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Inference for Partially Synthetic, Public Use Microdata Sets 

J.P. Reiter 1 

Abstract 
To avoid disclosures, one approach is to release partially synthetic, public use microdata sets. These comprise the units 
originally surveyed, but some collected values, for example sensitive values at high risk of disclosure or values of key 
identifiers, are replaced with multiple imputations. Although partially synthetic approaches are currently used to protect 
public use data, valid methods of inference have not been developed for them. This article presents such methods. They are 
based on the concepts of multiple imputation for missing data but use different rules for combining point and variance 
estimates. The combining rules also differ from those for fully synthetic data sets developed by Raghunathan, Reiter and 
Rubin (2003). The validity of these new rules is illustrated in simulation studies. 
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1. Introduction  
When releasing data to the public, statistical agencies 

seek to provide detailed data without disclosing respon-
dents’ sensitive information. To reduce the risk of disclo-
sures, agencies typically alter the original data for public 
release, for example by recoding variables, swapping data, 
or adding random noise to data values (Willenborg and 
de Waal 2001). However, these methods can distort rela-
tionships among variables in the data set. They also 
complicate analyses for users: to analyze properly perturbed 
data, users should apply the likelihood-based methods 
described by Little (1993) or the measurement error models 
described by Fuller (1993). These are difficult to use for 
non-standard estimands and may require analysts to learn 
new statistical methods and specialized software programs. 

An alternative approach was proposed by Rubin (1993): 
release fully synthetic data sets comprised entirely of 
multiply-imputed data rather than actual values. This can 
protect confidentiality, since identification of units and their 
sensitive data can be difficult when the released data are not 
actual, collected values. And, with appropriate imputation 
and estimation methods based on the concepts of multiple 
imputation (Rubin 1987), the approach can allow data users 
to obtain valid inferences using standard, complete-data 
statistical methods and software. Such inferences can be 
made using the methods developed by Raghunathan et al. 
(2003), whose rules for combining point and variance 
estimates differ from those of Rubin (1987). Other 
discussions and variants of synthetic data approaches appear 
in Little (1993); Fienberg, Steele and Makov (1996); 
Fienberg, Makov and Steele (1998); Dandekar, Cohen and 
Kirkendall (2002a); Dandekar, Domingo-Ferrer and Sebe 
(2002b); Franconi and Stander (2002, 2003); Polettini, 
Franconi and Stander (2002); Polettini (2003) and Reiter 
(2002, 2003). 

Although no data producers have adopted the fully 
synthetic approach on a production basis yet, some have 
adopted a variant of the approach: release partially synthetic 
data sets comprising a mix of actual and multiply-imputed 
values. For example, to protect data in the U.S. Survey of 
Consumer Finances, the U.S. Federal Reserve Board 
replaces monetary values at high disclosure risk with 
multiple imputations, then releases a mixture of these 
imputed values and the unreplaced, collected values 
(Kennickel 1997). Another partially synthetic approach has 
been implemented by Abowd and Woodcock (2001) to 
protect data in longitudinal, linked data sets. They replace 
all values of some sensitive variables with multiple 
imputations, but leave other variables at their actual values. 
A third approach has been implemented by Liu and Little 
(2002), who develop an algorithm for simulating multiple 
values of key identifiers for selected units. All these partially 
synthetic approaches are appealing because they promise to 
maintain many of the benefits of fully synthetic data – 
protecting confidentiality while allowing users to make 
inferences without learning complicated statistical methods 
or software – with decreased sensitivity to the specification 
of imputation models. 

Even though partially synthetic data sets are being 
publicly released, the literature does not contain technical 
results on how to obtain inferences from them. At first 
glance, it may appear appropriate to use the inferential 
methods for multiple imputation of missing data in Rubin 
(1987). Unfortunately, as shown in this article, these 
methods can result in biased variance estimates. Further-
more, and also as shown, the methods developed by 
Raghunathan et al. (2003) for analyzing fully synthetic data 
are not valid when applied on partially synthetic data. New 
methods of inference are required. 

This paper describes methods for obtaining inferences 
from multiply-imputed, partially synthetic data sets. The 
derivation of these methods also provides prescriptions for 
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generating partially synthetic data. The paper is organized as 
follows. Section 2 presents the new methods of inference. 
Section 3 shows a derivation of these methods from a 
Bayesian perspective, and it discusses conditions under 
which the resulting inferences should be valid from a 
frequentist perspective. Section 4 describes simulation 
studies that illustrate the validity of these methods, as well 
as the ineffectiveness of competing rules for combining 
multiple point and variance estimates.  Section 5 concludes 
with suggestions of future areas of research. 

 
2. Inferences from Multiply-Imputed, Partially 

Synthetic Data Sets  
Let 1=jI  if unit j  is selected in the original survey, 

and 0=jI  otherwise. Let )....,,( 1 NIII =  Let obsY  be 
the pn ×  matrix of collected (real) survey data for the 
units with ;1=jI  let nobsY  be the pnN ×− )(  matrix of 
unobserved survey data for the units with ;0=jI  and, let 

( )nobsobs , YYY = . For simplicity, we assume that all 
sampled units fully respond to the survey. Let X  be the 

dN ×  matrix of design variables for all N  units in the 
population, e.g., stratum or cluster indicators or size 
measures. We assume that such design information is 
known approximately for all population units. It may come, 
for example, from census records or the sampling frame(s). 

The agency releasing synthetic data, henceforth ab-
breviated as the imputer, constructs synthetic data sets based 
on the observed data, ),,,( obs IYXD =  in a two-part 
process. First, the imputer selects the values from the 
observed data that will be replaced with imputations. Sec-
ond, the imputer imputes new values to replace those 
selected values. Let 1=jZ  if unit j  is selected to have 
any  of  its  observed  data  replaced  with  synthetic  values, 
and let 0=jZ  for those units with all data left unchanged. 
Let )....,,( 1 nZZZ =  Let iY ,rep  be all the imputed 
(replaced) values in the thi  synthetic data set, and let nrepY  
be all unchanged (unreplaced) values of .obsY  The iY ,rep  
are assumed to be generated from the Bayesian posterior 
predictive distribution of ).,|( ,rep ZDY i  The values in 

nrepY  are the same in all synthetic data sets. Each synthetic 
data set, ,id  then comprises ).,,,,( nrep,rep ZIYYX i  
Imputations are made independently for mi ...,,1=  times 
to yield m  different synthetic data sets. These synthetic data 
sets are released to the public. 

The values in Z  can and frequently will depend on the 
values in .D  For example, the imputer may choose to 
simulate sensitive variables or identifiers only for units in 
the sample with rare combinations of identifiers; or, the 
imputer may replace only those incomes above $100,000 
with imputed values. To avoid bias, imputers should 
account for such selections by imputing from the posterior 
predictive distribution of Y  for those units with .1=jZ  In 
practice, this can be done by using only the units with 

1=jZ  as the data when finding the posterior distributions 
for imputations. Using all units with 1=jI  can result in 

biased estimates or wider confidence intervals with overly 
conservative coverage rates, as illustrated in the simulations 
of section 4. 

From these synthetic data sets, some user of the publicly 
released data, henceforth abbreviated as the analyst, seeks 
inferences about some estimand ),,( YXQQ =  where the 
notation ),( YXQ  means that Q  is a function of ).,( YX  
For example, Q  could be the population mean of Y  or the 
population regression coefficients of Y  on .X  In each 
synthetic data set ,id  the analyst estimates Q  with some 
point estimator q  and estimates the variance of q  with 
some estimator .v  It is assumed that the analyst determines 
the q  and v  as if the synthetic data were in fact collected 
data from a random sample of ),( YX  based on the actual 
survey design used to generate .I  

For ,...,,1 mi =  let iq  and iv  be respectively the 
values of q  and v  in synthetic data set .id  Under certain 
conditions to be described in section 3, the analyst can 
obtain valid inferences for scalar Q  by combining the iq  
and .iv  Specifically, the following quantities are needed for 
inferences: 

mqq i

m

i
m /

1
∑

=
=  (1) 

)1(/)( 2

1

−−=∑
=

mqqb mi

m

i
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m

i
m ∑

=
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The analyst then can use mq  to estimate Q  and 

mmp vmbT += /  (4) 

to estimate the variance of .mq  When q  is a function of 
only ),,( nrep IYX  and not any imputed values, the 
synthetic data inferences are identical to the observed data 
inferences; that is, the obsqqi =  and obsvvi =  for all ,i  
and the .0=mb  When n  is large, inferences for scalar Q  
can be based on onsdistributi−t  with degrees of freedom 

,)1()1( 21−+−= mp rmv  where )./( 1
mmm vbmr −=  In 

many cases, 1−
mr  and hence pv  will be large enough that a 

normal distribution provides an adequate approximation to 
the on.distributi−t  Extensions for multivariate Q  are not 
presented here. 

pT  differs from the variance estimator for multiple 
imputation of missing data, mmm vbmT ++= )/11(  (Rubin 
1987). In the partially synthetic data context, the mv  esti-
mates )(Var obsq  and the mbm /  estimates the additional 
variance due to using a finite number of imputations. In the 
missing data context, the mv  and mbm /  have the same 
interpretations, but an additional mb  is needed to average 
over the nonresponse mechanism (Rubin 1987, Chapter 4). 
This additional averaging is unnecessary in partially 
synthetic data settings, since the selection mechanism ,Z  
which is set by the imputer, is not treated as stochastic. 
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pT  also differs from the variance estimator for analyzing 
fully synthetic data, mms vbmT −+= )/11(  (Raghunathan 
et al. 2003). To generate fully synthetic data, new units are 
sampled off the frame(s) for each synthetic data set, and 
their data are imputed. As shown by Raghunathan et al. 
(2003), this re-sampling and imputation process results in 

mm vb −  as an appropriate estimate of ).(Var obsq  For 
partially synthetic data, the original units are released for 
each data set, so that mv  is an appropriate estimate of 

).(Var obsq  

 
3. Justification of New Combining Rules  

This section shows a Bayesian derivation of the infer-
ences described in section 2 and conditions under which 
these inferences are valid from a frequentist perspective. 
These results are based on, and closely follow, the theory 
developed in Raghunathan et al. (2003).  
3.1 Bayesian Derivation  

For this derivation, we assume that the analyst and im-
puter use the same Bayesian model. The posterior distribu-
tion for ),|( mdQ  where },...,,,{ 21 m

m dddd =  can be 
decomposed as 

dDdBdBfBdDfBDdQf

dQf

mmm

m

)|(),|(),,|(

)|(

∫

=
 
(5)

 

where ).,|(Var ZDqB i=  The integration with respect to 
dDBdDf m ),|(  is only over the values of obsY  that are 

replaced with imputations; the ),,( nrep IYX  components 
of D  remain fixed. Given ,D  the synthetic data are 
irrelevant, so that ).|(),,|( DQfBDdQf m =  We 
assume standard Bayesian asymptotics hold, so that 

),,(~)|( obsobs vqNDQf  where obsq  and obsv  are the 
posterior mean and variance of Q  determined using .D  

Integrating (5) over ,D  we obtain ).,|( BdQf m  Since 
only obsq  and obsv  are needed for inferences about ),|( DQ  
for ),|( BdDf m  it is sufficient to determine ,( obsqf  

).,|obs Bdv m   We  assume  imputations  are  made  so  
that, for all ),(~),|(, obs BqNBDqi i  and ~),|( BDvi  

).,( obs Bv <<  Here, the notation ),(~ HGF <<  means 
that the random variable F  has a distribution with 
expectation of G  and variability much less than .H  In 
actuality, iv  is typically centered at a value larger than 

,obsv  since synthetic data incorporate uncertainty due to 
drawing values of the parameters. For large sample sizes ,n  
this bias should be minimal. The assumption that |( iqE  

obs), qBD =  should be reasonable when the imputations 
are drawn from the correct posterior distribution of Y for 
those units with .1=jZ  

Assuming flat priors for obsq  and ,obsv  standard 
Bayesian theory implies that ~),|( obs Bdq m ,( mqN  

)/ mB  and )./,(~),|( obs mBvBdv m
m <<  Hence, the 

posterior mean and variance of ),|( BdQ m  are 

m
m
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Since all the convolutions involve normal distributions, 
)./,(~),|( mBvqNBdQf mm

m +  
To integrate this distribution over ),|( mdBf  we use 

the fact that 2
1

1 ~)|)1(( −
− χ− m

m
m dBbm  and, following 

the approximation in Rubin (1987), fit the first two 
moments of mBv m /+  to mean-square random variable. 
The resulting approximation to the posterior distribution of 
Q  is ),,(~)|( pmv

m TqtdQ
p

 where pv  is as defined in 
section 2.  
3.2 Randomization Validity  

For inferences based on )4()1( −  to have valid 
frequentist properties, we require two conditions. First, the 
analyst must use randomization valid estimators, q  and .v  
That is, when q  and v  are applied on D  to get obsq  and 

,obsv  the ),(~),|( obs UQNYXq  and ~),|( obs YXv  
),,( UU <<  where the relevant distribution is that of .I  

Second, the synthetic data generation methods must be 
proper in a sense similar to Rubin (1987). Specifically, the 
data generation methods should satisfy the following 
conditions:  
C1: Averaging over imputations of ,,rep iY  it is required 

that 
(i) );,(~),,,|( obs BqNZIYXqi  

(ii) );,(~),,,|( BBZIYXbm <<  and, 

(iii) ),/,(~),,,|( obs mBvZIYXv m <<  where 

 ).,,,|(Var ZIYXqB i=  

C2: Averaging over the sampling and replacement 
mechanisms ),,|,( YXZI  it is required that 

)(~),|( 0 UBYXB <<  where ).,|(0 YXbEB m=   
Essentially, these conditions require the synthetic data be 

generated so that the iq  are unbiased for ,obsq  the mb  is 
unbiased for ,0B  and the mv  is unbiased for .obsv  Further 
discussion of proper imputation can be found in Rubin 
(1987). 

Using these assumptions, it follows that 

QYXqE

YXZIYXqEEYXqE mm

==

=
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),|),,,|((),|(
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Since ),|( obs YXq  and the ),,,|( ZIYXqi  are assumed 
to have normal distributions, it follows that ~),|( YXqm  

)./,( 0 UmBQN +  
When C1 and C2 hold, pT  is an unbiased estimator of 

./0 UmB +  The ionapproximat−t  is justified using the 
method outlined in Rubin (1987). Specifically, the −t  
approximation follows since ~),|)1(( 1

0 YXBbm m
−−  

,2
1−mx  and the degrees of freedom of a chi-squared random 

variable equals two times the square of its expectation over 
its variance. 

 
4. Simulation Studies  

This section illustrates the validity of these new 
combining rules, as well as the ineffectiveness of mT  and 

sT  as variance estimators, using simulation studies of 
partially synthetic strategies. Section 4.1 describes two 
studies in which the imputer generates synthetic data only 
for selected units. Section 4.2 describes a study in which the 
imputer generates synthetic data for all values of one survey 
variable, leaving the others at their observed values. For 
illustrations, the simulations use artificial data and correct 
posterior distributions for imputations. Of course, in real 
settings the correct imputation model typically is not known 
and must be estimated using the observed data and subject-
matter expertise. For all simulations, the population sizes are 
considered infinite so that finite population correction 
factors are ignored.  
4.1 Imputation for Selected Units  

Imputers may decide to replace the observed values for 
some units in the collected data, then release a mixture of 
the imputed and observed values. This strategy is employed 
in two simplistic although illustrative simulations, the first 
involving a single variable and the second four variables.  
4.1.1 Simulations Using a Single Variable  

Each observed dataset, ,D  comprises 100=n  values 
drawn randomly from ).10,0(~ 2NY  Two different 
schemes are used to specify the units with ,1=jZ  so that 
two sets of partially synthetic data sets are generated for 
each .D  The first scheme, labelled “Random”, replaces Y  
for 20 units randomly sampled from .D  The second 
scheme, labelled “Big Y”, replaces Y  only for units with 

.10>jY  
For each ,D  and for each scheme, there are 5=m  

synthetic data sets ),,,,( nrep,rep ZIYYd ii =  for ...,,1=i  
.5  The iY ,rep  are generated by using a Bayesian bootstrap 

(Rubin 1987, pages ),124123 −  which draws values of Y  
from a donor pool of selected values of .obsY  Let eligY  be 
the 10 ×n  vector of values of obsY  that make up the donor 
pool. Let .100

1rep ∑ == j jZn  The Bayesian bootstrap proceeds 
as follows: 

1. Draw )1( 0 −n  uniform random numbers. Sort 
these numbers in ascending order. Label these 
ordered numbers as ,...,,,,0 1210 0 −= naaaa  

.1
0

=na  
2. Draw repn  uniform random numbers, ...,,, 21 uu  

....,,
repnj uu  For each of these ,u  impute jY ,elig  

when .1 jj aua ≤<−   
This Bayesian bootstrap is not likely to be used to impute 
data in real settings, since data sets contain more than one 
variable. It is used here because it provides straightforward, 
proper imputations for this illustration. 

As mentioned in section 2, the correct posterior 
predictive distribution is ),,|( ZDYf  not ).|( DYf  This 
implies that the donor pool, ,eligY  should equal the set 

}.1:{ =jj ZY  This set is labelled “SELECT.” For compar-
isons, synthetic values also are imputed using the donor set 

}.1:{ =jj IY  This set is labelled “ALL”. Imputations 
based on ALL donors do not meet condition C1 in section 
3.2, since /)(),,,|( rep100

1 obsrep,nrep∑ −
= += n

J ji ynyZIYXqE  
,obsyn ≠  whereas imputations based on SELECT donors 

are proper. 
Table 1 summarizes the results from 5,000 runs of this 

simulation. For both the Random and Big Y schemes, the 
averages of the 5q  based on the SELECT donors 
approximately equal the average of .obsq  In the Random 
scheme, the 5q  based on ALL donors is also unbiased, 
because obsnrep ),,|( qIYXyE =  when averaged over Z  
(which is in fact stochastic in this scheme). However, when 
using ALL donors in the Big Y scheme, 5q  has a large, 
negative bias. This results because imputed values are not 
restricted to be greater than 10 when using ALL donors. 

In both the Random and Big Y schemes, 94.5% of the 
5,000 synthetic 95% confidence intervals based on pT  and 
the SELECT donors cover zero. This rate is identical to the 
94.5% coverage rate for the confidence intervals based on 
the observed data ).96.1( obsobs vq ±  The nominal rates 
are less than 95% due to simulation error. The %32 −  
difference between the averages of the pT  and the 

)(Var 5q  roughly equals the difference between the aver-
age obsv  and ).(Var obsq  The usual multiple imputation 
variance estimator, ,mT  tends to overestimate the ),(Var 5q  
leading to overly conservative confidence interval coverage 
rates, showing that mT  is not the correct variance estimator 
when analyzing properly imputed, partially synthetic data. 

When imputations are based on ALL −donors an 
improper imputation −method in the Random scheme, pT  
is negatively biased, and only 92.6% of the synthetic 95% 
confidence intervals cover zero. Using mT  increases the 
coverage rate to 95%, suggesting that it is safer to use mT  
instead of pT  when ALL units are used for imputations. 
The confidence intervals based on ALL and mT  are on 
average wider than those based on SELECT and .pT  This 
illustrates the advantage of conditioning on Z  to obtain 
proper imputations, even when the scheme used to set the 

1=jZ  does not depend on the values of .Y  
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Table 1 
Simulation Results when Imputing Single Variable 

 

     Coverage of 95% CIs 

Scheme and Imputation Method 5.Avg q  5Var q  pT.Avg  mT.Avg  pTUsing  mTUsing  

1=jZ  for 20 randomly selected units       

 SELECT 0.024 1.097 1.067 1.420 94.5% 96.7% 

 ALL 0.020 1.233 1.044 1.281 92.6% 94.9% 

1=jZ  for units with 10>jY        

 SELECT 0.016 1.031 1.011 1.068 94.5% 95.0% 

 ALL  – 2.383 0.796 0.736 0.921 20.7% 28.8% 

 Observed data results* 0.016 1.021 1.000  94.5%  
 

* The column labels do not apply for this row. The average of the ,016.0obs =q  the variance of the ,021.1obs =q  the average 
of the ,000.1obs =v  and 94.5% of the five thousand 95% observed-data confidence intervals cover zero. 

 
 

Although not shown in Table 1, the variance estimator 
for fully synthetic data, ,sT  is negative in every one of the 
5,000 simulations for both schemes and both imputation 
methods. Clearly, although valid for fully synthetic data 
(Raghunathan et al. 2003), sT  is not generally appropriate 
for partially synthetic data.  
4.1.2 Simulations Using Four Variables  

Each observed dataset, ,D  comprises 200=n  values of 
four variables, ),,,,( 4321 YYYY  generated as follows: 

),,(~),,( 321 Σ0MVNyyy  where Σ  has all variances 
equal to one and all convariances equal to 0.5; and, 

).25,4710(~),,|( 2
3213214 yyyNyyyy ++  To fix 

ideas, the variable 1Y  can be considered a key identifier and 
4Y  the sensitive variable. The plan is to simulate values of 

the sensitive 4Y  for all units with “unusual” values of the 
key identifier, defined as .11 >Y  Hence, nrepY  comprises 
sampled values of ),,( 321 YYY  and values of 4Y  for those 
units with .11 ≤Y  Typically, around 30 units per observed 
data set have .11 >Y  

As before, we examine two schemes for determining the 
posterior predictive distribution for imputations. SELECT 
uses only the units with 1=jZ  as the data for the 
posteriors, and ALL uses all observed units. Imputations 
under each scheme are made by (i) drawing values of the 
parameters of the regression of 4Y  on ),,( 321 YYY  from 
their posterior distribution, which is estimated using either 
the SELECT or ALL units, and (ii) drawing values of 4Y  
for units with 1=jZ  using the drawn values of parameters. 
There are 5=m  synthetic data sets generated for each 
observed data set .D  

The estimands of interest include ,β  the regression 
coefficient of 1Y  in the linear regression of 4Y  on 

;),,( 321 YYY  ,α  the regression coefficient of 4Y  in the 
regression of 1Y  on ;),,( 432 YYY  and ,4Y  the population 
average of .4Y  For inferences about β  and ,α  q  is the 
usual ordinary least squares estimator and v its variance 
estimator. For inferences about ,4Y  q  is the sample average 
and v its standard error. 

Table 2 summarizes results from 5,000 runs of this 
simulation. When imputations are based on the SELECT 
units, the averages of the 5q  and pT  are within simulation 
errors of the averages of the obsq  and ).(Var 5q  
Additionally, the coverage rates for the synthetic 95% 
confidence intervals are similar to the coverage rates for the 
observed data 95% confidence intervals. The mT  are 
substantially larger than the ),(Var 5q  resulting in coverage 
rates around 97%. Although not shown in Table 2, sT  is 
negative in all 5,000 simulation runs. Taken together, these 
results are consistent with the findings in section 4.1.1: 
when imputations are drawn from a posterior distribution 
that conditions on ,Z  point and interval estimates based on 

pT  are more accurate than those based on mT  and .sT  
Although imputations based on ALL units are not proper, 

it is informative to examine the performances of pT  and mT  
for such imputations. Imputers might base imputations on 
all observed units for practical reasons, for example because 
the units with 1=jZ  do not provide sufficient data to fit 
the imputation models. The results mirror those in section 
4.1.1: the pT  underestimate the ),(Var 5q  leading to 
coverage rates around 94%, whereas using mT  increases 
coverage rates to around 96%, primarily due to the positive 
bias in .mT  This again suggests that, when imputers do in 
fact base imputations on all observed units even though only 
some ,1=jZ  analysts are safer using mT  as the variance 
estimator rather than .pT  Just as seen in section 4.1.1, the 
intervals based on ALL units are typically wider than those 
based on SELECT units, suggesting that, when possible, 
imputers are better off basing imputations only on the units 
with .1=jZ   
4.2 Imputation of all Values of Y for One Variable  

Each observed data set comprises 200=n  values of four 
variables generated as follows: ~),,( 321 yyy ) ,( I0MVN  
where I is the identify matrix; and, ~),,|( 3214 yyyy  

).25,101010( 2
321 yyyN ++  Hence, the ,,( 21nrep YYY =  

).3Y  Values of 4Y  are imputed from the Bayesian posterior 
predictive distribution of ),|( obs4 YY  derived by fitting the 
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regression of 4Y  on ).,,( 321 YYY  All units have 1=jZ  
and are used as data for the posterior distributions. The 
estimands are the same as those described in section 4.1.2. 

Table 3 summarizes the results from 5,000 simulation 
runs using 5=m  partially synthetic data sets. For all 
estimands, the averages of the 5q  are practically identical to 
those of the .obsq  Additionally, the estimated variances 
based on pT  are close to the actual variances of the .5q  The 
slight upward bias results because mv  tends to overestimate 

,obsv  as explained in section 3.1. The mT  on average 
overestimate the )(Var 5q  by factors of more than two, and 
the sT  severely underestimate the )(Var 5q  for α  and .4Y  
These problems are not due to small ;m  in simulations with 
large m  they persist. Although errors of these magnitudes 
may not occur in other settings, the results in this simple 
setting again indicate that mT  and sT  are not appropriate in 
general for analyzing partially synthetic data, especially 
when synthesizing entire variables. 

Imputers have incentive to release small numbers of 
synthetic data sets. Each additional data set requires extra 
storage, and more importantly, releasing too many data sets 

might jeopardize confidentiality if intruders somehow 
combine the imputed values to learn about the actual values. 
Table 4 displays results of independent replications of 5,000 
simulation runs using different values of .m  Point estimates 
are unbiased for all three estimands and so are not displayed 
in the table. The 95% confidence interval coverage rates are 
close to 95% for all values of m  greater than two. The 
inflations in the pT  are again due to positive biases in the 

mv . 
Table 4 illustrates that, when imputing entire variables, 

substantial efficiency gains can be made by increasing m  
beyond five. The amount of efficiency gain depends on the 
magnitude of .mb  When mb  is small relative to ,mv  for 
example when imputing values only for a small number of 
selected units, efficiency gains from increasing m  will not 
be large. For any partially synthetic strategy, imputers can 
compare gains in efficiency with potential tradeoffs in 
confidentiality by simulation studies of intruder behavior on 
different numbers of released synthetic data sets. 
 

 
Table 2 

Simulation Results when Imputing 4Y  for Units with 11 >Y  
 

     Coverage of 95% CIs 
Type of Inference 5.Avg q  5Var q  pT.Avg  mT.Avg  pTUsing  mTUsing  

Estimand is β         
 SELECT 10.02 5.45 5.68 8.97 95.3% 98.2% 
 ALL 10.04 5.89 5.28 7.57 93.7% 96.9% 
 Observed data* 10.00 4.70   95.5%  
       
Estimand is α         
 SELECT 9.25 ×  10-3 4.49 ×  10-6 4.76 ×  10-6 6.97 ×  10-6 95.4% 97.9% 
 ALL 9.59 ×  10-3 5.03 ×  10-6 4.75 ×  10-6 6.31 ×  10-6 94.1% 96.5% 
 Observed data* 9.66 ×  10-3 4.26 ×  10-6   95.4%  
       
Estimand is 4Y        
 SELECT  – 1.45 ×  10-2 4.97 5.01 6.09 95.0% 96.6% 
 ALL  – 1.24 ×  10-3 5.19 4.82 5.59 93.8% 95.4% 
 Observed data*  – 2.34 ×  10-3 4.76   94.5%  

* The column labels do not apply for this row. These are the averages of the ,obsq  the variance of the 
,obsq  and the percentage of 95% observed-data confidence intervals that cover their .Q  

 
 

Table 3 
Simulation Results when Imputing an Entire Variable  

Estimand obs.Avg q  5Avg. q  obsVar q  5.Var q  pTAvg.  mTAvg.  sT.Avg  

β  9.9500 9.9400 3.19 4.46 4.54 11.10 4.63 

α  0.0137 0.0135 6.12 7.69 7.94 17.30 5.17 

4Y  0.0000 0.0000 4.55 5.83 6.00 12.30 2.87 
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Table 4 
Sensitivity of Partially Synthetic Inferences to Value of m 

 

Setting mqVar  pTAvg.  95% CI cov. 
Inference for β     

=m 2 6.52 6.50 92.7 
=m 3 5.38 5.38 94.4 
=m 4 4.64 4.89 95.4 
=m 5 4.46 4.54 95.1 
=m 10 3.87 3.88 94.4 
=m 50 3.30 3.37 95.1 

Inference for α      
=m 2 10.62 10.89 93.4 
=m 3 8.92 9.15 94.9 
=m 4 8.41 8.45 94.9 
=m 5 7.69 7.94 95.4 
=m 10 6.99 7.02 94.8 
=m 50 6.05 6.28 95.5 

Inference for 4Y     
=m 2 8.13 7.96 93.4 
=m 3 6.51 6.86 95.5 
=m 4 6.11 6.33 95.6 
=m 5 5.83 6.00 95.3 
=m 10 5.13 5.38 95.4 
=m 50 4.66 4.87 95.5 

 

Variances associated with α  are multiplied by 106. 

 
5. Concluding Remarks  

The simulations in this article illustrate that the usual 
rules for combining multiply-imputed data sets can result in 
positively biased variance estimates when applied on 
partially synthetic data. The new rules presented here appear 
to remedy this problem, thereby leading to more reliable 
inferences. Further research is needed to assess the 
performance of these new rules when using partially 
synthetic strategies for genuine data, for which the correct 
imputation models are unlikely to be known. Additionally, 
evaluations of the new rules are needed when the released 
data sets also contain multiple imputations of missing data, 
for example imputations for item nonresponse. As 
conjectured by a referee to this article, when significant 
fractions of imputations are for missing data, mT  may not 
perform so unfavorably relative to .pT  

The simulations and theory also suggest that, when 
possible, imputers should use only units with values selected 
for replacement as the data when estimating posterior 
predictive distributions for imputations. Further examination 
of this prescription when simulating more than one variable 
in genuine data sets would be valuable. 

Lastly, this article does not examine the implications of 
various partially synthetic data strategies for protecting 
confidentiality, nor does it compare partially synthetic 
approaches to alternative techniques for disclosure control. 
Such comparisons would help imputers determine whether 
partially synthetic approaches are appropriate for their 
public use microdata releases. 
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