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Inference for Population Means Under Unweighted Imputation for 
Missing Survey Data 

David Haziza and J.N.K. Rao 1 

Abstract 

In the presence of item nonresponse, unweighted imputation methods are often used in practice but they generally lead to 
biased estimators under uniform response within imputation classes.  Following Skinner and Rao (2002), we propose a bias-
adjusted estimator of a population mean under unweighted ratio imputation and random hot-deck imputation and derive 
linearization variance estimators. A small simulation study is conducted to study the performance of the methods in terms of 
bias and mean square error. Relative bias and relative stability of the variance estimators are also studied. 

                                                           
1. David Haziza, Household Survey Methods Division, Statistics Canada, Ottawa, Ontario, Canada, K1A 0T6; J.N.K. Rao, School of Mathematics and 

Statistics, Carleton University, Ottawa, Ontario, Canada, K1S 5B6. 

  
Key Words: Bias-adjusted estimator; Item nonresponse; Random hot-deck imputation; Ratio imputation. 
 
 

 

1. Introduction  
Item nonresponse occurs when a sampled unit fails to 

provide information on some variables of interest. Many 
surveys use imputation to handle item nonresponse but one 
should be aware of the difficulties when imputation is used. 
For example, the imputed values are commonly treated as if 
they are true values, and the variance estimates are com-
puted using standard formulas. This can lead to serious 
underestimation of the true variance of the estimators when 
the proportion of missing values is not small. The rela-
tionships between variables may also be distorted. 

Imputation methods can be classified into two broad 
classes: deterministic and stochastic. Deterministic methods 
include ratio or regression imputation and nearest neighbour 
imputation, using auxiliary variables observed on all the 
sampled units. For nearest neighbour imputation, a non-
respondent item is assigned the respondent item value of the 
“nearest” respondent, where “nearest” is usually defined in 
terms of a distance function based on the auxiliary variables.  
Stochastic methods include random hot-deck imputation 
where the value assigned for a missing response is randomly 
selected from the set of respondents within an imputation 
cell. 

In the presence of item nonresponse, weighted or 
unweighted imputation may be used. Weighted (deter-
ministic or stochastic) imputation uses the sampling weights 
induced by the sampling design to select donors.  However, 
weighted imputation is not feasible in practice when the 
sampling weights are not available at the imputation stage. 
Note that unweighted and weighted imputation methods 
lead to identical results for self-weighting designs (i.e., 
designs with equal weights). Also, unweighted imputation 
methods are appealing to users. 

Unweighted imputation generally leads to biased 
estimators under uniform response within imputation 

classes. Following the approach of Skinner and Rao (2002), 
we propose bias-adjusted estimators of population means 
under unweighted imputation and derive linearization 
variance estimators. 

Let θ  be a finite population parameter and Iθ̂  be its 
estimator based on the observed and imputed data re-
spectively. Using the traditional two-phase approach: popu-
lation → complete sample → sample with non-respondents, 
we have 

)],ˆ([)ˆ( IrpI EEE θ=θ  (1) 

)]ˆ[()]ˆ([)ˆ( θ−θ+θ−θ=θ−θ IrpIrpI EVVEV  (2) 

under deterministic imputation, where (.)rE  and (.)rV  
denote respectively the expectation and the variance with 
respect to the response mechanism given the sample, and 

(.)pE  and (.)pV  denote respectively the expectation and 
the variance with respect to sampling under the given de-
sign. In the model-based approach (see section 2), we re-
place (.)rE  and (.)rV  by (.)(.)

~
mrm EEE =  and =(.)

~
mV  

(.)(.) mrmr EVVE +  respectively, where (.)mE  and (.)mV  
denote respectively the expectation and the variance with 
respect to the imputation model. 

Fay (1991) proposed a different approach obtained by 
reversing the order of sampling and response: population → 
census with nonrespondents → sample with non-respondents. 
Fay’s approach facilities variance estimation, as explained 
below. Using this approach, we have 

)],ˆ([)ˆ( IprI EEE θ=θ  (3) 

and 

)],ˆ([)]ˆ([)ˆ( θ−θ+θ−θ=θ−θ IprIprI EVVEV  (4) 
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see Shao and Steel (1999). Note that the inner expectation 
and variance in (4) are with respect to sampling, conditional 
on the response. An estimator of the overall variance 

)ˆ( θ−θ IV  in (4) is given by 21 vvvt += , where 1v  is an 
estimator of )ˆ( θ−θ IpV  conditional on the response 
indicators, and 2v  is an estimator of )ˆ( θ−θ Ipr EV . The 
estimator 1v  does not depend on the response mechanism or 
the assumed model, and hence 1v  is valid under either the 
design-based approach or the model-based approach (see 
section 2). 

In the case of stochastic imputation, )ˆ( θ−θ IpV  in (4) 
may be written as 

)],ˆ([)]ˆ([)ˆ( θ−θ+θ−θ=θ−θ ∗∗ IpIpIp VEEVV  (5) 

where the inner expectation and variance, ∗E  and ,∗V  
denote respectively the expectation and the variance with 
respect to the imputation scheme given the sample with 
respondents and non-respondents. An estimator of 

)ˆ( θ−θ IpV , denote ,1
∗v  is then given by ∗

∗ += vvv 11  
where 1v  is an estimator of )ˆ( θ−θ∗ Ip EV  and ∗v  an 
estimator of ).ˆ( θ−θ∗ IpVE  Also, in the case of stochastic 
imputation we replace (.)pE  by (.)∗EE p  in (4) and the 
formula for 2v  is the same as in the case of deterministic 
imputation provided )ˆ( IE θ∗  agrees with the imputed 
estimator for the deterministic case. Hence, an estimator of 
the deterministic case. Hence, an estimator of the overall 
variance )ˆ( θ−θ IV  is given by .21 vvvvt ++= ∗  

We set out our basic framework and assumptions in 
section 2. In section 3, we study both weighted and un-
weighted ratio imputation. We show that the imputed 
estimator under unweighted imputation is asymptotically 
biased, and propose a bias-adjusted estimator. The esti-
mator under unweighted imputation is asymptotically 
biased, and propose a bias-adjusted estimator. The estimator 
under weighted imputation and the bais-adjusted estimator 
under unweighted imputation are shown to be robust in the 
sense of validity under both the design-based and model-
based approaches. We also derive linearization variance 
estimators of the imputed estimators in section 3. We 
consider the case of random hot-deck imputation in section 
4. A small simulation is conducted in section 5 to compare 
the performances of the imputed estimators in terms of bias 
and mean square error. Relative bias and relative stability of 
the variance estimators are also studied.  

2. Framework and Assumptions  
Let P be a finite population of possibly unknown size N. 

The objective is to estimate the population mean =Y  
∑ p iyN/1  when imputation has been used to compensate 

for nonresponse. For brevity, ∑A  will be used for ∑ ∈Ai ,  
where PA ⊆ . Suppose a probability sample, ,s  of size n  
is selected according to a specified design )(sp  from .P  
Let rs  be the set of respondents of size r and let ms  be the 
set of nonrespondents of size .; nmrm =+  

Imputation is often done by first dividing the population 
into J  nonoverlapping imputation classes and then 

imputing sample nonrespondents within each imputation 
class using sample respondents within the same class as 
donors, independently across the J imputation classes. For 
simplicity, we assume that ;1=J  the extension to 1>J  
imputation classes is straightforward. 

The usual imputed estimator of the population mean Y  
is given by 

,
1

⎥
⎦

⎤
⎢
⎣

⎡
+= ∗∑∑∑ ii

s
ii

sis

I ywyw
w

y
mr

 (6) 

where iw  is the sampling (or design) weight attached to unit 
i  and ∗

iy  denotes the value imputed for missing .iy  We 
use the Horvitz-Thompson weight ,/1 iiw π=  where iπ  is 
the probability of including unit i in the sample. 

We consider two approaches: (i) design-based and (ii) 
model-based. Under the design-based approach, we assume 
a uniform response mechanism within classes so that the 
following assumption holds:  
Assumption DB: Within an imputation cell, the response 
probability for a given variable of interest is constant and 
the response statuses for different units are independent.  
Under the model-based approach, the following assumption 
holds:  
Assumption MB: Within an imputation cell the response 
mechanism is ignorable or unconfounded in the sense that 
the response status of a unit does not depend on the variable 
being imputed but may depend on covariates used for 
imputation. In this case, an imputation model is assumed. 
 

The imputation classes are chosen to make the 
assumption DB or MB hold approximately. The response 
mechanism in assumption MB is much weaker than the 
uniform response in assumption DB, but inferences depend 
on the assumed imputation model. Under ratio imputation, 
the imputation model used is the “ratio model” given by 

,if0),(Cov,

)(,)(

2 jiyyz

yVzyE

jimi

imiim

≠=σ=

β=
 

(7)
 

where β  and 2σ  are unknown parameters, iz  is an 
auxiliary variable available for all .si ∈  Under random hot-
deck imputation, the imputation model used is given by 

.if0),(Cov,)(,)( 2 jiyyyVyE jimimim ≠=σ=μ=  (8) 

 
3. Ratio Imputation  

In this section, we study the properties of the imputed 
estimator (6) under both weighted and unweighted ratio 
imputation. We also derive linearization variance esti-
mators. We study point estimation in section 3.1 under 
weighted and unweighted ratio imputation, and correspon-
ding variance estimation in section 3.2. 
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3.1 Estimation of a Mean  
3.1.1 Weighted Ratio Imputation  

Weighted ratio imputation uses iri zRy ˆ=∗  for missing 
,iy  where rrr zyR /ˆ =  and /),(),( iis irr zywzy

r
∑=  

∑
rs iw  are the weighted means of respondents for variables 

y and z respectively. Using the ∗
iy ’s, the imputed estimator 

(6) reduces to 

,ˆ
IR zRy r=  (9) 

where ∑∑= s iis i wzwz ./  It is easy to verify that IRy  is 
approximately unbiased for Y  under both the design-based 
and the model-based approaches, (Särndal 1992). Hence 

IRy  is robust in the sense of validity under both approaches.  
3.1.2 Unweighted Ratio Imputation  

Unweighted ratio imputation uses iri zRy un* ˆ=  for 
missing ,iy  where ununun /ˆ

rrr zyR =  and =),( unun
rr zy  

∑
rs ii rzy /),(  are the unweighted means of respondents for 

variables y and z respectively. Using the *
iy ’s, the imputed 

estimator (6) reduces to 

,ˆ1 un
IR ⎥

⎦

⎤
⎢
⎣

⎡
+= ∑∑∑ mr s

iir
s

ii

s
i

zwRyw
w

y  (10) 

where ununun /ˆ
rrr zyR = . Under the ratio model (7) and 

assumption MB, the imputed estimator (10) is approxi-
mately unbiased for ,Y  i.e., ≈)( IRyEEE mpr )(YEm . 
However, it is biased under uniform response (assumption 
DB). We have ,/)1()( IR ZZYpYpyEE rp ππ−+≈  where 

./),(),( ∑∑ ππ=ππ p ip iii zyZY  Hence, the relative bias 
of ,/))(()(RB, IRIRIR YYyEEyy rp −=  is given by 

⎥
⎦

⎤
⎢
⎣

⎡
−−≈ π

π

1)1()RB( IR Y

Y

Z

Z
py  (11) 

],[)1( zzyy CCC
Z

Z
p πππ

π

ρ−ρ−≈  (12) 

where ∑ πρ= p yizNZ ,/1  and zπρ  are the finite population 
correlation coefficients between the variables π  and y  and 
π  and z  respectively, zCC ,π  and yC  are respectively the 
coefficients of variation of z,π  and ,y  and p  is the 
probability or response to .y  The bias is nonzero generally. 
It vanishes in the full response case )1.,.( =pei  or if 

,0][ =ρ−ρ πππ zzyy CCC  (13) 

which is satisfied when 0=πC  (the case when the design is 
self-weighting) or when  

.
y

z

z

y

C

C
=

ρ
ρ

π

π  (14) 

We further explore the relative bias (11) for three cases. 
First, we consider unweighted mean imputation, un

ri yy =∗ , 
which is a special case of unweighted ratio imputation with 

.1=iz  Assume that a size variable x is available for all the 

units in the population and that the sample s is selected 
according to a probability proportional to size (PPS) 
sampling without replacement design, using x as the size, 
such that ,/ Xnxii =π  where .∑= P ixX  For example, one 
may use the well-known Sampford method (Sampford 
1967). Noting that 1/, =ρ=ρ ππ ZZxyy  and ,xCC =π  the 
expression (12) for the relative bias may be written as 

.)1()(RB IR xyyxCCpy ρ−≈  (15) 

Two particular cases of (15) are of interest.  First, if x and y 
are uncorrelated, the bias of the imputed estimator vanishes. 
The case of weakly correlated x and y )0.,.( ≈ρxyei  may 
occur in surveys with multiple characteristics y (Rao 1966). 
Second, if ,ii xy ∝  the relative bias (15) reduces to 

2)1( xCp−  which decreases with .xC  Note that, since 
,π= CCx  the sampling design approaches  a self-weighting 

design as xC  decreases. 
Consider next the more general case of unweighted ratio 

imputation based on ,, sizi ∈  and PPS sampling based on 
., sixi ∈  In this case, the relative bias (11) is zero if and 

only if 

,
z

y

xz

xy

C

C
=

ρ
ρ

 

provided 1<p  and .0≠πC  If ,zy CC =  then the relative 
bias (11) is zero if and only if .xzxy ρ=ρ  

Finally, we consider the case of stratified random 
sampling. In this case, the population P is partitioned into H 
strata hP  with hN  sampling units in the thh  stratum; 

.,1 1UH
h

H
h hh NNPP = =∑==  We then independently select a 

simple random sample without replacement hs  of size hn  
from each stratum; UH

h hss 1==  and .1∑ == H
h hnn  Two 

situations may occur in practice: (1) Imputation is done 
independently in each stratum (i.e., the imputation classes 
coincide with the strata). In this case, under unweighted 
ratio imputation, the imputed estimator is approximately 
unbiased under uniform response within strata. (2) The 
imputation is done across strata. In this case, we note from 
(11) that the imputed estimator is approximately unbiased if 
and only if )/( NNnn hh =  (proportional allocation). 

A bias-adjusted estimator of Y  under unweighted ratio 
imputation is given by 

,)ˆ1(ˆ un
IR

1
IR

1
IR y

z

z
pypy

un
a −− −+=  (16) 

where )/(ˆ ∑ ∑=
rs s ii wwp  is a consistent estimator of the 

response probability ∑= s iznzp /1, un  and un
IRy  is the 

unweighted mean of the observed values iy  and the 
imputed values .ˆ un

iri zRy =∗  This estimator may be derived 
from the method of moments, following Skinner and Rao 
(2002), by solving 

Z
Z

Y
pYpyE

π

π−+= )1()( IR  

for Y  and replacing )( IRyE  by its estimator ,IRy  
ZZY )/( ππ  by its estimator 
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,ˆ un
IRun

un y
z

z
zRr ⎟

⎠
⎞

⎜
⎝
⎛=  (17) 

and 1−p  by its estimator .ˆ 1−p  Note that the estimator z  of 
Z  makes use of the full sample ,values−z  unlike .rz  If 

rz  is used to estimate ,Z  then the bias-adjusted estimator 
requires response identifiers, unlike (16). 

We now show that the bias-adjusted estimator (16) is 
approximately unbiased under both the design-based and the 
model-based approaches. Hence, unlike the unadjusted 
estimator (10), the adjusted estimator is robust in the sense 
of validity under both approaches. First, noting that IRy  
may be expressed as )ˆ(ˆˆ un

rrr zpzRyp −+  and using (17), 
the bias-adjusted estimator (16) reduces to 

).(ˆ un
IR rrr
a zzRyy −+=  (18) 

Comparing (9) and (18), we see that IRy  under weighted 
ratio imputation is not equal to the bias-adjusted estimator 

ayIR  under unweighted ratio imputation, unless 1=iz  for all 
.i  In the latter case, both estimators reduce to .ry  However, 

the form (16) for ayIR  does not require response identifiers, 
provided p̂  is available. 

Since zyE a
m β=)( IR  and ZYEm β=)(  under the ratio 

model (7), we have ;0)( IR ≈− YyEE a
mp  that is, the ad-

justed estimator is approximately unbiased under the model-
based approach. On the other hand, since YyEE rrp ≈)(  
and 0)( ≈− rr zzE  under uniform response, it follows that 

YyEE a
rp ≈)( IR  so that the adjusted estimator is approx-

imately design-unbiased under uniform response. 
We note several points here:  (1) The survey analyst can 

easily implement the adjusted estimator ,IR
ay  given by (16), 

from the imputed data file without response identifiers, i.e., 
),,,~,( sizyw iii ∈  where ii yy =~  if rsi ∈  and ∗= ii yy~  if 

.msi ∈  Note that the response identifiers are not needed on 
the data file, but the response rate p̂  should be available to 
the analyst, which we assume to be the case here. In the case 
of multiple imputation classes, response rates within classes 
and imputation class identifiers need to be provided with the 
file. (2) The bias-adjusted estimator coincides with the 
unadusted estimator ,IRy  given by (10), under a self-
weighting design .wwi =  (3) The adjusted estimator ayIR  in 
(18) has the form of a regression estimator in two-phase 
sampling. (4) Under mean imputation, (18) reduces to the 
weighted mean of respondents ,ry  so the correction made 
to the unadjusted estimator eliminates the effect of using 
unweighted mean imputation. 

Another approach to getting a bias-adjusted estimator, 
,IR

ay  is to subtract an estimator, ),( IRyb  of the bias of ,IRy  
from ,IRy  i.e., 

).( IRIRIR ybyy a −=  (19) 

It follows from (11) that an estimator of the bias of IRy  is 
given by 

).ˆ()ˆ1()( un
IR

)1(
rr yzRpyb −−=  (20) 

But the resulting bias-adjusted estimator is not identical to 
(16), and it depends on response identifiers, unlike (16). On 
the other hand, if one uses 

),ˆ()ˆ1()( un
IR

)2(
rrr yzRpyb −−=  (21) 

it is easy to verify that the resulting bias-adjusted estimator 
is identical to (16).  
3.2 Variance Estimation  

We study variance estimation under uniform response in 
this section. We assume that response identifiers are 
available with the variance estimation file. If imputation 
classes are used, their identifiers are also needed.  
3.2.1 Variance Estimation Under Weighted Ratio 

Imputation  
In this subsection, we obtain a linearization variance 

estimator of the imputed estimator (9) based on weighted 
ratio imputation, using the reverse approach of Fay (1991). 
First, express (9) as 

,IR z
zaw

yaw
y

iis i

s iii

∑
∑=  

where ia  is a response indicator to item y such that 1=ia  if 
rsi ∈  and ,0=ia  otherwise. It follows from (4) that the 

variance )( IRyV  of IRy  can be estimated by ,21 vvvt +=  
where 1v  is an estimator of )( IR YyV p −  conditional on 
the ia ’s, and 2v  is an estimator of ).( IR YyEV pr −  
Denote the estimator of the variance of the estimated total 

∑= s ii ywŶ  based on the full sample as ).( iyv  Then, 
using the delta method, a linearization variance estimator, 

,1v  in the operator notation (.),v  is given by 

),ˆ(1 ξ= vv  (22) 

where the value of ξ̂  for si ∈  is given by 

],ˆ[
1ˆ

IR1 y
w i

s i
i −ξ=ξ
∑

 

with 

),ˆ(ˆˆ)1(ˆ
1 iriiiriiii zRyaczRaya −+−+=ξ  

where 

.
)1(

ˆ
∑

∑ −
=

s iii

s iii

zaw

zaw
c  

Note that 1v  is valid regardless of the response mechanism 
and the imputation model. The derivation of (22) is given in 
Appendex A. Shao and Steel (1999) derived a linearization 
variance estimator of the imputed estimator =Ŷ  
∑ ∑ −+s s iriiiii zRawyaw ˆ)1(  of the total .Y  They first 
expressed Ŷ  as 

∑ ∑ −+−+=
s s

iaiiiiaiiii zRyawczRayawY ),(ˆ])1([ˆ  
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where aaa ZYR /=  with ∑= p iiiaa zyaZY ),(),(  and then 
replaced ĉ  by ∑ ∑−= p p iiii zazac /)1(~  to get linear 
approximation for ∑ η≈ s iiwY ,ˆ  where 

.)(~)1( iaiiiaiiii zRyaczRaya −+−+=η  

Now replacing aR  by rR̂  and c~  by ĉ  in the above 
expression for iη  we get +−+=η iriiii zRaya ˆ)1(ˆ  

)ˆ(ˆ irii zRyac − which leads to the linearization variance 
estimator ).ˆ(1 η= vv  The delta method in Appendix A may 
be used to obtain this result in straightforward manner. 

Next, using the delta method, 

,
)(

)1()(
22

IR N

S

ZE

Z
ppYyEV e

ar
pr ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−≈−  (23) 

Under assumption DB where ∑= p izZ ,  and =2
eS  

.))((/1 2∑ −p iari zREyN  The component 2v  is then 
obtained by substituting estimators for the unknown 
quantities in (23). 
We obtain 

,
ˆˆ

ˆ
)ˆ1(ˆ

22

2
N

s

Z

Z
ppv er

a
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=  (24) 

where ∑ ∑ ∑=== s s s iiiiaii wNzawZzwZ ˆ,ˆ,ˆ  and 

22 )ˆ(
1 ∑∑

−=
s

iriii

s ii
er zRyaw

aw
s . 

The sum of (22) and (24) gives ,tv  the estimator of the 
overall variance of .IRy   
3.2.2 Variance Estimation Under Unweighted Ratio 

Imputation  
We now give a linearization estimator of variance of the 

imputed estimator (10) based on unweighted ratio impu-
tation. Using the delta method, see Appendix A, we obtain 

),ˆ(1 ξ= vv  (25) 
where 

],ˆ[
1ˆ

IR1 y
w i

s i
i −ξ=ξ
∑

 

with 

)ˆ(ˆˆ)1(ˆ unun
1 iri

i

i
iriiii zRy

w

a
dzRaya −+−+=ξ  

and ∑ ∑−= s s iiiii zazawd ./)1(ˆ  The component 2v  is 
given by (B.2) in Appendix B.  
3.2.3 Variance Estimation for the Bias-Adjusted 

Estimator  
In this subsection, we give a linearization variance 

estimator of the bias-adjusted estimator (18). Using the delta 
method, we obtain 

),ˆ(1 ξ= vv  (26) 

where 

;)ˆ(
1

)(

)(
ˆ

ˆ
)](ˆ)[(ˆ

un

un
un

iri
i

i

s ii
r

i
r

rirri

s ii

i
i

zRy
w

a

za
zz

zz
N

R
zzRyy

aw

a

−−+

−+−+−=ξ

∑

∑
 

see Appendix A. The component 2v  is given by (C.2) in 
Appendix C. 

 
4. Random Hot-Deck Imputation  

In this section, we study the properties of the imputed 
estimator (6) under weighted and unweighted random 
hot-deck imputation. We also derive linearization variance 
estimators under uniform response.  
4.1 Estimation of a Mean  

In section 4.1 we study point estimators under weighted 
and unweighted random hot-deck imputation.  
4.1.1 Weighted Random Hot-Deck Imputation  

Under weighted random hot-deck imputation, we select 
the donors rsj ∈  with replacement with selection proba-
bilities ∑

rs ij ww /  and use ., mji siyy ∈=∗  The imputed 
estimator, ,IHy  is given by (6) with the above imputed 
values. It is approximately unbiased for the population mean 
Y  under both the design-based and the model-based 
approaches. The latter uses the mean model (8).  
4.1.2 Unweighted Random Hot-Deck Imputation  

Under unweighted random hot-deck imputation, we 
select the donors rsj ∈  with replacement with equal prob-
abilities r/1  and use ., mji siyy ∈=∗  The imputed esti-
mator, ,IHy  is given by (6) with the above imputed values. 
It is approximately unbiased for Y  under the mean model 
(8), but biased under uniform reponse. The bias of IHy  is 
given by 

).ˆ()1()( IH YYpyB −−= π  (27) 

A biased-adjusted estimator of Y  under unweighted 
random hot-deck imputation is given by 

,)ˆ1(ˆ un
IH

1
IH

1
IH ypypy a −− −+=  (28) 

where )/(ˆ ∑ ∑=
rs s ii wwp  is a consistent estimator of the 

response probability p  and un
IHy  is the unweighted mean of 

the observed values iy  and the imputed values .∗
iy  The 

estimator (28) may be derived from the method of moments 
following Skinner and Rao (2002), by solving 

π−+= YpYpyE )1()( IH  

for Y  replacing by )( IHyE  its estimator πYy ,IH  by its 
estimator un

IHy  and 1−p  by its estimator .ˆ 1−p  The adjusted 
estimator is approximately unbiased for Y  under both the 
design-based and the model-based approaches. As in section 
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3.1.2, note that the survey analyst can easily implement the 
adjusted estimator ayIR  from the imputed data file without 
response identifiers, i.e., ),,,~,( sizyw iii ∈  where ii yy =~  
if rsi ∈  and ∗= ii yy~  if ,msi∈  provided the response rate, 

,p̂  is available. 
Note that the method of subtracting an estimator of the 

bias of Iy  from ,Iy  using (27), will lead to a bias-adjusted 
estimator that depends on response identifiers, unlike (28). It 
is not possible to obtain the bias-adjusted estimator (28) by 
this approach, unlike in the case of deterministic ratio 
imputation studied in subsection 3.1.2.  
4.2 Variance Estimation  

We study variance estimation under uniform response in 
this section. We assume that response identifiers are 
available with the variance estimation file. If imputation 
classes are used, their identifiers are also needed.  
4.2.1 Variance Estimation Under Weighted Random 

Hot-Deck Imputation  
We now obtain a linearization variance estimator of the 

imputed estimator IHy  under weighted random hot-deck 
imputation. First, note that under weighted random hot-deck 
imputation, .)( IH ryyE =∗  This is a particular case of (9) 
with 1=iz  for all .i  Hence, using (22), 1v  is given by 

),ˆ(1 ξ= vv  (29) 
where 

,]ˆ[
1ˆ

1 ri

s i
i y

w
−ξ=ξ

∑
 

,)(ˆ)1(ˆ
riiriiii yyacyaya −+−+=ξ  

with ∑∑ −= s iis ii awawc ./)1(ˆ  Straightforward algebra 
shows that iξ̂  simplifies to ./)(ˆ ∑−=ξ s iiriii awyya  
Now, noting that ∑∑ =−=∗

∗ s riiis iii yyawawyV 2)()/1()(  
,2

yrs  we have 

( ) .
)1(

)( 2
2

2

IH yr

s i

s ii s
w

aw
YyVv

∑
∑ −

=−= ∗∗  (30) 

As noted in section 1, 2v  is the same as for the 
deterministic case. Hence, under weighted random hot-deck 
imputation, 2v  is given by (24) with 1=iz  for all ,i  which 
lead to 

.
ˆ

ˆ
)ˆ1(ˆ

2
2

2
N

s

aw
N

ppv yr

s
ii ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

∑
 (31) 

The sum of (29), (30) and (31) gives ,tv  the estimator of 
overall variance.  
4.2.2 Variance Estimation Under Unweighted 

Random Hot-Deck Imputation  
We now obtain a linearization estimator of variance of 

the  imputed  estimator  (6)  under  unweighted  random  

hot-deck imputation. First, note that )( IHyE∗  reduces to 
(10) with 1=iz  for all .i  Hence, 1v  is given by 

),ˆ(1 ξ= vv  (32) 

where 

,)](ˆ[
1ˆ

IH1 yE
w i

s i
i ∗−ξ=ξ
∑

 

),(ˆ)1(ˆ unun
1 ri

i

i
riiii yy

w

a
dyaya −+−+=ξ  

with ./)1(ˆ ∑ ∑−= s s iii aawd  Now, nothing that =∗
∗ )( iyV  

,)()/1( un22un∑ ∑ −s yrris ii syyaa  we have 

( ) .
)1( un2

2

2

yr

s i

s ii s
w

aw
v

∑
∑ −

=∗  (33) 

As noted in section 1, 2v  is the same as for the deterministic 
case. Hence, under unweighted random hot-deck impu-
tation, 2v  is given by (B.2) with 1=iz  for all .i  The sum of 
(32), (33) and (B.2) gives .tv   
4.2.3 Variance Estimation for the Bias-Adjusted 

Estimator  
We now obtain a linearization variance estimator of the 

bias-adjusted estimator given by (28). First, note that, 
)( IH

ayE∗  reduces to ,ry  the mean of the values−y  
respondent. Hence, 1v  is given by (29) and 2v  is given by 
(31). Now, noting that ∑∑=∗

∗ s is ii aayV )/1()(  
2un2un )( yrri syy =−  and 0),(Cov* =∗∗

ji yy  for ,ji ≠  one 
can show that )( IH YyV a −∗  is given by  

( )
.

)ˆ1(

)1(
ˆ

un2

2
21

2
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2
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s
ii

s i s

n

nr
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aw
w

p

v

⎥
⎥
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⎢
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∑

 (34) 

The sum of (29), (31) and (34) gives .tv  Note that even 
though ∗v  given by (34) is expressed as the difference 
between two terms, it is always nonnegative, as shown in 
Appendix D.  

5. Simulation Study  
As a complement to the theory, we present some results 

from a limited simulation study. We generated a population 
of 800=N  values ),( ii zy  according to the ratio model 

,ε+β= zy  where z  and ε  were generated from a normal 
distribution such that the correlation, ,yzρ  between y and z 
equaled 0.05, 0.30, 0.70 and 0.90. The objective is to 
estimate the population total .∑= p iyY  We drew =R  
10,000 PPS samples, each of size ,75=n  according to 
Sampford’s pps sampling method, using item z as the 
measure of size. Nonresponse to item y was then generated 
from each PPS sample according to a uniform response 
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mechanism with a response rate of 0.7; item z was observed 
for all units in the sample. We used weighted and 
unweighted random hot-deck imputation to compensate for 
nonresponse to item y. 

The estimator of the first component in the variance 
formula (4) was computed using the well know Sen-Yates-
Grundy estimator. Let )(ξv  denote the variance estimator 
of .∑ ξs iiw  The Sen-Yates-Grundy estimator of variance is 
then given by 

,
2
1

)(

2

∑ ∑
∈ ∈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

π
ξ

−
π
ξ

π
π−ππ

=ξ
si sj j

j

i

i

ij

ijjiv  (35) 

where )and( sjsiPij ∈∈=π  is the joint probability of 
inclusion of units i and j in the sample. Sampford’s method 
ensures 0≥π−ππ ijji  for all ji,  so that the variance 
estimator in (35) us always nonnegative. 

As a measure of the bias of an imputed estimator IŶ  of 
Y, we used the bias ratio ),ˆ(s.e./)ˆ(Bias)ˆ( IIIr YYYB =  
where s.e. )ˆ( IY  denotes the standard error of .ÎY  To 
compare the efficiencies, we used the coefficient of 
variation of ,ÎY  denoted CV )ˆ( IY  and given by CV )ˆ( IY  = 

)./MSE( Y  The variance estimators were compared in 
terms of their relative bias and CV. The relative bias of a 
variance estimator, ,tv  is measured by −= )(()(rel vEvB t  

)ˆMSE(/))ˆMSE( II YY  and its CV is given by 

).ˆMSE(/)(MSE)CV( Itt Yvv =  Values of the above 
measures were calculated from the simulated PPS samples. 

Table 1 reports the simulation results on the bias ratio 
)( rB  of the three imputed estimators of Y, denoted rB  

(weighted), rB  (unweighted) and rB  (adjusted) and the 
CVs of the estimators, denoted CV (weighted), CV 
(unweighted) and CV (adjusted). It is clear from Table 1 
that the bias ratio of the estimator under unweighted 
imputation is large %)30(≥  if ,5.0≥ρxy  while the bias 
ratios of the estimator under weighted imputation and the 
adjusted estimator are small %)4(≤  for all values of xyρ . 
Due to large bias, the CV of the unweightede estimator is 
large that the CV of the weighted estimator if 5.0≥ρxy  and 
also larger than the CV of the adjusted estimator if 

,7.0≥ρxy  but the increase in CV is not large. Also, CV 
(weighted) is slightly smaller than CV (adjusted) for all 
values of .xyρ  

Table 2 reports the relative bias )( relB  and the CV ratios 
of the variance estimators. As expected, the variance 
estimator tv  (unweighted) leads to serious underestimation 
of MSE of the estimator for large ),7.0(≥ρ xy  while the 
absolute relative bias of the variance estimators tv  
(weighted) and tv  (adjusted) is small %)6(≤  for all values 
of .xyρ  Turning to the CV ratios of the variance estimators, 
Table 2 shows that tv  (unweighted) has the smallest CV 
followed by tv  (weighted) and tv  (adjusted) for .3.0≥ρxy  

 
Table 1 

Bias Ratio (%) and CV (%) of the Imputed Estimators 
 

 

 

Table 2 
Relative Bias (%) of the Variance Estimators and  

Comparisons of the CV Ratios of the Variance Estimators 
 

 05.0=ρ xy  30.0=ρ xy  50.0=ρ xy  70.0=ρ xy  90.0=ρ xy  

)(rel tvB (weighted) – 2.43 – 4.78 – 4.28 3.96 – 1.95 

)(rel tvB (unweighted) – 1.03 – 3.47 – 11.80 – 18.50 – 29.30 

)(rel tvB (adjusted) – 5.42 – 1.06 – 4.21 1.61 0.07 

)(CV tv (unweighted) 

)(CV tv (weighted) 
1.016 0.984 0.931 0.875 0.781 

)(CV tv (unweighted) 

)(CV tv (adjusted) 
1.032 0.829 0.701 0.819 0.692 

)(CV tv (weighted) 

)(CV tv (adjusted) 
1.016 0.843 0.751 0.935 0.886 

      

 

  
 

 05.0=ρ xy  30.0=ρ xy  50.0=ρ xy  70.0=ρ xy  90.0=ρ xy  

rB (weighted) – 0.78 1.99 – 0.79 0.40 3.27 

rB (unweighted) 1.82 18.60 30.50 49.20 64.20 

rB (adjusted) – 1.12 1.47 0.01 0.61 2.94 

CV(weighted) 18.80 15.30 11.60 5.87 4.69 

CV(unweighted) 18.00 15.20 12.50 6.83 5.93 

CV(adjusted) 20.90 16.80 13.50 6.10 4.78 
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6. Concluding Remarks  
Unweighted imputation methods are often used in 

practice to compensate for item nonresponse when the 
survey weights are not available at the imputation stage. 
Also, unweighted imputation is appealing to users even 
when the weights are available at the imputation stage. But 
it leads to biased estimators under uniform response within 
imputation classes. We have proposed bias-adjusted esti-
mators under ratio imputation and random hot-deck 
imputation. These estimators can be implemented from the 
imputed data file, even if the imputation flags within classes 
are not given, provided estimates of response rates within 
classes are reported. We have shown that the bias-adjusted 
estimator performs better than the unadjusted estimator 
under unweighted imputation, and is robust in the sense of 
validity under both the frequentist and model-based 
approaches. 

We have obtained linearization variance estimators for 
the bias-adjusted estimators. For variance estimation, impu-
tation flags should be provided in the variance estimation 
file. 

If the imputation flags are available in the data file and 
imputation is deterministic, the imputed values can be 
replaced by those under weighted imputation. For example, 
in the case of unweighted ratio imputation, ,/ unun

irri zzyy =∗  
one could either multiply each imputed value by 

rrrr zyyz // unun ×  to reproduce the values irr zzy /  under 
weighted ratio imputation, provided edits are not applied 
after imputation. Alternatively, one could reimpute values 
using the sampling weights .iw  In both cases, the adjusted 
estimator does not present advantages over the imputed 
estimator based on weighted imputation other than assuring 
that the imputed values in the data file are not changed. 

In the case of random hot-deck imputation, however, the 
only way to implement weighted random hot-deck 
imputation is to reimpute using a weighted hot-deck 
scheme. We believe that analysts do not like to change the 
imputed values on the data file produced by the edit and 
imputation system. 

The imputed estimator (10) can use poststratification (or 
calibration) weights, ),(~ swi  based on known population 
auxiliary information, instead of design weights .iw  Note 
that the calibration weights, ),(~ swi  depend on the whole 
sample s unlike the design weights .iw  If the calibration 
weights are used for ratio imputation, then we simply 
replace iw  by )(~ swi  in section 3.1.1 and the resulting 
linearization variance estimator, ,1v  uses ξ̂  in (22) with iw  
changed to ).(~ swi  However, (.)v  in (22) now refers to the 
linearization variance estimator of the full sample post-
stratified estimator .)(~∑s ii ysw  

Under unweighted imputation, linearization variance 
estimation becomes more complex because the bias-
adjusted estimator based on the calibration weights will 
involve both design weights and calibration weights. If the 
design weights, ,iw  are available at the imputation stage but 
not the calibration weights, ),(~ swi  the design weights can 

be used for imputation and the calibration weights for 
estimation. The resulting imputed estimator (6) based on 
calibration weights remains asymptotically unbiased under 
uniform response (within classes), but linearization variance 
estimation becomes more complex because both sets of 
weights are involved in the imputed estimator. We propose 
to study poststratification and some other extensions in a 
separate paper, and derive corresponding linearization 
variance estimators. 
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Appendix  

A. Derivation of 1v   
Suppose that an estimator θ̂  is expresses as 
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where ∑ == s jiij jywY 6...,,1,ˆ  and Ŷ )ˆ...,,ˆ( 61 ′= YY .  
Letting ),ˆ(Yg=θ  )ˆ1(ˆ,/ 4334 jjj YYYYYR δ+==  with 
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neglecting higher order terms in jŶδ ’s. The expression 
(A.2) reduces to 
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where 

)(
1

1
1

θ−ξ=ξ ii Y
 (A.3) 

with 

.)()( 4343
4

65
653421 iiiiii yRy

Y

YY
yyRy −

−
+−+=ξ  

Hence, the variance estimator of θ̂  from the delta method 
may be expressed as ).(ξv  Now, replacing unknown 
quantities in (A.3) by their estimators, we get 

),ˆ()ˆ(estvar ξ=θ v  
where 

)ˆˆ(
ˆ
1ˆ

1

1

θ−ξ=ξ ii
Y

 

with 
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Y

YY
yyRy −

−
+−+=ξ  

Note that the delta method avoids evaluation of partial 
derivatives of )ˆ(Yg  with respect to its components ,jY  
unlike the usual Taylor linearization method. 

Letting ∑∑ ===== s iiis i YYyawYYwY 64321
ˆˆ,ˆˆ,ˆ  

∑s iii zaw  and ∑= s ii zwY5̂  in (A.1), we get the variance 
estimator (22) of IRy  based on weighted ratio imputation. 
Also, letting === ∑∑ 321

ˆ,ˆ,ˆ YyawYwY is iis i  
( ) is iiis iiiis ii zwYwzawYwyaw ∑∑∑ == 54

ˆ,/ˆ),/(  
and  iis i zawY ∑=6

ˆ  in (A.1), we get the variance esti-
mator (25) of IRy  based on unweighted imputation. Finally, 
we note that the bias-adjusted estimator (16) written in the 
form (18) can be expressed as the sum of three components: 

zRy rr
unˆ,  and .ˆ un

rr zR−  Each of these components is a 
special case of (A.1). Indeed, the component ry  is a special 
case of (A.1) with ∑ ∑== s s iiiii yawYawY 21

ˆ,ˆ  with 
.ˆˆ

65 YY =  The component zRr
unˆ  is a special case of (A.1) 

with  ∑∑ ===== s iiiis i YYwyawYYwY 64321
ˆˆ),/(ˆˆ,ˆ  

∑s iiii wzaw )/(  and .ˆ
5 ∑= s iii zawY  We apply the delta 

method to each component separately to obtain )(1 ξ= vv  
given by (26).  
B. Derivation of 2v  for the Estimator IRy  Under 

Unweighted Imputation  
Using the delta method, it can be shown that 
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by 
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The component 2v  is obtained by estimating unknown 
quantities in (B.1). It is given by 
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C. Derivation of 2v  for the estimator ayIR   
Using the delta method, it can be shown that 
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pr −  for the bias-adjusted estimator is given by 
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The component 2v  is obtained by estimating unknown 
quantities in (C.1). It is given by 
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D. Nonegativity of )( IH YyV a −∗   

We show that the variance formula in (34) is always 
nonnegative. First, note that this expression can be 
expressed as 
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On one hand, mnnrmn ≥⇔+≥ )(2  which is always 
true. On the other hand, using Cauchy-Schwarz inequality, it 
is easily seen that ./)(

22 mww
m ms s ii∑ ∑≥  The result 

follows. 
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