadians, were released on March 15 2001, in The daily. The survey collected information on the value of the financial and non-financial assets owned by each family unit and on the amount of their debt.

    Statistics Canada is currently refining this initial estimate of net worth by adding to it an estimate of the value of benefits accrued in employer pension plans. This is an important addition to any asset and debt survey as, for many family units, it is likely to be one of the largest assets. With the aging of the population, information on pension accumulations is greatly needed to better understand the financial situation of those nearing retirement. These updated estimates of the Survey of Financial Security will be released in late fall 2001.

    The process for estimating the value of employer pension plan benefits is a complex one. This document describes the methodology for estimating that value, for the following groups: a) persons who belonged to an RPP at the time of the survey (referred to as current plan members); b) persons who had previously belonged to an RPP and either left the money in the plan or transferred it to a new plan; c) persons who are receiving RPP benefits.

    This methodology was proposed by Hubert Frenken and Michael Cohen. The former has many years of experience with Statistics Canada working with data on employer pension plans; the latter is a principal with the actuarial consulting firm William M. Mercer. Earlier this year, Statistics Canada carried out a public consultation on the proposed methodology. This report includes updates made as a result of feedback received from data users.

    Release date: 2001-09-05

  • Surveys and statistical programs – Documentation: 13F0026M2001002
    Description:

    The Survey of Financial Security (SFS) will provide information on the net worth of Canadians. In order to do this, information was collected - in May and June 1999 - on the value of the assets and debts of each of the families or unattached individuals in the sample. The value of one particular asset is not easy to determine, or to estimate. That is the present value of the amount people have accrued in their employer pension plan. These plans are often called registered pension plans (RPP), as they must be registered with Canada Customs and Revenue Agency. Although some RPP members receive estimates of the value of their accrued benefit, in most cases plan members would not know this amount. However, it is likely to be one of the largest assets for many family units. And, as the baby boomers approach retirement, information on their pension accumulations is much needed to better understand their financial readiness for this transition.

    The intent of this paper is to: present, for discussion, a methodology for estimating the present value of employer pension plan benefits for the Survey of Financial Security; and to seek feedback on the proposed methodology. This document proposes a methodology for estimating the value of employer pension plan benefits for the following groups:a) persons who belonged to an RPP at the time of the survey (referred to as current plan members); b) persons who had previously belonged to an RPP and either left the money in the plan or transferred it to a new plan; c) persons who are receiving RPP benefits.

    Release date: 2001-02-07
Data (0)

Data (0) (0 results)

No content available at this time.

Analysis (97)

Analysis (97) (0 to 10 of 97 results)

  • Articles and reports: 12-001-X202400100001
    Description: Inspired by the two excellent discussions of our paper, we offer some new insights and developments into the problem of estimating participation probabilities for non-probability samples. First, we propose an improvement of the method of Chen, Li and Wu (2020), based on best linear unbiased estimation theory, that more efficiently leverages the available probability and non-probability sample data. We also develop a sample likelihood approach, similar in spirit to the method of Elliott (2009), that properly accounts for the overlap between both samples when it can be identified in at least one of the samples. We use best linear unbiased prediction theory to handle the scenario where the overlap is unknown. Interestingly, our two proposed approaches coincide in the case of unknown overlap. Then, we show that many existing methods can be obtained as a special case of a general unbiased estimating function. Finally, we conclude with some comments on nonparametric estimation of participation probabilities.
    Release date: 2024-06-25

  • Articles and reports: 12-001-X202400100002
    Description: We provide comparisons among three parametric methods for the estimation of participation probabilities and some brief comments on homogeneous groups and post-stratification.
    Release date: 2024-06-25

  • Articles and reports: 12-001-X202400100003
    Description: Beaumont, Bosa, Brennan, Charlebois and Chu (2024) propose innovative model selection approaches for estimation of participation probabilities for non-probability sample units. We focus our discussion on the choice of a likelihood and parameterization of the model, which are key for the effectiveness of the techniques developed in the paper. We consider alternative likelihood and pseudo-likelihood based methods for estimation of participation probabilities and present simulations implementing and comparing the AIC based variable selection. We demonstrate that, under important practical scenarios, the approach based on a likelihood formulated over the observed pooled non-probability and probability samples performed better than the pseudo-likelihood based alternatives. The contrast in sensitivity of the AIC criteria is especially large for small probability sample sizes and low overlap in covariates domains.
    Release date: 2024-06-25

  • Articles and reports: 12-001-X202400100004
    Description: Non-probability samples are being increasingly explored in National Statistical Offices as an alternative to probability samples. However, it is well known that the use of a non-probability sample alone may produce estimates with significant bias due to the unknown nature of the underlying selection mechanism. Bias reduction can be achieved by integrating data from the non-probability sample with data from a probability sample provided that both samples contain auxiliary variables in common. We focus on inverse probability weighting methods, which involve modelling the probability of participation in the non-probability sample. First, we consider the logistic model along with pseudo maximum likelihood estimation. We propose a variable selection procedure based on a modified Akaike Information Criterion (AIC) that properly accounts for the data structure and the probability sampling design. We also propose a simple rank-based method of forming homogeneous post-strata. Then, we extend the Classification and Regression Trees (CART) algorithm to this data integration scenario, while again properly accounting for the probability sampling design. A bootstrap variance estimator is proposed that reflects two sources of variability: the probability sampling design and the participation model. Our methods are illustrated using Statistics Canada’s crowdsourcing and survey data.
    Release date: 2024-06-25

  • Articles and reports: 12-001-X202400100014
    Description: This paper is an introduction to the special issue on the use of nonprobability samples featuring three papers that were presented at the 29th Morris Hansen Lecture by Courtney Kennedy, Yan Li and Jean-François Beaumont.
    Release date: 2024-06-25

  • Articles and reports: 12-001-X202300200005
    Description: Population undercoverage is one of the main hurdles faced by statistical analysis with non-probability survey samples. We discuss two typical scenarios of undercoverage, namely, stochastic undercoverage and deterministic undercoverage. We argue that existing estimation methods under the positivity assumption on the propensity scores (i.e., the participation probabilities) can be directly applied to handle the scenario of stochastic undercoverage. We explore strategies for mitigating biases in estimating the mean of the target population under deterministic undercoverage. In particular, we examine a split population approach based on a convex hull formulation, and construct estimators with reduced biases. A doubly robust estimator can be constructed if a followup subsample of the reference probability survey with measurements on the study variable becomes feasible. Performances of six competing estimators are investigated through a simulation study and issues which require further investigation are briefly discussed.
    Release date: 2024-01-03

  • Articles and reports: 12-001-X202300200009
    Description: In this paper, we investigate how a big non-probability database can be used to improve estimates of finite population totals from a small probability sample through data integration techniques. In the situation where the study variable is observed in both data sources, Kim and Tam (2021) proposed two design-consistent estimators that can be justified through dual frame survey theory. First, we provide conditions ensuring that these estimators are more efficient than the Horvitz-Thompson estimator when the probability sample is selected using either Poisson sampling or simple random sampling without replacement. Then, we study the class of QR predictors, introduced by Särndal and Wright (1984), to handle the less common case where the non-probability database contains no study variable but auxiliary variables. We also require that the non-probability database is large and can be linked to the probability sample. We provide conditions ensuring that the QR predictor is asymptotically design-unbiased. We derive its asymptotic design variance and provide a consistent design-based variance estimator. We compare the design properties of different predictors, in the class of QR predictors, through a simulation study. This class includes a model-based predictor, a model-assisted estimator and a cosmetic estimator. In our simulation setups, the cosmetic estimator performed slightly better than the model-assisted estimator. These findings are confirmed by an application to La Poste data, which also illustrates that the properties of the cosmetic estimator are preserved irrespective of the observed non-probability sample.
    Release date: 2024-01-03

  • Articles and reports: 12-001-X202300200018
    Description: Sample surveys, as a tool for policy development and evaluation and for scientific, social and economic research, have been employed for over a century. In that time, they have primarily served as tools for collecting data for enumerative purposes. Estimation of these characteristics has been typically based on weighting and repeated sampling, or design-based, inference. However, sample data have also been used for modelling the unobservable processes that gave rise to the finite population data. This type of use has been termed analytic, and often involves integrating the sample data with data from secondary sources.

    Alternative approaches to inference in these situations, drawing inspiration from mainstream statistical modelling, have been strongly promoted. The principal focus of these alternatives has been on allowing for informative sampling. Modern survey sampling, though, is more focussed on situations where the sample data are in fact part of a more complex set of data sources all carrying relevant information about the process of interest. When an efficient modelling method such as maximum likelihood is preferred, the issue becomes one of how it should be modified to account for both complex sampling designs and multiple data sources. Here application of the Missing Information Principle provides a clear way forward.

    In this paper I review how this principle has been applied to resolve so-called “messy” data analysis issues in sampling. I also discuss a scenario that is a consequence of the rapid growth in auxiliary data sources for survey data analysis. This is where sampled records from one accessible source or register are linked to records from another less accessible source, with values of the response variable of interest drawn from this second source, and where a key output is small area estimates for the response variable for domains defined on the first source.
    Release date: 2024-01-03

  • Articles and reports: 12-001-X202200200001
    Description:

    Conceptual arguments and examples are presented suggesting that the Bayesian approach to survey inference can address the many and varied challenges of survey analysis. Bayesian models that incorporate features of the complex design can yield inferences that are relevant for the specific data set obtained, but also have good repeated-sampling properties. Examples focus on the role of auxiliary variables and sampling weights, and methods for handling nonresponse. The article offers ten top reasons for favoring the Bayesian approach to survey inference.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200002
    Description:

    We provide a critical review and some extended discussions on theoretical and practical issues with analysis of non-probability survey samples. We attempt to present rigorous inferential frameworks and valid statistical procedures under commonly used assumptions, and address issues on the justification and verification of assumptions in practical applications. Some current methodological developments are showcased, and problems which require further investigation are mentioned. While the focus of the paper is on non-probability samples, the essential role of probability survey samples with rich and relevant information on auxiliary variables is highlighted.

    Release date: 2022-12-15
Reference (8)

Reference (8) ((8 results))

No content available at this time.

Date modified: