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A Hierarchical Bayesian Nonignorable Nonresponse Model for 
Multinomial Data from Small Areas 

Balgobin Nandram, Geunshik Han and Jai Won Choi 1 

Abstract 

The analysis of survey data from different geographical areas, where the data from each area are polychotomous, can be 
easily performed using hierarchical Bayesian models even if there are small cell counts in some of these areas. However, 
there are difficulties when the survey data have missing information in the form of nonresponse especially when the 
characteristics of the respondents differ from the nonrespondents. We use the selection approach for estimation when there 
are nonrespondents because it permits inference for all the parameters. Specifically, we describe a hierarchical Bayesian 
model to analyze multinomial nonignorable nonresponse data from different geographical areas, some of them can be small. 
For the model, we use a Dirichlet prior density for the multinomial probabilities and a beta prior density for the response 
probabilities. This permits a “borrowing of strength” of the data from larger areas to improve the reliability in the estimates 
of the model parameters corresponding to the smaller areas. Because the joint posterior density of all the parameters is 
complex, inference is sampling based and Markov chain Monte Carlo methods are used. We apply our method to provide an 
analysis of body mass index (BMI) data from the third National Health and Nutrition Examination Survey (NHANES III). 
For simplicity, the BMI is categorized into three natural levels, and this is done for each of eight age-race-sex domains and 
thirty-four counties. We assess the performance of our model using the NHANES III data and simulated examples, which 
show our model works reasonably well. 
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1. Introduction  
The nonresponse rates in many surveys have been 

increasing steadily (De Heer 1999; Groves and Couper 
1998), making the nonresponse problem more important For 
many surveys the responses are polychotomous. For exam-
ple, in the third National Health and Nutrition Examination 
Survey (NHANES III), we can estimate the proportions of 
persons belonging to three levels of body mass index (BMI), 
although BMI is a continuous variable. The purpose of this 
paper is to describe a new hierarchical Bayesian model to 
study nonignorable multinomial nonresponse for small 
areas, and to apply it to the NHANES III BMI data.  

Rubin (1987) and Little and Rubin (1987) describe two 
types of models which differ according to the ignorability of 
response. In the ignorable nonresponse model the distri-
bution of the variable of interest for a respondent is the same 
as the distribution of that variable for a nonrespondent with 
the same values of the covariates. In addition, the para-
meters in the distributions of the variable and response must 
be distinct (see Rubin 1976). All other nonresponse models 
are nonignorable. We use both ignorable and nonignorable 
nonresponse models for our data because there are no 
nonrespondents for some domains.  

Crawford, Johnson and Laird (1993) used nonignorable 
nonresponse models to analyze data from the Harvard 
Medical Practice Survey. Stasny, Kadane, and Fritsch 
(1998) used a Bayesian hierarchical model for the 

probabilities of voting guilty or not on a particular trial 
when the views of nonrespondents differ from those of 
respondents in various death-penalty beliefs. Park and 
Brown (1994) used a pseudo-Bayesian method (Baker and 
Laird 1988), and Park (1998) applied a method in which 
prior observations are assigned to both observed and un-
observed cells to estimate the missing cells of a multi-way 
categorical table under nonignorable nonresponse. Our ap-
proach differs from these authors. We describe small area 
estimation for multinomial data, and we use Markov chain 
Monte Carlo methods to implement the methodology. This 
permits the inclusion of all sources of variability in our 
models.  

There are two approaches to model nonresponse. The 
selection approach is used for the hypothetical complete 
data, and a nonresponse model is added conditional on the 
hypothetical data. This approach was developed to study 
sample selection problems (e.g., Heckman 1976 and Olson 
1980). In the pattern mixture approach the respondents and 
the nonrespondents are modeled separately, and the final 
answer is obtained by a probabilistic mixture of the two. We 
use the selection approach for our problem.  

Stasny (1991) used an empirical Bayes model to study 
victimization in the National Crime Survey, and she fol-
lowed the selection approach. This analysis pools binomial 
data from several domains, and some of them have small 
counts. Essentially this is an exercise in small area 
estimation. A related method was presented by Albert and 
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Gupta (1985), who used an approximation to obtain a 
Bayesian approach for a population with a single domain 
(see also Kaufman and King 1973). That is, unlike Stasny 
(1991), these latter authors did not perform. small area 
estimation, and their analysis in a single domain do not use 
data from other domains.  

Since the Bayesian approach can incorporate other 
information about nonrespondents, the Bayesian method is 
appropriate for the analysis of nonignorable nonresponse 
(Little and Rubin 1987 and Rubin 1987). However the main 
difficulty is how to describe the relationship between the 
respondents and nonrespondents. Using the selection 
approach within the framework of Bayes empirical Bayes 
(see Deely and Lindley 1981), Stasny (1991) estimated the 
hyper-parameters by maximum likelihood methods and then 
assumed them known, thereby suppressing some variability. 
We extend this approach in two directions.  

First, we consider multinomial data obtained indepen-
dently from several geographical areas.  It is worthy to note 
that Basu and Pereira (1982) considered multinomial non-
response data from a single domain using a multinomial 
Dirichlet model when the hyper-parameters are assumed 
known. Recently,  Forster and Smith (1998) used graphical 
multinomial Dirichlet log-linear models to analyze data 
from the panel survey in British general election.  Again the 
hyper-parameters are assumed known, and a model with a 
single domain is used.  Secondly, we obtain a full Bayesian 
approach for multinomial nonignorable nonresponse data 
from several areas. We do not estimate the hyper-para-
meters using the data.  

As a summary, we develop a multinomial nonignorable 
nonresponse model which is used for pooling data over 
many small areas, and we note that it can be used in other 
applications. The rest of the paper is organized as follows. 
In section 2 we describe the NHANES III. In section 3 we 
discuss the Bayesian model for nonignorable nonresponse. 
In particular, a three-stage Bayesian hierarchical multi-
nomial model is applied to the NHANES III data to investi-
gate the nonresponse problem. In section 4 we describe an 
analysis of the NHANES III data in which we include a 
regression analysis to combine all the age-race-sex domains. 
In section 5 we describe a simulation study to assess the 
performance of our model. Finally, section 6 has the 
conclusion.   

2. NHANES III Data and Nonresponse  
The NHANES III is one of the periodic surveys used to 

assess an aspect of health of the U.S. population (National 
Center for Health Statistics 1994). Our research is motivated 
by nonresponse of body mass index (BMI) in the NHANES 
III. The data for our illustration come from this survey, and 
were collected from October 1988 to September 1994. In 
section 2.1 we describe the actual data, and in section 2.2 we 
describe the data we analyze.    

2.1 NHANES III Data  
The NHANES III consists of two parts. The first part is 

the interview of the sampled individuals for their personal 
information and the second part is the examination of those 
sampled. One or more persons from the sampled households 
were placed into a number of subgroups depending on their 
age, race and sex. Some subgroups were sampled at 
different rates. Sampled persons were asked to come to a 
mobile examination center (MEC) for a phyzsical examina-
tion, Those who did not come were visited by the examiner 
for the same purpose. Details of the NHANES III sample 
design are available (National Center for Health Statistics 
1992). We incorporate design features associated with 
clustering in our model. 

The main reasons for NHANES III nonresponse are “not 
interested”, “no time/work conflict”, “concerns/suspicious”, 
“don’t bother me” and “health reasons”. The nonresponse 
rate of younger individuals is very high because the parents, 
especially older mothers of an only child, were extremely 
protective of their babies, and would not allow them to leave 
their homes for the MECs. Field workers often observe that 
obese persons tend to avoid the medical examination. So 
that nonresponse might be nonrandom and hence require 
some special attention.  

NHANES III data are adjusted by multistage ratio 
weightings for the data to be consistent with the population 
(Mohadjer, Bell and Waksberg 1994). The ratio is the 
proportion of persons in the sample to the number of per-
sons who completed interview and examination. Weighting 
with nonresponse ratio is one of these stages. In non-
response ratio estimation, the proportions of nonrespondents 
in the multinomial cells are the same as those for the 
respondents (i.e., ignorable nonresponse). In this case since 
the proportions are of interest, no adjustment is required. 
Clearly, this ratio estimation can be incorrect when these 
two groups are different. Therefore there is a need to consid-
er the adjustment by a method other than ratio adjustment. 
In this paper we investigate a Bayesian method as an 
alternative to ratio weighting for nonignorable nomesponse.  

NHANES III nonresponse also occurs at several levels in 
the survey: interview and examination. The interview non-
response arises from sample individuals who did not 
respond for the interview. Some of those who were already 
interviewed did not come to the MEC, missing all or part of 
the examinations. In this paper, our population consists of 
those individuals who would have agreed to take the phys-
ical examination in the MECs. Thus, nonrespondents are 
those individuals who agreed to take the physical examina-
tion, and did not show up at the MECs. More specifically, 
since we are considering item response, the nonrespondents 
are those individuals who agreed to come to the MECs and 
their heights and/or weights were not measured. 

Schafer, Ezzati-Rice, Johnson, Khare, Little and Rubin 
(1996) attempted a comprehensive multiple imputation 
project  on  the  NHANES  III  data  for many variables. The  
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purpose was to impute the nonresponse data to provide 
several data sets for public use. Unfortunately, one of the 
limitations of the project was that “the procedure used to 
create missingness corresponds to a purely ignorable 
mechanism; the simulation provides no information on the 
impact of possible deviations from ignorable nonresponse.” 
Another limitation is that the procedure did not include 
geographical clustering. Our purpose is different; we do not 
provide imputed public-use data.   
2.2 Data Used for Illustration  

Our data have two age groups (younger than 45 years, 
45 –, and 45 years or older, 45+), two race groups (white 
and non-white) and, of course, two groups for sex (male and 
female). Thus, there are eight age-race-sex domains.  

One of the variables of interest in the NHANES III is 
BMI, an index of weight adjusted for height (Kg /m2) that 
broadly categorizes obesity within age-race-sex groups 
(Kuczmarski, Carrol, Flegal and Troiano 1997) as low body 
fat (level 1: BMI < 20), healthy body fat (level 2: 20 < BMI 
< 25), hefty or unhealthy (level 3: BMI > 25). We use this 
broad classification for each of the eight age-race-sex 
groups.  

Rather than a categorical data analysis, one can also 
provide an analysis that treats BMI as a continuous variable. 
While some information is lost by discretizing the BMI 
values, an analysis using continuous models for BMI will 
also be approximate and there is a need to search for an 
appropriate transformation. In the final analysis, a doctor 
only needs to know what proportions of the public belong to 
different levels of BMI, so he or she can tell his patient’s 
standing in obesity.  

The analysis of BMl data using categorical data methods 
is not uncommon. For example, Malec, Davis and Cao 
(1999) described a Bayes empirical Bayes analysis of the 
NHANES III data. They classified an individual older than 
20 years as normal if her/his BMI is below a certain gender 
specific threshold. This is an application of a Bayesian 
analysis of binary data. However, their classification is 
somewhat restricted (see Kuczmarski et al. 1997). By 
considering multinomial data, we have generalized the 
analysis of Malec et al. (1999). In fact, they did not provide 
a nonignorable nonresponse model.  

Unlike Schafer et al. (1996), we include clustering at the 
county level, although there is a need to include clustering at 
the household level. For the complete data there are 6,440 
households. Of these households 52.1% contributed one 
person to the sample, 22.5% two persons, and 21.4% at least 
three persons. We have calculated the correlation coefficient 
for the BMI values based on pairing the members within 
households (see Rao 1973, page 199). It is 0.19 which 
indicates that as a first approximation the clustering within 
households can be ignored.  

Table 1 shows the number of respondents for each BMI 
level for each age-race-sex domain and 34 counties 
(population at least 500,000). The pattern of respondents 

differs greatly by age. The nonresponse rate for the older 
group (45+) is negligible. Therefore the main concern about 
nonresponse must be given to the younger group (45 –). 
There is also higher response rate among females than 
males. We note that the selection procedure is not random 
over the single population of males and females.   

Table 1 
Number of Individuals in Each BMI Level and Number of 
Nonrespondents (Non) by Age, Race and Sex Over All 34 

Counties 
 

   BMI  
Age Race Sex 1 2 3 Non 
45 – W M 1,098 651 597 558 

  F 845 434 380 233 
 B M 1,198 713 665 574 
  F 745 463 524 214 
 

45+ 
 

W 
 

M 
 

46 
 

439 
 

1,014 
 

3 
  F 51 223 365 4 
 B M 79 470 942 8 
  F 48 169 552 6 

 

Note: BMI (1=less than 20; 2 = at least 20 and smaller than 25; 
3 = greater than 25) 
Age (Younger than 45 years = 45 –; 45 years or older = 45+) 
Race (White = W; all others = B) 
Sex (Male = M; Female = F).    

Table 2 
Number of Individuals in Each BMI Level and Number of 
Nonrespondents (Non) for Eight Examples (Ex) of Small  

Age-race-sex Domains from Different Counties 
 

    BMI Level  
Ex Age Race Sex 1 2 3 Non 
1 45 – W M 1 3 1 14 
2   F 3 4 1 0 
3  B M 5 5 6 10 
4   F 3 1 1 1 
 

5 
 

45+ 
 

W 
 

M 
 

1 
 

2 
 

6 
 

0 
6   F 1 3 4 0 
7  B M 3 3 5 0 
8   F 2 0 1 1 

 

Note: BMI (1=less than 20; 2 = at least 20 and smaller than 25;  
3 = greater than 25) 
Age (Younger than 45 years = 45 –; 45 years or older = 45+) 
Race (White = W; all others = B) 
Sex (Male = M; Female = F).  

One important aspect of our work is on small area esti-
mation. Because we consider inference for each age-race- 
sex domain separately over the the geographical areas 
(counties), the samples from some of these areas can be very 
small. Thus, small area estimation techniques are required to 
estimate the parameters corresponding to these smaller 
areas. Specifically, we need to “borrow strength” from the 
larger areas to make the estimates for the smaller areas more 
reliable. Table 2 presents eight examples to show the need 
for  small  area  techniques.  We  have  selected  eight 
counties  that  have  small  domains;  all  the  cell  counts  
are at most 6 and many of them are as small as 1 (one of
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them is 0 for 45+). We will present overall estimates and the 
estimates for the first four examples (45 –). Note that in 
comparison to the cell counts, the nonrespondents are large 
for two of them (14 and 10 nonrespondents).  

We note that the purpose is not a comprehensive analysis 
of the NHANES III data although it forms an approximate 
analysis for these data. Our method is general enough to 
analyze multinomial nonresponse data from many areas, 
some of which can be small. It is for these small areas that 
we develop this modeling technique. Thus, in this paper we 
use the NHANES III data to illustrate our method.  

Our method considers each domain separately with a 
“borrowing of strength” across the 34 areas (counties) to 
analyze the BMI data. Thus, there are eight separate 
analyses, each with 34 areas, and some of them are small. 
We use a hierarchical multinomial nonresponse model to 
analyze data of this form. The small cell counts, substantial 
nonrespondents and multinomial data make the methodo-
logy much more practical. Our methodology is also 
extended to incorporate all the domains simultaneously 
through logistic models.  

 
3. Methodology for Hierarchical  

      Multinomial Model  
We propose a model for each of the eight age-race-sex 

domains but for all counties taken simultaneously. How-
ever, the models fall into two broad classes. We will use a 
nonignorable nonresponse model for the younger group and 
an ignorable nonresponse model for the older group since 
the nonresponse rate for the older group is negligible. Of 
course, it is worthwhile to compare the ignorable non-
response model and the nonignorable nonresponse model 
for the younger group. We will show how to combine the 
groups later using logistic regression, although this is not the 
key issue of this paper.  

For each age-race-sex group, the kth individual in the i 
th 

county belongs to one of J BMI levels. Then for the kth 
individual in i 

th county, the characteristic variable at the j th 
BMI level is defined as follows, 

( ) ,...,,1,...,,1,...,,...,,x 1 iiJkijkkiik nkcixxx ==′=  

where each ijkx  = 0 or   , ..., 1,  =     1, Jj  and 
11 =∑ = ijk

J
j x . The response variable, ijky , is defined for 

each age-race-sex domain 

⎪
⎩

⎪
⎨

⎧

=

respond.notdidcountyin
levelBMItobelongingindividualif,0

respondentcountyin
levelBMItobelongingindividualif,1

ij
k

ij
k

yijk  

We use a probabilistic structure to model the ikx  and ijky .
In our application, there are c = 34 counties and J = 3 BMI 
levels.  

3.1 Ignorable and Nonignorable Nonresponse 
Models  

For both ignorable and the nonignorable nonresponse 
models, we have  

)(1,lMultinomia~ iiik ppx
iid

 (1) 

where ijp  is the probability that an individual in the ith  
county belongs the jth  BMI level. Next, we describe the 
remaining portions of the ignorable and the nonignorable 
models. 

First, we describe the ignorable nonresponse model. Let 
iπ  denote the probability that an individual within the i th  

county responds (i.e., the probability of responding depends 
only on the county). Then, we assume that  

).(Bernoulli~ ii ππ
iid

ijky  (2) 

At the second stage, letting )...,,,( 112111 ′μμμ= Jμ , we 
take 

,)(Dirichlet~, 111 ττ μμp
iid

1i  (3) 

))1(,(Beta~, 212121212121 τμ−τμτμ
iid

iπ  (4) 

where 

1,10),(/),(
1

11
1

1
1

11 =<<ττ ∑∏
==

−τμ
J

j
ij

J

j

ppDpp ijiji
j μμp 1  

and 

.1,10),(/)()(
1

11111
1

1 =μ<μ<τΓτμΓ=τ ∑∏
==

J

j
jjj

J

j

D 1μ  

The components of 1μ  are the prior means of the corres-
ponding components of the ,ip  and 1τ  can be interpreted 
as a prior sample size. Similar interpretations can be given 
for 21μ  and 21τ  for iπ . Thus, assumption (3) expresses 
similarity among the cell proportions ip  and (4) expresses 
similarity among the response probabilities iπ . It is this 
structure that causes the “borrowing of strength” across the 
c counties.  

Second, we describe the nonignorable nonresponse 
model. Let ijπ  denote the probability that an individual 
within the i th  county responds in the j th  BMI level (i.e., 
the probability of responding depends not only on the 
county but also on the BMI level). Then, we assume that  

{ } )(Bernoulli~),...,,(x| 1 ijij ππ
iid

iJkkiikijk xxy =  
(5) 

where jjxx kjiijk ′≠== ′ ,0,1  for ....,,2,1, Jjj =′  
Letting ,)...,,,( 332313 ′μμμ= Jμ  at the second stage we 
also take  

)(Dirichlet~, 3333 ττ μμp
iid

i  (6) 

and 

J
iid

...,,1),)1(,(Beta~, 444444 =τμ−τμτμπ jjjjjjjij .(7) 
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Like the assumptions in (3) and (4), the assumptions in 
(6) and (7) express similarity among the counties. We note 
that the response parameters ijπ  are weakly identifiable 
(i.e., unreliable estimates). However, the selection model 
works to our advantage, because the joint density of ikx  
and )...,,( 1 ′= iJkki yyiky  connects the ijp  and ijπ . In fact, 
this is an advantage over the pattern mixture approach. 

To ensure a full Bayesian analysis, at the third stage we 
take the prior densities for the hyper-parameters as follows. 
For the ignorable nonresponse model, the prior densities are 

,)11,(Beta~1),...,(1,1,Dirichlet~ 211 μμ  

),(Gamma~ )0(
1

(0)
11 vητ  and  

,),(Gamma~ )0(
21

)0(
2121 vητ  

where (letting t denote either 1τ  or ,21τ  a either )0(
1η  or 

,)0(
21η  and b either )0(

1v  or )0(
21v )(Gamma~ ba,τ  means 

that 0),(/)( 1 >Γ= −− taetbtf btaa  and f (t) = 0 otherwise. 
The hyper-parameters )0(

21
)0(

1
)0(

1 ,, ηη v  and )0(
21v  are to be 

specified. The corresponding part of the nonignorable non-
response model is  

,)11,(Beta~1),...,1,(1,Dirichlet~ 43 jμμ  

),(Gamma~ )0(
3

(0)
33 vητ  and  

....,,1,),(Gamma~ )0(
4

)0(
44 Jjv jjj =ητ  

Again, the hyper-parameters ,, )0(
3

)0(
3 vη ,, )0(

4
)0(

4 jj vη  
,...,,1 Jj =  are to specified. It is possible to use other prior 

densities such as shrinkage priors, but it is likely that these 
will provide similar inference as our sensitivity analysis 
indicates in section 4.  

It is an attractive property of the hierarchical model that it 
introduces correlation among the variables. For example, in 
our application (1), (2), (3) and (4) make the ),( ijij yx  equi-
correlated across the individuals within the thi  area. This is 
the clustering effect within the areas. Such an effect can be 
obtained directly, but it will not be as simple as in a 
hierarchical model. A further benefit of the hierarchical 
model is that it takes care of extraneous variations among 
the areas, and this effect can be obtained directly by using 
random effects model. But in our case, this will loose the 
natural multinomial data structure. 

Let ir  be the number of respondents in county i and ijy  
the number of respondents having the j 

th BMI level in the  
i 

th county. Then ir  and ijy  are random variables; ii rn −  is 
the number of nonrespondents. Since the number of non-
respondents at the  j 

th BMI level is unknown, we denote 
them by the latent variables ijz  (see the tree diagram in 
Figure 1). If we can tell what the ijz  are, our nonresponse 
problem will be solved. Of course, under the assumption of 
ignorable nonresponse, they can be estimated easily using 
ratio estimation. The ijz  are useful because under the 
assumption of nonignorable nonresponse they simplify the 
sampling based method to obtain estimates of the 
parameters of interest. 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 1. Latent nonignorable response tree diagram. From a 

sample of in  individuals, there are ir  respondents of 
which ijy  belong to category  j,  j = 1, 2, 3. Among the 

)( ii rn −  nonrespondents ijz  individuals belong to 
category  j, where ijz  are latent variables.  

The likelihood function for the ignorable nonresponse 
model is  

( ) ( )

{ } .
...,,

1,|,

111

1

⎭
⎬
⎫

⎩
⎨
⎧
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⎠
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−+

==

−

=
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iii

i
iii

rn
i

r
i

i

rny
j

J

jJ

i
c

i

i
c

jp
yy

r

r

n
f πππpry

 

Here the likelihood function has two distinct parts, one for 
ijp  and the other for the .iπ  Using Bayes’ theorem the 

joint posterior density of all the parameters is  
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Similarly, the augmented likelihood function (i.e., 
including the iz ) for the nonignorable nonresponse model 
is  
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and using Bayes’ theorem the joint posterior density of all 
the parameters is  
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We consider inference about the ijp , the proportion of 
individuals at the j 

th BMI level in the i 
th county, and the 

probability of responding, 
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However, the joint posterior densities in (8) and (9) are 
complex, and can not be used to make inference analyti-
cally. Thus, we use a Markov chain Monte Carlo algorithm 
to obtain estimates of the posterior distribution of the para-
meters. Our method is to use a Metropolis-Hastings (MH) 
sampler to get samples from (8) and (9) and then to use 
these samples to make posterior inferences about ip  and 

.iδ   
3.2 Computations  

For the ignorable nonresponse model, it is convenient to 
represent the posterior density function as  
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with ),( 11 τμp  and ),( 2121 τμp  the prior distributions. 
Hence, 1f  and 2f  are obtained through the Gibbs kernel, 
while for 3f  we use the MH algorithm (Nandram 1998).  

For the nonignorable nonresponse model, it is convenient 
to represent the posterior density function as  
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where )(...,),(1 ⋅⋅ Jff  are beta densities,  
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with ),( 33 τμp  and ),( 44 τμp  the prior distributions. Thus, 
11 ...,, +Jff  are obtained through the Gibbs kernel, while 

2+Jf  is obtained using the MH algorithm (Nandram 1998). 
We obtain the latent variables ijz  through one of the condi
tional posterior densities of the MH algorithm. A sketch of 
the procedure is given in Appendix 1. 

We drew 5,500 iterates, threw out the first 500, and took 
every fifth (obtained by trace plots). This strategy was 
satisfactory to wash out the autocorrelation among the 
iterates and to have good jumping probabilities (0.25 – 0.50) 
for the Metropolis steps. For the computation, first we set 
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the hyper-parameters ,,,,,,, )0(
4

)0(
3

)0(
3

)0(
21

)0(
21

)0(
1

)0(
1 jvvv ηηηη  

,)0(
4 jv Jj ...,,1=  equal to 0. Then we ran our MH 

algorithm to obtain posterior samples of 3211 ,, τττ  and 
j4τ , Jj ...,,1= . To ensure proper posterior densities, we 

estimate )0(
4

)0(
4

)0(
3

)0(
3

)0(
21

)0(
21

)0(
1

)0(
1 ,,,,,,, jj vvvv ηηηη ,...,,1 Jj =  

by fitting the gamma priors on the posterior samples for 
3211 ,, τττ  and j4τ , Jj ...,,1= . These values are shown 

in Table 3. Finally, with these proper priors we ran our 
algorithm to obtain posterior samples. Specifically, we 
obtained M = 1,000 iterates ,...,,1),,( )()( Mhhh =δ iip  

....,,1 ci =  Inference about the ii δ,p  and any function of 
them can be made using these iterates in a straightforward 
manner.  

Table 3 
Estimates of )0(η  and )0(v  Corresponding to the Gamma 

Densities on 211 , ττ  for 45+ and 4342413 ,,, ττττ   
for 45– by Race and Sex 

 

   Age 
   45 – 45+ 

Race Sex  3τ  41τ  42τ  43τ  1τ  21τ  

W M )0(η  3.698 2.341 3.085 2.685 4.408 3.941 
  )0(v  0.036 0.071 0.201 0.163 0.009 0.052 
 F )0(η  4.200 3.294 2.481 1.819 4.788 4.384 
  )0(v  0.030 0.059 0.072 0.017 0.008 0.019 
B M )0(η  4.948 2.922 3.156 2.404 5.971 4.376 
  )0(v  0.068 0.096 0.169 0.147 0.107 0.036 
 F )0(η  3.745 3.084 1.893 2.350 3.292 4.488 
  )0(v  0.055 0.036 0.049 0.116 0.009 0.036  

4. An Analysis of the NHANES III Data  
In this section we illustrate our methodology using the 

BMI data from NHANES III. First, we study our estimates 
based on summary measures over the counties. Specifically, 
we use the weighted posterior distributions of the ijp , 

3,2,1,~
11

== ∑∑
==

jnpnp
cc

j
i

i
i

iji  

and the weighted posterior distribution of the iδ  

∑∑
==

δ=δ
cc

nn
11

~

i
i

i
ii  

for each of the age-race-sex domains. Then, for the first four 
examples in Table 2 we show small area effects. 

We also show how to relate the ijkp  and the ijπ  to age, 
race and sex using linear and nonlinear logistic regression 
models   
4.1 Data Analysis   

First, we performed a sensitivity analysis to assess the 
specifications of )0(η  and .)0(v  We compared three choices 
of hyper-parameters ),( )0()0( vη=Ω  to check the sensitivity 
of the specification of the hyper-parameters on inference. 
Our first choice is 4 times of Ω , i.e., )4,4(4 )0()0( vη=Ω ; 
our second choice is the hyper-parameters without any 
change, i.e., ),( )0()0( vη=Ω ; and our third choice is one 
fourth of Ω  i.e., )4/,4/(4/ )0()0( vη=Ω . 

Table 4 shows the simulation results for the sensitivity to 
the inference of jp~  for the younger group (45 –). The point 
estimates and standard deviations of the proportions are 
very similar over the three choices of hyper-parameters. 
Similarly, Table 5 shows the simulation results for jp~  for 
the older group (45+). The point estimates for males are 
very similar over the three choices of the hyper-parameters, 
but there are small changes in the point estimates for 
females from Ω4  to Ω . The standard deviations are in-
creased when Ω  decreases for the females, but no substan-
tial changes are detected for males. Generally, the non-
ignorable nonresponse model performs better than the ig-
norable nonresponse model, as the nonignorable non-
response model is not sensitive to choices of the hyper- 
parameters.  
 

Table 4 
Sensitivity of jp~  for Choice of )0(

4
)0(

3
)0(

3 ,, jv ηη  and ,)0(
4 jv  

4...,,1=j  for the Younger Group (45 –) for the Three BMI Levels 
 

Race Sex 1
~p  std )~( 1p  2

~p  std )~( 2p  3
~p  std )~( 3p  

(a) Ω4         
W M 0.428 0.022 0.216 0.019 0.356 0.022 
 F 0.476 0.025 0.232 0.020 0.292 0.024 

B M 0.419 0.020 0.212 0.016 0.369 0.020 
 F 0.434 0.026 0.185 0.023 0.381 0.027 

(b) Ω         
W M 0.427 0.022 0.211 0.020 0.362 0.025 
 F 0.476 0.026 0.223 0.024 0.301 0.031 

B M 0.419 0.020 0.208 0.017 0.373 0.022 
 F 0.435 0.025 0.178 0.026 0.387 0.029 

(c) 4/Ω         
W M 0.427 0.022 0.210 0.021 0.364 0.027 
 F 0.475 0.026 0.220 0.026 0.304 0.034 

B M 0.419 0.020 0.206 0.018 0.375 0.024 
 F 0.435 0.025 0.177 0.028 0.388 0.029 

 

Note 1: ),,,,,,,( )0(
43

)0(
43

)0(
42

)0(
42

)0(
41

)0(
41

)0(
3

)0(
3 vvvv ηηηηΩ = . 

Note 2: The nonignorable nonresponse model is applied to the 
younger group. 

 

Table 5 
Sensitivity of jp~  for Choice of )0(

21
)0(

21
)0(

1
)0(

1 ,,, vv ηη  for the Older 
Group (45+) for the Three BMI Levels 

 

Race Sex 1
~p  sdt )~( 1p  2

~p  std )~( 2p  3
~p  std )~( 3p  

Ω4)a(         
W M 0.030 0.005 0.306 0.018 0.664 0.018 
 F 0.081 0.002 0.436 0.004 0.483 0.004 

B M 0.053 0.011 0.317 0.017 0.630 0.018 
 F 0.075 0.005 0.201 0.004 0.724 0.006 
Ω)b(         

W M 0.031 0.005 0.292 0.016 0.677 0.016 
 F 0.063 0.002 0.443 0.006 0.494 0.005 

B M 0.053 0.011 0.316 0.019 0.631 0.020 
 F 0.066 0.012 0.237 0.018 0.697 0.019 

4/Ω(c)         
W M 0.031 0.005 0.293 0.018 0.676 0.019 
 F 0.073 0.015 0.359 0.011 0.568 0.019 

B M 0.053 0.010 0.317 0.018 0.630 0.019 
 F 0.065 0.013 0.221 0.022 0.714 0.025 

 

Note 1: ),,,( )0(
21

)0(
21

)0(
1

)0(
1 vv ηηΩ = . 

Note 2: The ignorable nonresponse model is applied to the older 
group. 
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Table 6 
Point Estimates and 95% Credible Intervals for the Weighted Probability of Response, ,/

~
1 1∑ ∑= =δ=δ c c nni i iii  

for Three Choices of Ω  and the Younger Group 
 

  Ω4  Ω  4/Ω  

Race Sex δ
~

 std )
~

(δ  Interval δ
~

 std )
~

(δ  Interval δ
~

 std )
~

(δ  Interval 
W M 0.775 0.016 (0.744,  0.805) 0.769 0.017 (0.735,  0.801) 0.767 0.018 (0.732,  0.799) 
 F 0.855 0.017 (0.821,  0.886) 0.855 0.020 (0.810,  0.887) 0.853 0.022 (0.806,  0.887) 

B M 0.786 0.016 (0.752,  0.817) 0.780 0.018 (0.740,  0.813) 0.778 0.018 (0.739,  0.811) 
 F 0.880 0.013 (0.854,  0.902) 0.878 0.015 (0.845,  0.903) 0.876 0.015 (0.838,  0.903) 

 

Note: See the note to Table 1. 
 

Table 6 shows point estimates of the probability of 
responding δ~  and their 95% credible intervals for three 
choices of Ω . The probabilities of responding for males are 
lower than those for females, and this pattern remains the 
same for three choices of Ω . If a similar survey is 
conducted in the future, we should increase the sample size 
by 1.30 = (1/0.769) times for white males and 1.17 = 
(1/0.855) times for white females (e.g., if complete data are 
required from 1,000 households, the interviewer needs to 
contact 1,300 white males). 

In Table 7 we present 95% credible intervals for the jp~  
for the three BMI levels. For the younger group, 1

~p  of BMI 
level 1 is the highest, and 2

~p  of BMI level 2 is the lowest. 
The lower bounds for 1

~p  and 3
~p  are similar for the 

younger group except for white females, and those for 2
~p  

are similar except for the non-white females. For the older 
group, 3

~p  of BMI level 3 is highest, and 1
~p  of BMI level 1 

is lowest. Specifically 21
~,~ pp  are high and 3

~p  is low for 
the white males.  
 

Table 7 
95% Credible Intervals for the Weighted Proportions, 

∑ ∑= == c c
j npnp 1 1/~

i i iiji  by Age, Race and Sex 
 

   95% credible Interval 

Age Race Sex 1
~p  2

~p  3
~p  

45– W M (0.382, 0.470) (0.174, 0.252) (0.314, 0.412) 

  F (0.425, 0.525) (0.171, 0.269) (0.243, 0.371) 
 B M (0.381, 0.455) (0.176, 0.241) (0.333, 0.419) 

  F (0.385, 0.482) (0.130, 0.230) (0.329, 0.442) 
45+ W M (0.022, 0.041) (0.255, 0.326) (0.643, 0.710) 
  F (0.059, 0.068) (0.431, 0.451) (0.486, 0.505) 
 B M (0.035, 0.076) (0.282, 0.352) (0.592, 0.670) 

  F (0.040, 0.093) (0.206, 0.265) (0.661, 0.731) 
 

Note 1: The nonignorable nonresponse model is applied to the 
younger group. 

Note 2: The ignorable nonresponse model is applied to the older 
group. 

 
As suggested by a referee, we have looked at the results 

for older white females (45+) in Table 7 in greater detail. 
From Table 1 the observed proportions in the three BMI 
levels are 0.079, 0.347 and 0.568. However, the 95% 
credible intervals for the population proportions in Table 7 
are  (0.059, 0.068), (0.431, 0.451) and (0.486, 0.505) 

respectively. That is, while the observed proportions are 
close to the intervals, none of these intervals contains the 
observed proportions. We can explain this phenomenon in 
the following manner. The data for older white females 
(45+) are very sparse. For the 34 counties the quartiles of 
the observed counts in the three BMI levels are (0,  1,  3), 
(3,  6,  10) and (5,  9,  14) respectively. Thus, when the 
ignorable nonresponse model is fit to the 34 counties, there 
is shrinkage not only across the counties but also across the 
BMI levels. Consequently, the largest proportion tends to be 
smaller and the smallest proportion tends to be larger, and 
since the three proportions must add up to one, the second 
proportion must also “shrink” somewhat. In addition, 
consider the sensitivity analysis in Table 5. We can 
approximate 95% credible intervals for 21

~,~ pp  and 3
~p , by 

using the posterior mean ×±2  standard deviation. The 
intervals at Ω4  and Ω  do not contain the observed 
proportions, but the intervals at 4/Ω  do. Therefore, 
because of the sparseness of the data, there is some 
sensitivity to inference for older white females (45+) with 
respect to the prior misspecification of Ω . These results are 
expected within the small area context, when there are 
sparse data. 

We use the first four examples in Table 2 to illustrate 
small area estimation. As it can be imagined, it is too 
cumbersome to present all the estimates for the 34 counties 
and the 8 domains. Table 8 shows the posterior means, 
standard deviations and 95% credible intervals for the ijp  
and the .iδ  

First, we compare the estimates of the ijp  from the 
ignorable and nonignorable nonresponse models. The 
estimates from the two models are generally different with 
the intervals for the nonignorable nonresponse model wider 
than those for the ignorable nonresponse model.  

Second, we consider the estimates (based on the non-
ignorable nonresponse model) of ijp  for the individual 
counties in Table 8 with the overall averages, the jp~  in 
Table 7. As expected, when the jp~  are obtained, there is an 
overall reduction in variability because of the extra 
smoothing, thereby making the intervals for the smaller 
domains relatively much wider. In fact, all the intervals for 
the small domains contain the intervals for jp~ . 

Finally,  in  Table  8  we  consider  the  estimates  of  ijp~   
for the individual counties with the overall average, jp~  in 
Table 7. The message is similar to that for the .ijp  
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However, we note that the first example is an exception 
where the credible interval for iδ  (0.459,  0.773) is almost 
completely to the left side of the credible interval for δ~  
(0.735,  0.801). Thus, there is much shrinkage for this 
example which is due to the relatively large number of 
nonrespondents, 14 in this county for white males 45 –.  

Table 8 
Comparaison of the Ignorable (ig) and the Nonignorable (nig) 

Nonresponse Models for the Four Examples (Ex) Corresponding to 
Small Domains Using the Cell Probabilities )( jp  and the 

Probability of Responding )(δ  
 

Ex Model  1p  2p  3p  δ  

1 ig avg 0.444 0.308 0.248  

  std 0.073 0.067 0.067  

  CI (0.297, 0.593) (0.193, 0.450) (0.125, 0.386)  

 nig avg 0.450 0.276 0.273 0.637 

  std 0.093 0.079 0.082 0.081 

  CI (0.256, 0.638) (0.137, 0.444) (0.133, 0.448) (0.459, 0.773) 

2 ig avg 0.480 0.308 0.213  

  std 0.075 0.066 0.062  

  CI (0.324, 0.619) (0.193, 0.452) (0.097, 0.344)  

 nig avg 0.493 0.263 0.244 0.879 

  std 0.074 0.065 0.062 0.041 

  CI (0.338, 0.628) (0.141, 0.406) (0.121, 0.394) (0.782, 0.948) 

3 ig avg 0.420 0.306 0.274  

  std 0.071 0.063 0.063  

  CI (0.276, 0.561) (0.192, 0.437) (0.161, 0.416)  

 nig avg 0.438 0.252 0.310 0.741 

  std 0.079 0.072 0.074 0.058 

  CI (0.283, 0.591) (0.116, 0.406) (0.186, 0.483) (0.607, 0.836) 

4 ig avg 0.448 0.263 0.288  

  std 0.089 0.075 0.081  

  CI (0.278, 0.620) (0.127, 0.424) (0.138, 0.468)  

 nig avg 0.430 0.261 0.308 0.874 

  std 0.10 0.086 0.091 0.046 

  CI (0.217, 0.619) (0.104, 0.453) (0.145, 0.517) (0.768, 0.948) 
 

Note: For each parameter avg = posterior mean; std = posterior 
standard deviation; CI = 95% credible interval  

4.2 Linear and Nonlinear Logistic Regression 
Models  

Let ijlq  denote the probability that a respondent in l 
th 

(l = 1,  8)  age-race-sex group in the i 
th county belongs to the 

j 
th BMI level (we add the subscript l to the ijp  to denote the 

domains). Letting =ijlv )}1(/{log 11 ∑∑ == − j
li

j
li δ δδ δ qq , j = 

1, …, J – 1, we take  

iijl ψα+μ−θ= /))(( lijv  (10) 

subject to the constraints ,0,0 1
11 =θ=μ ∑∑ −

==
J
j ji i

c  
08

1 =α∑ =l l , and .0ln1 =ψ∑ =
c
i i  The parameters lj αμθ ,, i  

and iψ  in (10) have posterior distributions whose properties 
are inherited from the posterior distributions of ijlq . Each 
iterate of the MH algorithm provides a value for ijlq  which 
is used in (10), and a nonlinear least squares problem is 
solved using an iterative method to get the values of 

lj αμθ ,, i  and iψ  (see Appendix 2). Alternatively, we can 

also use the much simpler linear logistic model in which the 

iψ  in (10) are taken equal to unity. In this case, the least 
squares estimators of ii μϕθ ,,j  and lα  exist in closed 
form at the h 

th iteration of MH algorithm. Specifically, for 
,0=ϕi  we have the least squares estimates ,...ˆ ..ii vv −=μ  

,...ˆ,ˆ
.... ll vvv −=α=θ jj  where  

( )

cvv

Jvv

Jcvv

c
j

c

l
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,18/

,)1(8/...

1

8

1..

1

1

8

1..

1

1

1

8

∑ ∑

∑ ∑
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= =

=
= =
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−
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i l ijl

J

j l ijli
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J
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and )1(/1
1
1.. −= ∑ ∑=

=
= Jcvv c

l i
J
j ijl . The nonlinear least 

squares problem is solved using an iterative method to get 
the values of iij μϕθ ˆ,ˆ,ˆ  and lα̂ . 

We present 95% credible intervals for 21,θθ  and 

81 ...,, αα  for the younger and older groups by regression 
type in Table 9. For the cut-points 1, θθ j  gives a large 
negative effect compared to 2θ . The relative measure 

)4...,,1( =α ll  of the younger group gives a negative 
effect, while the relative measure )8...,,5( =α ll  of the 
older group gives positive effects. The 95% credible 
intervals for linear and nonlinear estimates are essentially 
the same. 

We also relate the probability of response, =δ i  
,1 ij

J
j ij p∑ = π  to race and sex using linear and nonlinear 

logistic regression models for the younger group. The 95% 
credible intervals for θ  and 41 ...,, αα  for the young group 
by regression type are shown in Table 10. Credible intervals 
for all lα  for the nonlinear model are shorter than those for 
the linear model. However, for the nonlinear model the 
credible interval for θ  is wider than and on the right of that 
for the linear model.   

Table 9 
Comparaison of 95% Credible Intervals for 21, θθ  and 81 ...,, αα  

for Both Younger and Older Groups by Regression Type 
 

 Linear Nonlinear 

1θ  (– 1.743, – 1.469) (– 1.731, – 1.466) 

2θ  (0.028, 0.196) (0.025, 0.193) 

1α  (– 1.167, – 0.751) (– 1.159, – 0.751) 

2α  (– 1.395, – 0.939) (– 1.385, – 0.937) 

3α  (– 1.127, – 0.723) (– 1.119, – 0.728) 

4α  (– 1.112, – 0.659) (– 1.103, – 0.658) 

5α  (1.198, 1.514) (1.188, 1.498) 

6α  (0.513, 0.689) (0.506, 0.685) 

7α  (0.715, 1.210) (0.725, 1.225) 

8α  (0.809, 1.310) (0.803, 1.300)   
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Table 10 
Comparaison of 95% Credible Intervals for θ  and 41 ...,, αα  for 

the Younger Group by Regression Type 
 

 Linear Nonlinear 
θ  (1.455, 1.729) (1.664, 2.174) 

1α  (0.165, 0.592) (0.146, 0.523) 

2α  (– 0.535, 0.014) (– 0.467, 0.007) 

3α  (0.078, 0.546) (0.079, 0.484) 

4α  (– 0.704, – 0.165) (– 0.638, – 0.169)  
5. A Simulation Study  

We describe a small simulation study to assess the 
performance of our multinomial nonignorable nomesponse 
model. We focus on the probability of responding. 

We use the observed data from younger white males to 
obtain the posterior means of 321 ,, iii ppp  and ,1iπ ,2iπ  

3iπ  for each county. These are taken to be the true )(t  
values which we denote by )(

3
)(

2
)(

1 ,, ttt ppp iii  and ,, )(
2

)(
1

tt
ii ππ  

.)(
3
t

iπ  Thus, the true probability of responding in the i 
th 

county is )(3
1

)()( t
j

tt
ijiji p π∑ ==δ  and the weighted probability 

of responding is ∑∑ == δ=δ ctct nn 1
)(

1
)( /~

i iii i . In our sim-
ulated examples, we used the in  as in the BMI data for 
younger white males, and we kept the )(tpij  fixed 
throughout. However, we varied the ijπ  in the following 
manner. We kept 1iπ  fixed at ,)(

1
t

iπ  and we denote the 
vector of the 1iπ  by 1π . The 34 values of the )(

1
t

iπ  range 
from 0.73 to 0.83. Then, we set 12 απ=π  and 13 π=π b , 
where a, b = 0.8, 0.9, 1.0 (we denote the vectors of the 2iπ  
and the 3iπ  by 1π  and 2π  respectively). Thus, there are 9 
simulated examples.  

Then, for each (a, b) we generated counts for a multi-
nomial probability mass function with probabilities 

)1(),1(,,, 12
)(

21
)(

113
)(

312
)(

21
)(

1 π−π−πππ ttttt ppppp iiiiiii , 
.)1( 13

)(
3 π−tpi  We denote these cell counts by 

321321 ,,,,, iiiiii zzzyyy  and the number of respondents is 
.3

1∑ == j yr iji  Then, we fit the nonignorable nonresponse 
model to the above data using the MH  sampler, and we 
obtained M  =  1,000 values ....,,1,),( )()( Mhhh =ijijp π  For 
each value, we computed ∑∑ == δ=δ cc hh nn 11

)()( /
~

i ii ii  where 
.)(3

1
)()( hhh p ijj iji π=δ ∑ =  

In Table 11 we report posterior means, standard devia-
tions, numerical standard errors (using the batch means 
method) and 95% credible interval for the probability of 
responding for each choice of (a, b). We also computed 

),|
~~

Pr( )( rytδ<δ  by counting the number of )(~ hδ  that are as 
large as )(~ tδ . An extremely large or small value of this latter 
quantity suggests model failure. 

We plotted the estimates of the posterior densities of δ~  
by choices of a and b which we obtained by using normal 
kernel density estimator with an optimal window width 
from an output analysis of the MH algorithm. The densities 
are an unimodal, peaked and almost symmetric. By 
increasing (a, b) from (0.8, 0.8) to (1.0, 1.0), the mode of the 
posterior densities increase. 

Table 11 
Characteristics of the Probability of Responding 

 

  3π  

2π  stat 1*8.0 π  1*9.0 π  1*0.1 π  

1*8.0 π  true 0.690 0.719 0.748 
 avg 0.712 0.739 0.764 
 std 0.016 0.015 0.014 
 nse 0.0030 0.0031 0.0029 
 CI (0.678, 0.742) (0.708, 0.767) (0.734, 0.750) 
 prob 0.082 0.095 0.135 

1*9.0 π  true 0.706 0.735 0.764 
 avg 0.710 0.742 0.776 
 std 0.017 0.016 0.014 
 nse 0.0030 0.0031 0.0031 
 CI (0.673, 0.742) (0.712, 0.769) (0.745, 0.802) 
 prob 0.377 0.303 0.210 

1*0.1 π  true 0.722 0.751 0.780 
 avg 0.726 0.758 0.784 
 std 0.017 0.015 0.015 
 nse 0.0036 0.0036 0.0026 
 CI (0.693, 0.757) (0.725, 0.784) (0.750, 0.809) 
 prob 0.399 0.318 0.380 

 

Note: avg = posterior mean; 
  std = standard deviation; 
  nse = numerical standard error; 
  CI = 95% credible interval; 
 prob = ),|

~~
Pr( )( rytδδ <  the 34 values of 1π  range 
from 0.73 to 0.83.  

In Table 11 we show that all the credible intervals 
contain the true values and the posterior means are close to 
the true value with the least discrepancy for the near igno-
rable nonresponse cases. The standard deviations are very 
similar across the nine simulated examples. Also, the nu-
merical standard errors (nse) are small and similar for all 
nine simulated examples. The estimates of 

),|
~~

Pr( )( rytδ<δ  range from 0.30 to 0.40, except for the 
most nonignorable nonresponse cases in which (a, b) = (0.8, 
0.8) and (0.8, 0.9). Thus, the model does perform reasonably 
well.  

6. Conclusion  
We have described a Bayesian methodology that can be 

used to analyze multinomial data for small areas when there 
is nonignorable nonresponse. A hierarchical model is used, 
and we have shown that it performs reasonably well. In fact, 
we have extended the method of Stasny (1991) in two 
directions: (a) we have considered multinomial data with 
more than two cells (binomial) and (b) we have done a full 
Bayesian analysis. Both (a) and (b) have been implemented 
for small areas.  

The Markov chain Monte Carlo method permits an 
assessment of the complex structure of the multinomial non-
response estimation. Our empirical analysis and simulation 
study indicate good performance of the model for these 
data.  Thus,  the  method  of  ratio  estimation  currently 
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used in NHANES III may be replaced by our Bayesian 
method as the nonrespondents’ characteristics might differ 
from those of the respondents. In fact, an application of our 
model to the NHANES III data shows that in each county 
there are substantial differences in the proportions of 
individuals at the three BMI levels by age and sex. This can 
be seen in Table 1 when the observed counts are summed 
over the counties. But, we have obtained inference 
(including measure of precision) for each county by age, 
race and sex.  

Our methodology can be extended in three ways. First, it 
is feasible to use a model that incorporates an extent of 
nonignorability, rather than just the dichotomy of ignorable 
nonresponse and nonignorable nonresponse. Second, one 
can use other prior distributions (e.g., Dirichlet proœss 
prior) to model heterogeneity in the clustering of the areas 
rather than assuming homogeneity of the areas as we have 
done. Third, one can use a fourth stage in our model to 
accommodate clustering within households as well as 
clustering within areas (counties) in NHANES III. These 
tasks are very difficult. 
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Appendix 1  

Metropolis-Hastings Samplers   
For the ignorable nonresponse model, ),( 11 τμ  and 

),( 2121 τμ  are independent a posteriori with 
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where ),( 11 τμp  and ),( 2121 τμp  are the prior distributions. 
Samples can be obtained from each of (A.1) and (A.2) using 
the MH algorithm of Nandram (1998).  

For the nonignorable nonresponse model, it is convenient 
to condition on z to obtain 

∏
= ⎭

⎬
⎫

⎩
⎨
⎧

τ
τ++

τατ
c

i

ii

D

D
pp

1 33

33
3333 )(

)(
),(),,|,(

μ
μzyμryzμ  (A.3) 

,
))1(,(

))1(,(

),(),,|,(

1 4444

4444

4444

∏
= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

τμ−τμ
τμ−+τμ+

τματμ
c

jjjj

jjjj

jjjj

B

zyB

pp

i

ijij

ryz

 
(A.4)

 

where Jjpp jj ...,,1),,(),,( 4433 =τμτμ  are the prior 
distributions. Given z, (A.3) and (A.4) are independent with  
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We ran the MH sampler by drawing a random deviate from 
each of (A.3), (A.4), and (A.5). It is easy to draw a random 
deviate from (A.5). Samples were obtained from each of 
(A.3), (A.4) and (A.5) using the MH algorithm of Nandram 
(1998).   

Appendix 2  
Nonlinear Least Squares Estimates   
Let 
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These ijlv  are obtained for each iterate from the 
Metropolis-Hastings sampler. To solve the nonlinear least 
squares problem we minimized  
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Taking partial derivatives to find the least squares 
estimate, we have 
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where 
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With these settings we draw the ijlq  from a MH algorithm, 
and the nonlinear least squares problem is solved using an 
iterative method to get values of iji μθϕ ,,  and lα . Let 
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where )(hqisl  denotes the value of islq  at the h 
th iterate of the 

MH algorithm. Then we minimize (A.l) subject to the above 
constraints at the hth iterate to obtain )()()( ,, hh

j
h

ii μθϕ  and 
)(h

lα . These iterates provide an estimate of the posterior 
distributions of ii μθϕ ,, j  and lα . Convergence occurred 
for our application in less then 10 iterations.   
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