Development of a small area estimation system at Statistics Canada

Section 3. Area level model

The area level small area estimator first appeared in the seminal paper of Fay and Herriot (1979). Following that paper, let the parameter of interest be θ i ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaOGaai4oaaaa@3990@ common examples are totals, Y i = j U i y j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGPbaabeaakiabg2da9maaqababaGaamyEamaaBaaaleaa caWGQbaabeaaaeaacaWGQbGaaGPaVlabgIGiolaaykW7caWGvbWaaS baaWqaaiaadMgaaeqaaaWcbeqdcqGHris5aOGaaiilaaaa@4533@ or means, Y ¯ i = Y i / N i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaara WaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaSGbaeaacaWGzbWaaSba aSqaaiaadMgaaeqaaaGcbaGaamOtamaaBaaaleaacaWGPbaabeaaaa GccaGGUaaaaa@3DD8@ As noted above, the vector of auxiliary variables may differ from the one used in direct estimation and is denoted as z . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOEaiaac6 caaaa@37AC@ The area level model can be expressed as two equations.

The first equation, commonly known as the sampling model, is given by

θ ^ i = θ i + e i ( 3.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcqaH4oqCdaWgaaWcbaGa amyAaaqabaGccqGHRaWkcaWGLbWaaSbaaSqaaiaadMgaaeqaaOGaaG zbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaI XaGaaiykaaaa@4AF9@

and expresses the direct estimate θ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaaaaa@38D7@ in terms of the unknown parameter θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaaaa@38C7@ plus a random error e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbaabeaaaaa@37FB@ due to sampling. The sampling errors e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbaabeaaaaa@37FB@ are independently and identically distributed with mean 0 and variance ψ i : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaOGaaGjcVlaacQdaaaa@3B38@ that is E p ( e i | θ i ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGWbaabeaakmaabmaabaGaamyzamaaBaaaleaacaWGPbaa beaakiaaykW7daabbaqaaiaaykW7cqaH4oqCdaWgaaWcbaGaamyAaa qabaaakiaawEa7aaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@44C7@ and V p ( e i | θ i ) = ψ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGWbaabeaakmaabmaabaGaamyzamaaBaaaleaacaWGPbaa beaakiaaykW7daabbaqaaiaaykW7cqaH4oqCdaWgaaWcbaGaamyAaa qabaaakiaawEa7aaGaayjkaiaawMcaaiabg2da9iabeI8a5naaBaaa leaacaWGPbaabeaakiaacYcaaaa@47C0@ where p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@36EC@ denotes expectation in terms of the sample design. Note that ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaaaa@38DF@ is also the design variance of θ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaaaaa@38D7@ and is typically unknown.

The second equation, known as the linking model, is given by

θ i = z i T β + b i v i ( 3.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaCOEamaaDaaaleaacaWGPbaa baGaamivaaaakiaahk7acqGHRaWkcaWGIbWaaSbaaSqaaiaadMgaae qaaOGaamODamaaBaaaleaacaWGPbaabeaakiaaywW7caaMf8UaaGzb VlaaywW7caaMf8UaaiikaiaaiodacaGGUaGaaGOmaiaacMcaaaa@4E6B@

and expresses the parameter θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaaaa@38C7@ as a fixed effect z i T β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOEamaaDa aaleaacaWGPbaabaGaamivaaaakiaahk7aaaa@3A36@ plus a random effect v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGPbaabeaaaaa@380C@ multiplied by b i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGPbaabeaakiaac6caaaa@38B4@ In the production system, the b i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGPbaabeaaaaa@37F8@ term has a default value of one but can be specified by the user to control heteroscedastic errors or the impact of influential observations. The random effects v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGPbaabeaaaaa@380C@ are independently and identically distributed with mean 0 and unknown model variance σ v 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaaiilaaaa@3A58@ that is E m ( v i ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGTbaabeaakmaabmaabaGaamODamaaBaaaleaacaWGPbaa beaaaOGaayjkaiaawMcaaiabg2da9iaaicdaaaa@3D51@ and V m ( v i ) = σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGTbaabeaakmaabmaabaGaamODamaaBaaaleaacaWGPbaa beaaaOGaayjkaiaawMcaaiabg2da9iabeo8aZnaaDaaaleaacaWG2b aabaGaaGOmaaaaaaa@404F@ where E m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGTbaabeaaaaa@37DF@ denotes the model expectation and V m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGTbaabeaaaaa@37F0@ the model variance. The random errors e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbaabeaaaaa@37FB@ are independent of the random effects v i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGPbaabeaakiaac6caaaa@38C8@ The combination of the sampling model and linking model results in a single generalized linear mixed model (GLMM) given by

θ ^ i = z i T β + b i v i + e i . ( 3.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWH6bWaa0baaSqaaiaa dMgaaeaacaWGubaaaOGaaCOSdiabgUcaRiaadkgadaWgaaWcbaGaam yAaaqabaGccaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamyz amaaBaaaleaacaWGPbaabeaakiaac6cacaaMf8UaaGzbVlaaywW7ca aMf8UaaGzbVlaacIcacaaIZaGaaiOlaiaaiodacaGGPaaaaa@521E@

From the Fay-Herriot model (3.3), we observe that E m p ( θ ^ i ) = z i T β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGTbGaamiCaaqabaGcdaqadaqaaiqbeI7aXzaajaWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaaCOEamaaDa aaleaacaWGPbaabaGaamivaaaakiaahk7aaaa@4296@ and V m p ( θ ^ i ) = b i 2 σ v 2 + ψ ˜ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGTbGaamiCaaqabaGcdaqadaqaaiqbeI7aXzaajaWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaamOyamaaDa aaleaacaWGPbaabaGaaGOmaaaakiabeo8aZnaaDaaaleaacaWG2baa baGaaGOmaaaakiabgUcaRiqbeI8a5zaaiaWaaSbaaSqaaiaadMgaae qaaOGaaiilaaaa@4974@ where ψ ˜ i = E m ( ψ i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaG aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWGfbWaaSbaaSqaaiaa d2gaaeqaaOWaaeWaaeaacqaHipqEdaWgaaWcbaGaamyAaaqabaaaki aawIcacaGLPaaaaaa@406B@ is the smoothed design variance of θ ^ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaGccaGGUaaaaa@3993@ In general, we cannot treat ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaaaa@38DF@ as fixed, as it is not strictly a function of auxiliary data. If the σ v 2 s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaGqaaOGaa8xgGiaa=nhaaaa@3B5F@ and ψ ˜ i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaG aadaWgaaWcbaGaamyAaaqabaacbaGccaWFzaIaa83Caaaa@3AAF@ are known, the solution to the GLMM yields the Best Linear Unbiased Predictor (BLUP), θ ˜ i BLUP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaG aadaqhaaWcbaGaamyAaaqaaiaabkeacaqGmbGaaeyvaiaabcfaaaaa aa@3C16@

θ ˜ i BLUP = { γ i θ ^ i + ( 1 γ i ) z i T β ˜ for i A z i T β ˜ for i A ¯ ( 3.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaG aadaqhaaWcbaGaamyAaaqaaiaabkeacaqGmbGaaeyvaiaabcfaaaGc cqGH9aqpdaGabaqaauaabaqaciaaaeaacqaHZoWzdaWgaaWcbaGaam yAaaqabaGccuaH4oqCgaqcamaaBaaaleaacaWGPbaabeaakiabgUca RmaabmaabaGaaGymaiabgkHiTiabeo7aNnaaBaaaleaacaWGPbaabe aaaOGaayjkaiaawMcaaiaahQhadaqhaaWcbaGaamyAaaqaaiaadsfa aaGcceWHYoGbaGaaaeaacaqGMbGaae4BaiaabkhacaaMe8UaaGPaVl aadMgacqGHiiIZcaWGbbaabaGaaCOEamaaDaaaleaacaWGPbaabaGa amivaaaakiqahk7agaacaaqaaiaabAgacaqGVbGaaeOCaiaaysW7ca aMc8UaamyAaiabgIGiolqadgeagaqeaGGadiab=bcaGaaaaiaawUha aiaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaiodacaGGUa GaaGinaiaacMcaaaa@71F3@

where γ i = ( b i 2 σ v 2 ) / ( ψ ˜ i + b i 2 σ v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaSGbaeaadaqadaqaaiaadkga daqhaaWcbaGaamyAaaqaaiaaikdaaaGccqaHdpWCdaqhaaWcbaGaam ODaaqaaiaaikdaaaaakiaawIcacaGLPaaaaeaadaqadaqaaiqbeI8a 5zaaiaWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamOyamaaDaaale aacaWGPbaabaGaaGOmaaaakiabeo8aZnaaDaaaleaacaWG2baabaGa aGOmaaaaaOGaayjkaiaawMcaaaaaaaa@4DC5@ and β ˜ = ( i A z i z i T / ( ψ ˜ i + b i 2 σ v 2 ) ) 1 i A z i θ ^ i / ( ψ ˜ i + b i 2 σ v 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaia Gaeyypa0ZaaeWaaeaadaWcgaqaamaaqababaGaaCOEamaaBaaaleaa caWGPbaabeaakiaahQhadaqhaaWcbaGaamyAaaqaaiaadsfaaaaaba GaamyAaiabgIGiolaadgeaaeqaniabggHiLdaakeaadaqadaqaaiqb eI8a5zaaiaWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamOyamaaDa aaleaacaWGPbaabaGaaGOmaaaakiabeo8aZnaaDaaaleaacaWG2baa baGaaGOmaaaaaOGaayjkaiaawMcaaaaaaiaawIcacaGLPaaadaahaa WcbeqaaiabgkHiTiaaigdaaaGcdaWcgaqaamaaqababaGaaCOEamaa BaaaleaacaWGPbaabeaakiqbeI7aXzaajaWaaSbaaSqaaiaadMgaae qaaaqaaiaadMgacqGHiiIZcaWGbbaabeqdcqGHris5aaGcbaWaaeWa aeaacuaHipqEgaacamaaBaaaleaacaWGPbaabeaakiabgUcaRiaadk gadaqhaaWcbaGaamyAaaqaaiaaikdaaaGccqaHdpWCdaqhaaWcbaGa amODaaqaaiaaikdaaaaakiaawIcacaGLPaaaaaGaaiOlaaaa@68B3@

There are four recursive procedures for estimating σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@399E@ and β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdaaa@3735@ in the production system. The first three assume that ψ ˜ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaG aadaWgaaWcbaGaamyAaaqabaaaaa@38EE@ is known, or that a smoothed version of it is available (see the following section for details). Under this assumption, the variance components can be computed via the Fay-Herriot procedure (FH) as outlined in Fay and Herriot (1979), the restricted maximum likelihood (REML), or the Adjusted Density Maximization (ADM) due to Li and Lahiri (2010). The fourth procedure, WF, due to Wang and Fuller (2003) assumes that ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaaaa@38DF@ is estimated by ψ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaK aadaWgaaWcbaGaamyAaaqabaaaaa@38EF@ given that n i 2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiabgwMiZkaaikdacaGGUaaaaa@3B42@ The WF procedure does not require any smoothing of the estimated ψ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaK aadaWgaaWcbaGaamyAaaqabaaaaa@38EF@ values before estimating σ v 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaaiOlaaaa@3A5A@ Wang and Fuller (2003) carried out simulations with n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbaabeaaaaa@3804@ ranging from 9 to 36 and found that their procedure yielded reasonable estimates of θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaaaa@38C7@ and its estimated mean squared error.

The main difference between these four procedures is how the σ v 2 s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaGqaaOGaa8xgGiaa=nhaaaa@3B5F@ are computed. They are all based on an iterative scoring algorithm that obtains σ ^ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdaaaaaaa@39AE@ as an estimate of the model variance σ v 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaaiOlaaaa@3A5A@ The FH, REML, and WF procedures may yield σ ^ v 2 s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdaaaacbaGccaWFzaIaa83Caaaa @3B6F@ that are smaller than zero. If this occurs, the σ ^ v 2 s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdaaaacbaGccaWFzaIaa83Caaaa @3B6F@ are set to zero for both the FH and REML procedures. A drawback of truncating the estimated σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@399E@ to zero is that the resulting small area estimator will be synthetic for all areas. Li and Lahiri (2010) suggested the ADM as a way to address the problem of obtaining negative σ ^ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdaaaaaaa@39AE@ by maximizing an adjusted likelihood defined as a product of the model variance and a standard likelihood. Although the ADM method always gives a positive solution for σ v 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaaiilaaaa@3A58@ it should be used cautiously because it overestimates the model variance. The REML, FH and ADM procedures use the smoothed values of the estimated ψ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaK aadaWgaaWcbaGaamyAaaqabaaaaa@38EF@ values obtained from the sample or some estimate provided by the user. For the WF procedure, if σ ^ v 2 < 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdaaaGccqGH8aapcaaIWaGaaiil aaaa@3C26@ Wang and Fuller (2003) suggested to set σ ^ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdaaaaaaa@39AE@ to 0.5   V ^ ( σ ^ v 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaac6 cacaaI1aGaaGPaVpaakaaabaGaaeiiaiqadAfagaqcamaabmaabaGa fq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaaaakiaawIcaca GLPaaaaSqabaGccaGGSaaaaa@415A@ where

V ^ ( σ ^ v 2 ) = i A 2 κ i 2 [ ( ψ ^ i + b i 2 σ ^ v 2 ) 2 + ( ψ ^ i ) 2 ( n i 1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWG2baabaGaaGOmaaaa aOGaayjkaiaawMcaaiabg2da9maaqafabaGaaGOmaiabeQ7aRnaaDa aaleaacaWGPbaabaGaaGOmaaaakmaadmaabaWaaeWaaeaacuaHipqE gaqcamaaBaaaleaacaWGPbaabeaakiabgUcaRiaadkgadaqhaaWcba GaamyAaaqaaiaaikdaaaGccuaHdpWCgaqcamaaDaaaleaacaWG2baa baGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaki abgUcaRmaalaaabaWaaeWaaeaacuaHipqEgaqcamaaBaaaleaacaWG PbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaam aabmaabaGaamOBamaaBaaaleaacaWGPbaabeaakiabgkHiTiaaigda aiaawIcacaGLPaaaaaaacaGLBbGaayzxaaaaleaacaWGPbGaeyicI4 Saamyqaaqab0GaeyyeIuoaaaa@616E@

and

κ i = [ b i 2 σ ^ v 2 + ( n i + 1 ) ( n i 1 ) ψ ^ i ] 1 i A [ b i 2 σ ^ v 2 + ( n i + 1 ) ( n i 1 ) ψ ^ i ] 1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaSaaaeaadaWadaqaaiaadkga daqhaaWcbaGaamyAaaqaaiaaikdaaaGccuaHdpWCgaqcamaaDaaale aacaWG2baabaGaaGOmaaaakiabgUcaRmaalaaabaWaaeWaaeaacaWG UbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaaGymaaGaayjkaiaawM caaaqaamaabmaabaGaamOBamaaBaaaleaacaWGPbaabeaakiabgkHi TiaaigdaaiaawIcacaGLPaaaaaGafqiYdKNbaKaadaWgaaWcbaGaam yAaaqabaaakiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaigda aaaakeaadaaeqaqaamaadmaabaGaamOyamaaDaaaleaacaWGPbaaba GaaGOmaaaakiqbeo8aZzaajaWaa0baaSqaaiaadAhaaeaacaaIYaaa aOGaey4kaSYaaSaaaeaadaqadaqaaiaad6gadaWgaaWcbaGaamyAaa qabaGccqGHRaWkcaaIXaaacaGLOaGaayzkaaaabaWaaeWaaeaacaWG UbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaaGymaaGaayjkaiaawM caaaaacuaHipqEgaqcamaaBaaaleaacaWGPbaabeaaaOGaay5waiaa w2faamaaCaaaleqabaGaeyOeI0IaaGymaaaaaeaacaWGPbGaeyicI4 Saamyqaaqab0GaeyyeIuoaaaGccaGGUaaaaa@714A@

Plugging σ ^ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdaaaaaaa@39AE@ and an estimate of ψ ˜ i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaG aadaWgaaWcbaGaamyAaaqabaacbaGccaWFzaIaa83Caaaa@3AAF@ into the θ ˜ i BLUP , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaG aadaqhaaWcbaGaamyAaaqaaiaabkeacaqGmbGaaeyvaiaabcfaaaGc caGGSaaaaa@3CD0@ defined by equation (3.4), yields the Empirical Best Linear Unbiased Predictor (EBLUP), θ ^ i EBLUP . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabweacaqGcbGaaeitaiaabwfacaqG qbaaaOGaaiOlaaaa@3D9B@ It is given by

θ ^ i EBLUP = { γ ^ i θ ^ i + ( 1 γ ^ i ) z i T β ^ for  i A z i T β ^ for  i A ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabweacaqGcbGaaeitaiaabwfacaqG qbaaaOGaeyypa0ZaaiqaaeaafaqaaeGacaaabaGafq4SdCMbaKaada WgaaWcbaGaamyAaaqabaGccuaH4oqCgaqcamaaBaaaleaacaWGPbaa beaakiabgUcaRmaabmaabaGaaGymaiabgkHiTiqbeo7aNzaajaWaaS baaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaCOEamaaDaaaleaa caWGPbaabaGaamivaaaakiqahk7agaqcaaqaaiaabAgacaqGVbGaae OCaiaabccacaWGPbGaeyicI4SaamyqaaqaaiaahQhadaqhaaWcbaGa amyAaaqaaiaadsfaaaGcceWHYoGbaKaaaeaacaqGMbGaae4Baiaabk hacaqGGaGaamyAaiabgIGiolqadgeagaqeaaaaaiaawUhaaaaa@61D6@

where γ ^ i = ( b i 2 σ ^ v 2 ) / ( ψ ¨ i + b i 2 σ ^ v 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4SdCMbaK aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpdaWcgaqaamaabmaabaGa amOyamaaDaaaleaacaWGPbaabaGaaGOmaaaakiqbeo8aZzaajaWaa0 baaSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGaayzkaaaabaWaaeWa aeaacuaHipqEgaWaamaaBaaaleaacaWGPbaabeaakiabgUcaRiaadk gadaqhaaWcbaGaamyAaaqaaiaaikdaaaGccuaHdpWCgaqcamaaDaaa leaacaWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaaaacaGGSaaaaa@4EA0@ β ^ = ( i A z i z i T / ( ψ ¨ i + b i 2 σ ^ v 2 ) ) 1 i A z i θ ^ i DIR / ( ψ ¨ i + b i 2 σ ^ v 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja Gaeyypa0ZaaeWaaeaadaWcgaqaamaaqababaGaaCOEamaaBaaaleaa caWGPbaabeaakiaahQhadaqhaaWcbaGaamyAaaqaaiaadsfaaaaaba GaamyAaiabgIGiolaadgeaaeqaniabggHiLdaakeaadaqadaqaaiqb eI8a5zaadaWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamOyamaaDa aaleaacaWGPbaabaGaaGOmaaaakiqbeo8aZzaajaWaa0baaSqaaiaa dAhaaeaacaaIYaaaaaGccaGLOaGaayzkaaaaaaGaayjkaiaawMcaam aaCaaaleqabaGaeyOeI0IaaGymaaaakmaalyaabaWaaabeaeaacaWH 6bWaaSbaaSqaaiaadMgaaeqaaOGafqiUdeNbaKaadaqhaaWcbaGaam yAaaqaaiaabseacaqGjbGaaeOuaaaaaeaacaWGPbGaeyicI4Saamyq aaqab0GaeyyeIuoaaOqaamaabmaabaGafqiYdKNbamaadaWgaaWcba GaamyAaaqabaGccqGHRaWkcaWGIbWaa0baaSqaaiaadMgaaeaacaaI YaaaaOGafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaaaaki aawIcacaGLPaaaaaGaaiilaaaa@6B31@ and ψ ¨ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbam aadaWgaaWcbaGaamyAaaqabaaaaa@38E9@ is chosen according to the procedure used. For the REML, FH and ADM procedures the ψ ¨ i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbam aadaWgaaWcbaGaamyAaaqabaacbaGccaWFzaIaa83Caaaa@3AAA@ are the smoothed values of the estimated ψ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaK aadaWgaaWcbaGaamyAaaqabaaaaa@38EF@ values obtained from the sample or some estimate provided by the user. For the WF procedure, we have that ψ ¨ i = ψ ^ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbam aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcuaHipqEgaqcamaaBaaa leaacaWGPbaabeaakiaac6caaaa@3DAD@ If the estimated model variance b i 2 σ ^ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaDa aaleaacaWGPbaabaGaaGOmaaaakiqbeo8aZzaajaWaa0baaSqaaiaa dAhaaeaacaaIYaaaaaaa@3C76@ is relatively small compared with ψ ¨ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbam aadaWgaaWcbaGaamyAaaqabaGccaGGSaaaaa@39A3@ then γ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4SdCMbaK aadaWgaaWcbaGaamyAaaqabaaaaa@38C8@ will be small and more weight will be attached to the synthetic estimator z i T β ^ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOEamaaDa aaleaacaWGPbaabaGaamivaaaakiqahk7agaqcaiaac6caaaa@3AF8@ Similarly, more weight is attached to the direct estimator, θ ^ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaGccaGGSaaaaa@3991@ if the design variance ψ ¨ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbam aadaWgaaWcbaGaamyAaaqabaaaaa@38E9@ is relatively small.

Details of the required computations can be found in the methodology specifications for the production system in Estevao et al. (2015).

3.1  Estimation of the smooth design variance

The design variance, ψ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaOGaaiilaaaa@3999@ could be used as an estimator of the smooth design variance ψ ˜ i = E m ( ψ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaG aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWGfbWaaSbaaSqaaiaa d2gaaeqaaOWaaeWaaeaacqaHipqEdaWgaaWcbaGaamyAaaqabaaaki aawIcacaGLPaaaaaa@406A@ if it were known. In most cases, it is unknown. To get around this difficulty, a design-unbiased variance estimator ψ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaK aadaWgaaWcbaGaamyAaaqabaaaaa@38EF@ of ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaaaa@38DF@ is assumed to be available; i.e., E p ( ψ ^ i ) = ψ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGWbaabeaakmaabmaabaGafqiYdKNbaKaadaWgaaWcbaGa amyAaaqabaaakiaawIcacaGLPaaacqGH9aqpcqaHipqEdaWgaaWcba GaamyAaaqabaGccaGGUaaaaa@4121@ Under this assumption, we have that

E m p ( ψ ^ i ) = E m ( ψ i ) = ψ ˜ i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGTbGaamiCaaqabaGcdaqadaqaaiqbeI8a5zaajaWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaamyramaaBa aaleaacaWGTbaabeaakmaabmaabaGaeqiYdK3aaSbaaSqaaiaadMga aeqaaaGccaGLOaGaayzkaaGaeyypa0JafqiYdKNbaGaadaWgaaWcba GaamyAaaqabaGccaGGUaaaaa@4994@

A simple unbiased estimator of the smooth design variance ψ ˜ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaG aadaWgaaWcbaGaamyAaaqabaaaaa@38EE@ is ψ ^ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaK aadaWgaaWcbaGaamyAaaqabaGccaGGUaaaaa@39AB@ However, ψ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaK aadaWgaaWcbaGaamyAaaqabaaaaa@38EF@ may be quite unstable when the sample size in domain i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E5@ is small. A more efficient estimator is obtained by modelling ψ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaK aadaWgaaWcbaGaamyAaaqabaaaaa@38EF@ given z i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOEamaaBa aaleaacaWGPbaabeaakiaac6caaaa@38D0@ Dick (1995) and Rivest and Belmonte (2000) considered smoothing models given by

log ( ψ ^ i ) = x i T α + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbWaaeWaaeaacuaHipqEgaqcamaaBaaaleaacaWGPbaabeaa aOGaayjkaiaawMcaaiabg2da9iaahIhadaqhaaWcbaGaamyAaaqaai aadsfaaaGccaWHXoGaey4kaSIaeqyTdu2aaSbaaSqaaiaadMgaaeqa aOGaaiilaaaa@46F0@

where x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEamaaBa aaleaacaWGPbaabeaaaaa@3812@ is a vector of explanatory variables that are functions of z i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOEamaaBa aaleaacaWGPbaabeaakiaacYcaaaa@38CE@ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCySdaaa@3734@ is a vector of unknown model parameters to be estimated, and ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaaaa@38B8@ is a random error with E m p ( ε i ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGTbGaamiCaaqabaGcdaqadaqaaiabew7aLnaaBaaaleaa caWGPbaabeaaaOGaayjkaiaawMcaaiabg2da9iaaicdaaaa@3EF2@ and constant variance σ ε 2 = V m p ( ε i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiabew7aLbqaaiaaikdaaaGccqGH9aqpcaWGwbWaaSbaaSqa aiaad2gacaWGWbaabeaakmaabmaabaGaeqyTdu2aaSbaaSqaaiaadM gaaeqaaaGccaGLOaGaayzkaaGaaiOlaaaa@4358@ We also assume that the errors ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaaaa@38B8@ are identically distributed conditionally on z i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOEamaaBa aaleaacaWGPbaabeaakiaacYcaaaa@38CE@ i = 1 , , m . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2 da9iaaigdacaGGSaGaaGjbVlablAciljaacYcacaaMe8UaamyBaiaa c6caaaa@3FE6@ From the above model, we observe that

ψ ˜ i = E m p ( ψ ^ i ) = exp ( x i T α ) Δ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaG aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWGfbWaaSbaaSqaaiaa d2gacaWGWbaabeaakmaabmaabaGafqiYdKNbaKaadaWgaaWcbaGaam yAaaqabaaakiaawIcacaGLPaaacqGH9aqpciGGLbGaaiiEaiaaccha daqadaqaaiaahIhadaqhaaWcbaGaamyAaaqaaiaadsfaaaGccaWHXo aacaGLOaGaayzkaaGaeuiLdqKaaiilaaaa@4D2B@

where Δ = E m p ( exp ( ε i ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaey ypa0JaamyramaaBaaaleaacaWGTbGaamiCaaqabaGcdaqadaqaaiGa cwgacaGG4bGaaiiCamaabmaabaGaeqyTdu2aaSbaaSqaaiaadMgaae qaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGaaiOlaaaa@44B4@ Dick (1995) estimated ψ ˜ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaG aadaWgaaWcbaGaamyAaaqabaaaaa@38EE@ by omitting the factor Δ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaai Olaaaa@380F@ Rivest and Belmonte (2000) estimated Δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqeaaa@375D@ by assuming that the errors ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaaaa@38B8@ are normally distributed. However, we observed empirically that the resulting estimator of Δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqeaaa@375D@ is sensitive to deviations from the normality assumption. This assumption is avoided by using a method of moments (see Beaumont and Bocci, 2016). This leads to the unbiased estimator of Δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqeaaa@375D@ given by

Δ ^ ( α ) = i = 1 m ψ ^ i i = 1 m exp ( x i T α ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbaK aadaqadaqaaiaahg7aaiaawIcacaGLPaaacqGH9aqpdaWcaaqaamaa qadabaGafqiYdKNbaKaadaWgaaWcbaGaamyAaaqabaaabaGaamyAai abg2da9iaaigdaaeaacaWGTbaaniabggHiLdaakeaadaaeWaqaaiGa cwgacaGG4bGaaiiCamaabmaabaGaaCiEamaaDaaaleaacaWGPbaaba Gaamivaaaakiaahg7aaiaawIcacaGLPaaaaSqaaiaadMgacqGH9aqp caaIXaaabaGaamyBaaqdcqGHris5aaaakiaac6caaaa@52E1@

An estimator α ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCySdyaaja aaaa@3744@ of the vector of unknown model parameters α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCySdaaa@3734@ is necessary to estimate ψ ˜ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaG aadaWgaaWcbaGaamyAaaqabaGccaGGUaaaaa@39AA@ It is obtained using the ordinary least squares method as

α ^ = ( i = 1 m x i x i T ) 1 i = 1 m x i log ( ψ ^ i ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCySdyaaja Gaeyypa0ZaaeWaaeaadaaeWbqaaiaahIhadaWgaaWcbaGaamyAaaqa baGccaWH4bWaa0baaSqaaiaadMgaaeaacaWGubaaaaqaaiaadMgacq GH9aqpcaaIXaaabaGaamyBaaqdcqGHris5aaGccaGLOaGaayzkaaWa aWbaaSqabeaacqGHsislcaaIXaaaaOWaaabCaeaacaWH4bWaaSbaaS qaaiaadMgaaeqaaOGaciiBaiaac+gacaGGNbWaaeWaaeaacuaHipqE gaqcamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaWcbaGaam yAaiabg2da9iaaigdaaeaacaWGTbaaniabggHiLdGccaGGUaaaaa@56CC@

The estimator ψ ˜ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaG GbaKaadaWgaaWcbaGaamyAaaqabaaaaa@38FD@ of ψ ˜ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaG aadaWgaaWcbaGaamyAaaqabaaaaa@38EE@ is then given by

ψ ˜ ^ i = exp ( x i T α ^ ) Δ ^ ( α ^ ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaG GbaKaadaWgaaWcbaGaamyAaaqabaGccqGH9aqpciGGLbGaaiiEaiaa cchadaqadaqaaiaahIhadaqhaaWcbaGaamyAaaqaaiaadsfaaaGcce WHXoGbaKaaaiaawIcacaGLPaaacuqHuoargaqcamaabmaabaGabCyS dyaajaaacaGLOaGaayzkaaGaaiOlaaaa@47BA@

A nice property of ψ ˜ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaG GbaKaadaWgaaWcbaGaamyAaaqabaaaaa@38FD@ is that the average of the smooth design variance estimator, ψ ˜ ^ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaG GbaKaadaWgaaWcbaGaamyAaaqabaGccaGGSaaaaa@39B7@ is equal to the average of the direct variance estimator, ψ ^ i ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaK aadaWgaaWcbaGaamyAaaqabaGccaGG7aaaaa@39B8@ i.e.,

i = 1 m ψ ˜ ^ i m = i = 1 m ψ ^ i m . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada aeWaqaaiqbeI8a5zaaiyaajaWaaSbaaSqaaiaadMgaaeqaaaqaaiaa dMgacqGH9aqpcaaIXaaabaGaamyBaaqdcqGHris5aaGcbaGaamyBaa aacqGH9aqpdaWcaaqaamaaqadabaGafqiYdKNbaKaadaWgaaWcbaGa amyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaacaWGTbaaniabgg HiLdaakeaacaWGTbaaaiaac6caaaa@4AF4@

This ensures that ψ ˜ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaG GbaKaadaWgaaWcbaGaamyAaaqabaaaaa@38FD@ does not systematically overestimate or underestimate ψ ˜ i = E m p ( ψ ^ i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaG aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWGfbWaaSbaaSqaaiaa d2gacaWGWbaabeaakmaabmaabaGafqiYdKNbaKaadaWgaaWcbaGaam yAaaqabaaakiaawIcacaGLPaaacaGGUaaaaa@4222@

3.2  Benchmarking

If the parameter of interest θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaaaa@38C7@ is a total ( θ i = Y i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aH4oqCdaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWGzbWaaSbaaSqa aiaadMgaaeqaaaGccaGLOaGaayzkaaGaaiilaaaa@3E12@ the user may wish to have the sum of the small area estimates, θ ^ = i A A ¯ θ ^ i EBLUP , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aacqGH9aqpdaaeqaqaaiqbeI7aXzaajaWaa0baaSqaaiaadMgaaeaa caqGfbGaaeOqaiaabYeacaqGvbGaaeiuaaaaaeaacaWGPbGaeyicI4 SaamyqaiabgQIiilqadgeagaqeaaqab0GaeyyeIuoakiaacYcaaaa@47F3@ agree with the estimated totals Y ^ = i A Y ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja Gaeyypa0ZaaabeaeaaceWGzbGbaKaadaWgaaWcbaGaamyAaaqabaaa baGaamyAaiabgIGiolaadgeaaeqaniabggHiLdaaaa@3F03@ at the overall sample level s ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaacU daaaa@37AE@ i.e., θ ^ = Y ^ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aacqGH9aqpceWGzbGbaKaacaGGUaaaaa@3A63@ In the case of a mean, θ i = Y ¯ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaOGaeyypa0JabmywayaaraWaaSbaaSqaaiaa dMgaaeqaaOGaaiilaaaa@3CA1@ this benchmarking condition becomes i A A ¯ N i θ ^ i EBLUP = i A N i θ ^ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabeaeaaca WGobWaaSbaaSqaaiaadMgaaeqaaOGafqiUdeNbaKaadaqhaaWcbaGa amyAaaqaaiaabweacaqGcbGaaeitaiaabwfacaqGqbaaaaqaaiaadM gacqGHiiIZcaWGbbGaeyOkIGSabmyqayaaraaabeqdcqGHris5aOGa eyypa0ZaaabeaeaacaWGobWaaSbaaSqaaiaadMgaaeqaaOGafqiUde NbaKaadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabgIGiolaadgea aeqaniabggHiLdGccaGGSaaaaa@5215@ where θ ^ i = Y ¯ ^ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpceWGzbGbaeHbaKaadaWg aaWcbaGaamyAaaqabaGccaGGUaaaaa@3CC2@

Two methods are available in the production system to ensure benchmarking for area based small area estimates. The first one is based on a difference adjustment and the second one is based on an augmented vector. They are valid for any method used to compute θ ^ i EBLUP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabweacaqGcbGaaeitaiaabwfacaqG qbaaaaaa@3CDF@ or whether the variance estimate ψ ¨ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbam aadaWgaaWcbaGaamyAaaqabaaaaa@38E9@ has been smoothed or not. The benchmarking based on a difference adjustment is an adaptation of the benchmarking given in Battese et al. (1988). The benchmarking based on an augmented vector is due to Wang, Fuller and Qu (2008).

Difference adjustment: For this method, the θ ^ i EBLUP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabweacaqGcbGaaeitaiaabwfacaqG qbaaaaaa@3CDF@ estimator is adjusted only for those areas where the realized sample size n i 1 , i A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiabgwMiZkaaigdacaGGSaGaaGjbVlaaykW7 caWGPbGaeyicI4Saamyqaaaa@418F@ and the synthetic estimates z i T β ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOEamaaDa aaleaacaWGPbaabaGaamivaaaakiqahk7agaqcaaaa@3A46@ for i A ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgI Giolqadgeagaqeaaaa@3947@ are left as is. The resulting benchmarked estimator is given by θ ^ i EBLUP , b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabweacaqGcbGaaeitaiaabwfacaqG qbGaaiilaiaaysW7caWGIbaaaaaa@4003@ and is defined as follows

θ ^ i EBLUP , b = { θ ^ i EBLUP + α i ( θ ^ * d A ω d θ ^ d EBLUP ) for i A z i T β ^ for i A ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabweacaqGcbGaaeitaiaabwfacaqG qbGaaiilaiaaysW7caWGIbaaaOGaeyypa0ZaaiqaaeaafaqaaeGaca aabaGafqiUdeNbaKaadaqhaaWcbaGaamyAaaqaaiaabweacaqGcbGa aeitaiaabwfacaqGqbaaaOGaey4kaSIaeqySde2aaSbaaSqaaiaadM gaaeqaaOWaaeWaaeaacuaH4oqCgaqcamaaCaaaleqabaGaaiOkaaaa kiabgkHiTmaaqafabaGaeqyYdC3aaSbaaSqaaiaadsgaaeqaaOGafq iUdeNbaKaadaqhaaWcbaGaamizaaqaaiaabweacaqGcbGaaeitaiaa bwfacaqGqbaaaaqaaiaadsgacqGHiiIZcaWGbbaabeqdcqGHris5aa GccaGLOaGaayzkaaaabaGaaeOzaiaab+gacaqGYbGaaGjbVlaaykW7 caWGPbGaeyicI4SaamyqaaqaaiaahQhadaqhaaWcbaGaamyAaaqaai aadsfaaaGcceWHYoGbaKaaaeaacaqGMbGaae4BaiaabkhacaaMe8Ua aGPaVlaadMgacqGHiiIZceWGbbGbaebaaaaacaGL7baaaaa@77BE@

where α i = { i U A ω i 2 ( ψ ¨ i + b i 2 σ ^ v 2 ) } 1 ω i ( ψ ¨ i + b i 2 σ ^ v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefi0BVTwBH5 gipXgzGmfD5XwzaGqbaKqzaeGaa8hiaOGaeqySde2aaSbaaSqaaiaa dMgaaeqaaOGaeyypa0ZaaiWaaeaadaaeqaqaaiabeM8a3naaDaaale aacaWGPbaabaGaaGOmaaaakmaabmaabaGafqiYdKNbamaadaWgaaWc baGaamyAaaqabaGccqGHRaWkcaWGIbWaa0baaSqaaiaadMgaaeaaca aIYaaaaOGafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaaaa kiaawIcacaGLPaaaaSqaaiaadMgacqGHiiIZcaWGvbWaaSbaaWqaai aadgeaaeqaaaWcbeqdcqGHris5aaGccaGL7bGaayzFaaWaaWbaaSqa beaacqGHsislcaaIXaaaaOGaeqyYdC3aaSbaaSqaaiaadMgaaeqaaO WaaeWaaeaacuaHipqEgaWaamaaBaaaleaacaWGPbaabeaakiabgUca RiaadkgadaqhaaWcbaGaamyAaaqaaiaaikdaaaGccuaHdpWCgaqcam aaDaaaleaacaWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaGGadKqz aeGae4hiaacaaa@6B3A@ for i A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgI GiolaadgeacaGGSaaaaa@39DF@ ω i = 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaGymaiaacYcaaaa@3B59@ if the benchmarking is to a total, and ω i = N i / N , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaSGbaeaacaWGobWaaSbaaSqa aiaadMgaaeqaaaGcbaGaamOtaaaacaGGSaaaaa@3D7E@ if the benchmarking is for the mean. The estimator θ ^ * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaahaaWcbeqaaiaacQcaaaaaaa@3898@ is a value provided by the user that represents the total or mean of the y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36F5@ -values of population U . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaac6 caaaa@3783@ The benchmarking ensures that i A A ¯ ω i θ ^ i EBLUP , b = θ ^ * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabeaeaacq aHjpWDdaWgaaWcbaGaamyAaaqabaGccuaH4oqCgaqcamaaDaaaleaa caWGPbaabaGaaeyraiaabkeacaqGmbGaaeyvaiaabcfacaGGSaGaaG jbVlaadkgaaaaabaGaamyAaiabgIGiolaadgeacqGHQicYceWGbbGb aebaaeqaniabggHiLdGccqGH9aqpcuaH4oqCgaqcamaaCaaaleqaba GaaiOkaaaakiaac6caaaa@4EEF@

Augmented vector: The vector z i T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOEamaaDa aaleaacaWGPbaabaGaamivaaaaaaa@38EE@ is augmented with ω i ψ ¨ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadMgaaeqaaOGafqiYdKNbamaadaWgaaWcbaGaamyAaaqa baGccaGGSaaaaa@3C94@ to form z i * T = ( z i T , ω i ψ ¨ i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOEamaaDa aaleaacaWGPbaabaGaaiOkaiaadsfaaaGccqGH9aqpdaqadaqaaiaa hQhadaqhaaWcbaGaamyAaaqaaiaadsfaaaGccaaMb8Uaaiilaiaays W7cqaHjpWDdaWgaaWcbaGaamyAaaqabaGccuaHipqEgaWaamaaBaaa leaacaWGPbaabeaaaOGaayjkaiaawMcaaaaa@48EA@ with ω i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadMgaaeqaaaaa@38DE@ and ψ ¨ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbam aadaWgaaWcbaGaamyAaaqabaaaaa@38E9@ as previously defined. The resulting augmented generalized linear mixed model (GLMM) equation is given by

θ ^ i = z i * T β * + b i v i * + e i ( 3.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWH6bWaa0baaSqaaiaa dMgaaeaacaGGQaGaamivaaaakiaahk7adaahaaWcbeqaaiaabQcaaa accmGccqWFGaaicqGHRaWkcaWGIbWaaSbaaSqaaiaadMgaaeqaaOGa amODamaaDaaaleaacaWGPbaabaGaaiOkaaaakiabgUcaRiaadwgada WgaaWcbaGaamyAaaqabaGccaaMf8UaaGzbVlaaywW7caaMf8UaaGzb VlaacIcacaaIZaGaaiOlaiaaiwdacaGGPaaaaa@5481@

where E m ( v i * ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGTbaabeaakmaabmaabaGaamODamaaDaaaleaacaWGPbaa baGaaiOkaaaaaOGaayjkaiaawMcaaiabg2da9iaaicdaaaa@3E00@ and V m ( v i * ) = σ v * 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGTbaabeaakmaabmaabaGaamODamaaDaaaleaacaWGPbaa baGaaiOkaaaaaOGaayjkaiaawMcaaiabg2da9iabeo8aZnaaDaaale aacaWG2baabaGaaiOkaiaaikdaaaGccaGGUaaaaa@4268@ The estimates for β * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdmaaCa aaleqabaGaaiOkaaaaaaa@3810@ and σ v * 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaGGQaGaaGOmaaaaaaa@3A4C@ are once more solved recursively for the four EBLUP procedures that we denote as θ ^ i EBLUP* . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabweacaqGcbGaaeitaiaabwfacaqG qbGaaeOkaaaakiaac6caaaa@3E48@

The resulting benchmarked estimator θ ^ i EBLUP * , b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabweacaqGcbGaaeitaiaabwfacaqG qbGaaiOkaiaacYcacaaMe8UaamOyaaaaaaa@40B1@ is given by

θ ^ i EBLUP * , b = { γ ^ i * θ ^ i EBLUP * + ( 1 γ ^ i * ) z i * T β ^ * for i A z i * T β ^ * for i A ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabweacaqGcbGaaeitaiaabwfacaqG qbWaaWbaaWqabeaacaGGQaaaaSGaaGzaVlaacYcacaaMe8UaamOyaa aakiabg2da9maaceaabaqbaeaabiGaaaqaaiqbeo7aNzaajaWaa0ba aSqaaiaadMgaaeaacaGGQaaaaOGafqiUdeNbaKaadaqhaaWcbaGaam yAaaqaaiaabweacaqGcbGaaeitaiaabwfacaqGqbWaaWbaaWqabeaa caGGQaaaaaaakiabgUcaRmaabmaabaGaaGymaiabgkHiTiqbeo7aNz aajaWaa0baaSqaaiaadMgaaeaacaGGQaaaaaGccaGLOaGaayzkaaGa aCOEamaaDaaaleaacaWGPbaabaGaaiOkaiaadsfaaaGcceWHYoGbaK aadaahaaWcbeqaaiaabQcaaaaakeaacaqGMbGaae4BaiaabkhacaaM e8UaaGPaVlaadMgacqGHiiIZcaWGbbaabaGaaCOEamaaDaaaleaaca WGPbaabaGaaiOkaiaadsfaaaaccmGccqWFGaaiceWHYoGbaKaadaah aaWcbeqaaiaabQcaaaaakeaacaqGMbGaae4BaiaabkhacaaMe8UaaG PaVlaadMgacqGHiiIZceWGbbGbaebaaaaacaGL7baaaaa@768D@

where γ ^ i * = ( b i 2 σ ^ v * 2 ) / ( ψ ¨ i + b i 2 σ ^ v * 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4SdCMbaK aadaqhaaWcbaGaamyAaaqaaiaacQcaaaGccqGH9aqpdaWcgaqaamaa bmaabaGaamOyamaaDaaaleaacaWGPbaabaGaaGOmaaaakiqbeo8aZz aajaWaa0baaSqaaiaadAhaaeaacaGGQaGaaGOmaaaaaOGaayjkaiaa wMcaaaqaamaabmaabaGafqiYdKNbamaadaWgaaWcbaGaamyAaaqaba GccqGHRaWkcaWGIbWaa0baaSqaaiaadMgaaeaacaaIYaaaaOGafq4W dmNbaKaadaqhaaWcbaGaamODaaqaaiaacQcacaaIYaaaaaGccaGLOa GaayzkaaaaaiaacYcaaaa@50AB@ and β ^ * = ( i A z i * z i * T / ( ψ ¨ i + b i 2 σ ^ v * 2 ) ) 1 i A z i * θ ^ i / ( ψ ¨ i + b i 2 σ ^ v * 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja WaaWbaaSqabeaacaGGQaaaaOGaeyypa0ZaaeWaaeaadaWcgaqaamaa qababaGaaCOEamaaDaaaleaacaWGPbaabaGaaiOkaaaakiaahQhada qhaaWcbaGaamyAaaqaaiaacQcacaWGubaaaaqaaiaadMgacqGHiiIZ caWGbbaabeqdcqGHris5aaGcbaWaaeWaaeaacuaHipqEgaWaamaaBa aaleaacaWGPbaabeaakiabgUcaRiaadkgadaqhaaWcbaGaamyAaaqa aiaaikdaaaGccuaHdpWCgaqcamaaDaaaleaacaWG2baabaGaaiOkai aaikdaaaaakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaWaaWbaaSqa beaacqGHsislcaaIXaaaaOWaaSGbaeaadaaeqaqaaiaahQhadaqhaa WcbaGaamyAaaqaaiaacQcaaaGccuaH4oqCgaqcamaaBaaaleaacaWG PbaabeaaaeaacaWGPbGaeyicI4Saamyqaaqab0GaeyyeIuoaaOqaam aabmaabaGafqiYdKNbamaadaWgaaWcbaGaamyAaaqabaGccqGHRaWk caWGIbWaa0baaSqaaiaadMgaaeaacaaIYaaaaOGafq4WdmNbaKaada qhaaWcbaGaamODaaqaaiaacQcacaaIYaaaaaGccaGLOaGaayzkaaaa aiaac6caaaa@6D17@

All the components of θ ^ i EBLUP * , b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabweacaqGcbGaaeitaiaabwfacaqG qbWaaWbaaWqabeaacaGGQaaaaSGaaGzaVlaacYcacaaMe8UaamOyaa aaaaa@4274@ are computed using the augmented model given by (3.5). It can be shown that i A A ¯ ω i θ ^ i EBLUP * , b = i A ω i θ ^ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabeaeaacq aHjpWDdaWgaaWcbaGaamyAaaqabaGccuaH4oqCgaqcamaaDaaaleaa caWGPbaabaGaaeyraiaabkeacaqGmbGaaeyvaiaabcfadaahaaadbe qaaiaacQcaaaWccaaMb8UaaiilaiaaysW7caWGIbaaaaqaaiaadMga cqGHiiIZcaWGbbGaeyOkIGSabmyqayaaraaabeqdcqGHris5aOGaey ypa0ZaaabeaeaacqaHjpWDdaWgaaWcbaGaamyAaaqabaGccuaH4oqC gaqcamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyicI4Saamyqaa qab0GaeyyeIuoakiaacYcaaaa@599E@ and hence the benchmarking holds.

The difference adjustment and augmented vector methods are two ways that benchmarking can be satisfied. Wang et al. (2008) suggested other procedures that can be used. Specifically, they adapted the self-calibrated estimator You and Rao (2002) developed in the context of the unit level model to the area level model. You, Rao and Hidiroglou (2013) obtained an estimator of the mean squared prediction error and its bias under a misspecified model.

3.3  Mean squared error estimation

The reliability of the EBLUP estimators is obtained as MSE ( θ ^ i EBLUP ) = E ( θ ^ i EBLUP θ i ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeytaiaabo facaqGfbWaaeWaaeaacuaH4oqCgaqcamaaDaaaleaacaWGPbaabaGa aeyraiaabkeacaqGmbGaaeyvaiaabcfaaaaakiaawIcacaGLPaaacq GH9aqpcaWGfbWaaeWaaeaacuaH4oqCgaqcamaaDaaaleaacaWGPbaa baGaaeyraiaabkeacaqGmbGaaeyvaiaabcfaaaGccqGHsislcqaH4o qCdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaGccaGGUaaaaa@5097@ The expectation is with respect to models (3.3) for the non-benchmarked estimator, and (3.5) for the benchmarked estimator.

The estimated Mean Squared Errors (MSEs) of the area level estimators are given in Table 3.1. The specific form of the g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36E3@ terms and the estimated variances can be found in Rao and Molina (2015) or in Estevao et al. (2015). For the benchmarked estimators, the estimated MSE for the difference adjustment approach uses the non-benchmarked MSE formulas. For the case of the augmented vector approach, the MSE is based on augmenting the vector z i T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOEamaaDa aaleaacaWGPbaabaGaamivaaaaaaa@38EE@ with ω i ψ ¨ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadMgaaeqaaOGafqiYdKNbamaadaWgaaWcbaGaamyAaaqa baGccaGGUaaaaa@3C96@


Table 3.1
MSE estimates (mse) for the area level estimators
Table summary
This table displays the results of MSE estimates (mse) for the area level estimators. The information is grouped by Estimator (appearing as row headers), mse (appearing as column headers).
Estimator mse
Fay-Herriot mse( θ ^ i FH )={ g 0i + g 1i + g 2i +2 g 3i foriA z i T var( β ^ ) z i +  b i 2 σ ^ v 2 fori A ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaeWaaeaacuaH4oqCgaqcamaaDaaaleaacaWGPbaabaGa aeOraiaabIeaaaaakiaawIcacaGLPaaacqGH9aqpdaGabaqaauaaba qaciaaaeaacaWGNbWaaSbaaSqaaiaaicdacaWGPbaabeaakiabgUca RiaadEgadaWgaaWcbaGaaGymaiaadMgaaeqaaOGaey4kaSIaam4zam aaBaaaleaacaaIYaGaamyAaaqabaGccqGHRaWkcaaIYaGaam4zamaa BaaaleaacaaIZaGaamyAaaqabaaakeaacaqGMbGaae4Baiaabkhaca aMe8UaaGPaVlaadMgacqGHiiIZcaWGbbaabaGaaCOEamaaDaaaleaa caWGPbaabaGaamivaaaakiaacAhacaGGHbGaaiOCamaabmaabaGabC OSdyaajaaacaGLOaGaayzkaaGaaCOEamaaBaaaleaacaWGPbaabeaa kiabgUcaRiaabccacaWGIbWaa0baaSqaaiaadMgaaeaacaaIYaaaaO Gafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacaqG MbGaae4BaiaabkhacaaMe8UaaGPaVlaadMgacqGHiiIZceWGbbGbae baaaaacaGL7baaaaa@76E9@
ADM mse( θ ^ i ADM )={ g 0i + g 1i + g 2i +2 g 3i foriA z i T var( β ^ ) z i +   b i 2 σ ^ v 2 fori A ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaeWaaeaacuaH4oqCgaqcamaaDaaaleaacaWGPbaabaGa aeyqaiaabseacaqGnbaaaaGccaGLOaGaayzkaaGaeyypa0Zaaiqaae aafaqaaeGacaaabaGaam4zamaaBaaaleaacaaIWaGaamyAaaqabaGc cqGHRaWkcaWGNbWaaSbaaSqaaiaaigdacaWGPbaabeaakiabgUcaRi aadEgadaWgaaWcbaGaaGOmaiaadMgaaeqaaOGaey4kaSIaaGOmaiaa dEgadaWgaaWcbaGaaG4maiaadMgaaeqaaaGcbaGaaeOzaiaab+gaca qGYbGaaGjbVlaaykW7caWGPbGaeyicI4SaamyqaaqaaiaahQhadaqh aaWcbaGaamyAaaqaaiaadsfaaaGccaGG2bGaaiyyaiaackhadaqada qaaiqahk7agaqcaaGaayjkaiaawMcaaiaahQhadaWgaaWcbaGaamyA aaqabaGccqGHRaWkcaqGGaGaaeiiaiaadkgadaqhaaWcbaGaamyAaa qaaiaaikdaaaGccuaHdpWCgaqcamaaDaaaleaacaWG2baabaGaaGOm aaaaaOqaaiaabAgacaqGVbGaaeOCaiaaysW7caaMc8UaamyAaiabgI GiolqadgeagaqeaaaaaiaawUhaaaaa@7853@
REML mse( θ ^ i REML )={ g 1i + g 2i +2 g 3i foriA z i T var( β ^ ) z i +  b i 2 σ ^ v 2 fori A ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaeWaaeaacuaH4oqCgaqcamaaDaaaleaacaWGPbaabaGa aeOuaiaabweacaqGnbGaaeitaaaaaOGaayjkaiaawMcaaiabg2da9m aaceaabaqbaeaabiGaaaqaaiaadEgadaWgaaWcbaGaaGymaiaadMga aeqaaOGaey4kaSIaam4zamaaBaaaleaacaaIYaGaamyAaaqabaGccq GHRaWkcaaIYaGaam4zamaaBaaaleaacaaIZaGaamyAaaqabaaakeaa caqGMbGaae4BaiaabkhacaaMe8UaaGPaVlaadMgacqGHiiIZcaWGbb aabaGaaCOEamaaDaaaleaacaWGPbaabaGaamivaaaakiaabAhacaqG HbGaaeOCamaabmaabaGabCOSdyaajaaacaGLOaGaayzkaaGaaCOEam aaBaaaleaacaWGPbaabeaakiabgUcaRiaabccacaWGIbWaa0baaSqa aiaadMgaaeaacaaIYaaaaOGafq4WdmNbaKaadaqhaaWcbaGaamODaa qaaiaaikdaaaaakeaacaqGMbGaae4BaiaabkhacaaMe8UaaGPaVlaa dMgacqGHiiIZceWGbbGbaebaaaaacaGL7baaaaa@74E2@
WF mse( θ ^ i WF  )={ g 1i + g 2i +2 g 3i + g 4i foriA z i T var( β ^ ) z i + b i 2 σ ^ v 2 fori A ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaeWaaeaacuaH4oqCgaqcamaaDaaaleaacaWGPbaabaGa ae4vaiaabAeacaqGGaaaaaGccaGLOaGaayzkaaGaeyypa0Zaaiqaae aafaqaaeGacaaabaGaam4zamaaBaaaleaacaaIXaGaamyAaaqabaGc cqGHRaWkcaWGNbWaaSbaaSqaaiaaikdacaWGPbaabeaakiabgUcaRi aaikdacaWGNbWaaSbaaSqaaiaaiodacaWGPbaabeaakiabgUcaRiaa dEgadaWgaaWcbaGaaGinaiaadMgaaeqaaaGcbaGaaeOzaiaab+gaca qGYbGaaGjbVlaaykW7caWGPbGaeyicI4SaamyqaaqaaiaahQhadaqh aaWcbaGaamyAaaqaaiaadsfaaaGccaqG2bGaaeyyaiaabkhadaqada qaaiqahk7agaqcaaGaayjkaiaawMcaaiaahQhadaWgaaWcbaGaamyA aaqabaGccqGHRaWkcaWGIbWaa0baaSqaaiaadMgaaeaacaaIYaaaaO Gafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacaqG MbGaae4BaiaabkhacaaMe8UaaGPaVlaadMgacqGHiiIZceWGbbGbae baaaaacaGL7baaaaa@76F9@

The various g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36E3@ terms in Table 3.1 can be interpreted as follows. The   g 0 i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiiaiaadE gadaWgaaWcbaGaaGimaiaadMgaaeqaaaaa@395A@ is a bias correction term for FH and ADM. The g 1 i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaaIXaGaamyAaaqabaaaaa@38B8@ term given by g 1 i = γ ^ i ψ ¨ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaaIXaGaamyAaaqabaGccqGH9aqpcuaHZoWzgaqcamaaBaaa leaacaWGPbaabeaakiqbeI8a5zaadaWaaSbaaSqaaiaadMgaaeqaaO Gaaiilaaaa@404F@ accounts for most of the MSE if the number of areas is large. The g 2 i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaaIYaGaamyAaaqabaaaaa@38B9@ term accounts for the estimation of β , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdiaacY caaaa@37E5@ and 2 g 3 i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadE gadaWgaaWcbaGaaG4maiaadMgaaeqaaaaa@3976@ accounts for the estimation of σ v 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaaiOlaaaa@3A5A@ The g 4 i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaaI0aGaamyAaaqabaaaaa@38BB@ term in the WF procedure reflects that the estimated value of ψ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaOGaaiilaaaa@3999@ ψ ^ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaK aadaWgaaWcbaGaamyAaaqabaGccaGGSaaaaa@39A9@ has been used. The estimated variance of β ^ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja Gaaiilaaaa@37F5@ given by var ( β ^ ) = ( i A z i z i T ψ ¨ i + b i 2 σ ^ v 2 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaGecaqG2b Gaaeyyaiaabkhadaqadaqaaiqahk7agaqcaaGaayjkaiaawMcaaiab g2da9maabmaabaWaaabeaeaadaWcbaWcbaGaaCOEamaaBaaameaaca WGPbaabeaaliaahQhadaqhaaadbaGaamyAaaqaaiaadsfaaaaaleaa cuaHipqEgaWaamaaBaaameaacaWGPbaabeaaliabgUcaRiaadkgada qhaaadbaGaamyAaaqaaiaaikdaaaWccuaHdpWCgaqcamaaDaaameaa caWG2baabaGaaGOmaaaaaaaaleaacaWGPbGaeyicI4Saamyqaaqab0 GaeyyeIuoaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGym aaaaaaa@54E8@ is dependent on the particular procedure used to estimate σ v 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaaiOlaaaa@3A5A@


Report a problem on this page

Is something not working? Is there information outdated? Can't find what you're looking for?

Please contact us and let us know how we can help you.

Privacy notice

Date modified: