Development of a small area estimation system at Statistics Canada

Section 4. Unit level model

The original unit level model was proposed by Battese et al. (1988). They assumed the following nested error model

y i j = z i j T β + v i + e i j for i = 1 , , m and j U i ( 4.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbGaamOAaaqabaGccqGH9aqpcaWH6bWaa0baaSqaaiaa dMgacaWGQbaabaGaamivaaaakiaahk7acqGHRaWkcaWG2bWaaSbaaS qaaiaadMgaaeqaaOGaey4kaSIaamyzamaaBaaaleaacaWGPbGaamOA aaqabaGccaaMf8UaaeOzaiaab+gacaqGYbGaaGzbVlaadMgacqGH9a qpcaaIXaGaaiilaiaaysW7cqWIMaYscaGGSaGaaGjbVlaad2gacaaM f8Uaaeyyaiaab6gacaqGKbGaaGzbVlaadQgacqGHiiIZcaWGvbWaaS baaSqaaiaadMgaaeqaaOGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7 caGGOaGaaGinaiaac6cacaaIXaGaaiykaaaa@6AD7@

where v i ind ( 0 , σ v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGPbaabeaakiaaysW7daGfGbqabSqabeaacaqGPbGaaeOB aiaabsgaaeaarqqr1ngBPrgifHhDYfgaiuaajugybiab=XJi6aaaki aaysW7daqadaqaaiaaicdacaGGSaGaaGjbVlabeo8aZnaaDaaaleaa caWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaaaa@4D41@ are the random effects and are independent of the random errors, e i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbGaaGzaVlaadQgaaeqaaOGaaiilaaaa@3B2E@ with e i j ind ( 0 , σ e 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbGaaGzaVlaadQgaaeqaaOGaaGjbVpaawagabeWcbeqa aiaabMgacaqGUbGaaeizaaqaaebbfv3ySLgzGueE0jxyaGqbaKqzGf Gae8hpIOdaaOGaaGjbVpaabmaabaGaaGimaiaacYcacaaMe8Uaeq4W dm3aa0baaSqaaiaadwgaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaai Olaaaa@504A@ The production system includes a slight modification to the error structure of the random errors. That is, e i j ind ( 0 , σ e 2 / a i j ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbGaamOAaaqabaGccaaMe8+aaybyaeqaleqabaGaaeyA aiaab6gacaqGKbaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbwacqWF8i IoaaGccaaMe8+aaeWaaeaacaaIWaGaaiilaiaaysW7daWcgaqaaiab eo8aZnaaDaaaleaacaWGLbaabaGaaGOmaaaaaOqaaiaadggadaWgaa WcbaGaamyAaiaadQgaaeqaaaaaaOGaayjkaiaawMcaaiaacYcaaaa@51CD@ where a i j > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGPbGaaGzaVlaadQgaaeqaaOGaeyOpa4JaaGimaaaa@3C3C@ are positive constants that account for heteroscedasticity.

The production system computes small area estimates for means ( Y ¯ i c = j U i c i j y i j / j U i c i j ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaace WGzbGbaebadaWgaaWcbaGaamyAaiaadogaaeqaaOGaeyypa0ZaaSGb aeaadaaeqaqaaiaadogadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaam yEamaaBaaaleaacaWGPbGaamOAaaqabaaabaGaamOAaiabgIGiolaa dwfadaWgaaadbaGaamyAaaqabaaaleqaniabggHiLdaakeaadaaeqa qaaiaadogadaWgaaWcbaGaamyAaiaadQgaaeqaaaqaaiaadQgacqGH iiIZcaWGvbWaaSbaaWqaaiaadMgaaeqaaaWcbeqdcqGHris5aaaaaO GaayjkaiaawMcaaaaa@513B@ and totals ( Y i c = j U i c i j Y ¯ i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGzbWaaSbaaSqaaiaadMgacaWGJbaabeaakiabg2da9maaqababaGa am4yamaaBaaaleaacaWGPbGaamOAaaqabaGcceWGzbGbaebadaWgaa WcbaGaamyAaaqabaaabaGaamOAaiabgIGiolaadwfadaWgaaadbaGa amyAaaqabaaaleqaniabggHiLdaakiaawIcacaGLPaaacaGGUaaaaa@4782@ The c i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@38E8@ values are fixed positive constants known for all population units. The addition of c i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@38E8@ was necessary to allow the use of the system by some business surveys conducted at Statistics Canada (see Rubin-Bleuer, Jang and Godbout, 2016). The available auxiliary data are either totals Z i c = j U i c i j z i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOwamaaBa aaleaacaWGPbGaam4yaaqabaGccqGH9aqpdaaeqaqaaiaadogadaWg aaWcbaGaamyAaiaadQgaaeqaaOGaaCOEamaaBaaaleaacaWGPbGaam OAaaqabaaabaGaamOAaiabgIGiolaadwfadaWgaaadbaGaamyAaaqa baaaleqaniabggHiLdGccaGGSaaaaa@46F8@ or means Z ¯ i c = j U i c i j z i j / j U i c i j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOwayaara WaaSbaaSqaaiaadMgacaWGJbaabeaakiabg2da9maalyaabaWaaabe aeaacaWGJbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaahQhadaWgaa WcbaGaamyAaiaadQgaaeqaaaqaaiaadQgacqGHiiIZcaWGvbWaaSba aWqaaiaadMgaaeqaaaWcbeqdcqGHris5aaGcbaWaaabeaeaacaWGJb WaaSbaaSqaaiaadMgacaWGQbaabeaaaeaacaWGQbGaeyicI4Saamyv amaaBaaameaacaWGPbaabeaaaSqab0GaeyyeIuoaaaGccaGGUaaaaa@506E@

In what follows, we provide the estimators of the population means Y ¯ i c , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaara WaaSbaaSqaaiaadMgacaWGJbaabeaakiaacYcaaaa@39A9@ say θ ^ i SAE , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabofacaqGbbGaaeyraaaakiaacYca aaa@3BF4@ where i = 1 , , M . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2 da9iaaigdacaGGSaGaaGjbVlablAciljaacYcacaaMe8Uaamytaiaa c6caaaa@3FC6@ Estimates of the corresponding totals Y i c , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGPbGaam4yaaqabaGccaGGSaaaaa@3991@ are obtained by multiplying θ ^ i SAE MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabofacaqGbbGaaeyraaaaaaa@3B3A@ by j = 1 N i c i j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabmaeaaca WGJbWaaSbaaSqaaiaadMgacaWGQbaabeaaaeaacaWGQbGaeyypa0Ja aGymaaqaaiaad6eadaWgaaadbaGaamyAaaqabaaaniabggHiLdGcca GGUaaaaa@4039@

The design weighted sample mean of the y s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaGqaai aa=LbicaWFZbaaaa@38AC@ and z s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOEaGqaai aa=LbicaWFZbaaaa@38B1@ are respectively

y ¯ i w c = ( j s i w i j c i j ) 1 j s i w i j c i j y i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaara WaaSbaaSqaaiaadMgacGaDao4DaiaadogaaeqaaOGaeyypa0ZaaeWa beaadaaeqbqaaiaadEhadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaam 4yamaaBaaaleaacaWGPbGaamOAaaqabaaabaGaamOAaiabgIGiolaa dohadaWgaaadbaGaamyAaaqabaaaleqaniabggHiLdaakiaawIcaca GLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaaeqbqaaiaadEha daWgaaWcbaGaamyAaiaadQgaaeqaaOGaam4yamaaBaaaleaacaWGPb GaamOAaaqabaGccaWG5bWaaSbaaSqaaiaadMgacaWGQbaabeaaaeaa caWGQbGaeyicI4Saam4CamaaBaaameaacaWGPbaabeaaaSqab0Gaey yeIuoaaaa@5BEC@

and

z ¯ i w c = ( j s i w i j c i j ) 1 j s i w i j c i j z i j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOEayaara WaaSbaaSqaaiaadMgacaWG3bGaam4yaaqabaGccqGH9aqpdaqadeqa amaaqafabaGaam4DamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGJb WaaSbaaSqaaiaadMgacaWGQbaabeaaaeaacaWGQbGaeyicI4Saam4C amaaBaaameaacaWGPbaabeaaaSqab0GaeyyeIuoaaOGaayjkaiaawM caamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaaqafabaGaam4Damaa BaaaleaacaWGPbGaamOAaaqabaGccaWGJbWaaSbaaSqaaiaadMgaca WGQbaabeaakiaahQhadaWgaaWcbaGaamyAaiaadQgaaeqaaaqaaiaa dQgacqGHiiIZcaWGZbWaaSbaaWqaaiaadMgaaeqaaaWcbeqdcqGHri s5aOGaaiOlaaaa@5BB6@

The model based weighted means are

y ¯ i a = ( j s i a i j ) 1 ( j s i a i j y i j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaara WaaSbaaSqaaiaadMgacaWGHbaabeaakiabg2da9maabmqabaWaaabu aeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaeaacaWGQbGaey icI4Saam4CamaaBaaameaacaWGPbaabeaaaSqab0GaeyyeIuoaaOGa ayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmqaba WaaabuaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaadMha daWgaaWcbaGaamyAaiaadQgaaeqaaaqaaiaadQgacqGHiiIZcaWGZb WaaSbaaWqaaiaadMgaaeqaaaWcbeqdcqGHris5aaGccaGLOaGaayzk aaaaaa@5564@

and

z ¯ i a = ( j s i a i j ) 1 ( j s i a i j z i j ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOEayaara WaaSbaaSqaaiaadMgacaWGHbaabeaakiabg2da9maabmqabaWaaabu aeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaeaacaWGQbGaey icI4Saam4CamaaBaaameaacaWGPbaabeaaaSqab0GaeyyeIuoaaOGa ayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmqaba WaaabuaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaahQha daWgaaWcbaGaamyAaiaadQgaaeqaaaqaaiaadQgacqGHiiIZcaWGZb WaaSbaaWqaaiaadMgaaeqaaaWcbeqdcqGHris5aaGccaGLOaGaayzk aaGaaiOlaaaa@5620@

Battese et al. (1988) did not include survey design weights in their procedure, thereby forsaking design consistency unless the design was self-weighting. We refer to this estimator as EBLUP ( θ ^ i EBLUP ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacu aH4oqCgaqcamaaDaaaleaacaWGPbaabaGaaeyraiaabkeacaqGmbGa aeyvaiaabcfaaaaakiaawIcacaGLPaaacaGGUaaaaa@3F24@ However, EBLUP is the most efficient estimator under model (4.1), with error structure e i j ind ( 0 , σ e 2 / a i j ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbGaamOAaaqabaGccaaMe8+aaybyaeqaleqabaGaaeyA aiaab6gacaqGKbaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbwacqWF8i IoaaGccaaMe8+aaeWaaeaacaaIWaGaaiilaiaaysW7daWcgaqaaiab eo8aZnaaDaaaleaacaWGLbaabaGaaGOmaaaaaOqaaiaadggadaWgaa WcbaGaamyAaiaaygW7caWGQbaabeaaaaaakiaawIcacaGLPaaacaGG Saaaaa@5357@ and this is the reason that it is included in the production system.

Kott (1989), Prasad and Rao (1999), and You and Rao (2002) proposed the use of design-consistent model based estimators for the area means by including the survey weight. The You and Rao (2002) procedure was suitably modified to reflect the heteroscedastic residuals and the c i j s . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGPbGaamOAaaqabaacbaGccaWFzaIaa83Caiaa=5caaaa@3B58@ The resulting Pseudo-EBLUP estimator, denoted as PEBLUP ( θ ^ i PEBLUP ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacu aH4oqCgaqcamaaDaaaleaacaWGPbaabaGaaeiuaiaabweacaqGcbGa aeitaiaabwfacaqGqbaaaaGccaGLOaGaayzkaaGaaiilaaaa@3FF5@ was included in the production system as it is design consistent.

The EBLUP estimator is defined as

θ ^ i EBLUP = { γ ^ i a y ¯ i a + ( Z ¯ i c γ ^ i a z ¯ i a ) T β ^ EBLUP if i A Z ¯ i c T β ^ EBLUP if i A ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabweacaqGcbGaaeitaiaabwfacaqG qbaaaOGaeyypa0ZaaiqaaeaafaqaaeGacaaabaGafq4SdCMbaKaada WgaaWcbaGaamyAaiaadggaaeqaaOGabmyEayaaraWaaSbaaSqaaiaa dMgacaWGHbaabeaakiabgUcaRmaabmaabaGabCOwayaaraWaaSbaaS qaaiaadMgacaWGJbaabeaakiabgkHiTiqbeo7aNzaajaWaaSbaaSqa aiaadMgacaWGHbaabeaakiqahQhagaqeamaaBaaaleaacaWGPbGaam yyaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaadsfaaaGcceWH YoGbaKaadaahaaWcbeqaaiaabweacaqGcbGaaeitaiaabwfacaqGqb aaaaGcbaGaaeyAaiaabAgacaaMe8UaaGPaVlaadMgacqGHiiIZcaWG bbaabaGabCOwayaaraWaa0baaSqaaiaadMgacaWGJbaabaGaamivaa aakiqahk7agaqcamaaCaaaleqabaGaaeyraiaabkeacaqGmbGaaeyv aiaabcfaaaaakeaacaqGPbGaaeOzaiaaysW7caaMc8UaamyAaiabgI GiolqadgeagaqeaaaaaiaawUhaaaaa@73A8@

where γ ^ i a = ( σ ^ v 2 + σ ^ e 2 / j s i a i j ) 1 σ ^ v 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4SdCMbaK aadaWgaaWcbaGaamyAaiaadggaaeqaaOGaeyypa0ZaaeWaaeaadaWc gaqaaiqbeo8aZzaajaWaa0baaSqaaiaadAhaaeaacaaIYaaaaOGaey 4kaSIafq4WdmNbaKaadaqhaaWcbaGaamyzaaqaaiaaikdaaaaakeaa daaeqaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaqaaiaadQ gacqGHiiIZcaWGZbWaaSbaaWqaaiaadMgaaeqaaaWcbeqdcqGHris5 aaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaki qbeo8aZzaajaWaa0baaSqaaiaadAhaaeaacaaIYaaaaOGaaiOlaaaa @5464@ The terms y ¯ i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaara WaaSbaaSqaaiaadMgacaWGHbaabeaaaaa@390D@ and z ¯ i a , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOEayaara WaaSbaaSqaaiaadMgacaWGHbaabeaakiaacYcaaaa@39CC@ are the previously defined model based weighted means for y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36F5@ and z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOEaaaa@36FA@ respectively. The regression vector β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdaaa@3735@ is estimated as

β ^ EBLUP = ( i = 1 m j s i a i j c i j ( z i j γ ^ i a c z ¯ i a c ) z i j T ) 1 i = 1 m j s i a i j c i j ( z i j γ ^ i a c z ¯ i a c ) y i j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja WaaWbaaSqabeaacaqGfbGaaeOqaiaabYeacaqGvbGaaeiuaaaakiab g2da9maabmaabaWaaabCaeaadaaeqbqaaiaadggadaWgaaWcbaGaam yAaiaadQgaaeqaaOGaam4yamaaBaaaleaacaWGPbGaamOAaaqabaGc daqadaqaaiaahQhadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0 Iafq4SdCMbaKaadaWgaaWcbaGaamyAaiaadggacaWGJbaabeaakiqa hQhagaqeamaaBaaaleaacaWGPbGaamyyaiaadogaaeqaaaGccaGLOa GaayzkaaGaaCOEamaaDaaaleaacaWGPbGaamOAaaqaaiaadsfaaaaa baGaamOAaiabgIGiolaadohadaWgaaadbaGaamyAaaqabaaaleqani abggHiLdaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad2gaa0Gaeyye IuoaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakm aaqahabaWaaabuaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaa kiaadogadaWgaaWcbaGaamyAaiaadQgaaeqaaOWaaeWaaeaacaWH6b WaaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTiqbeo7aNzaajaWa aSbaaSqaaiaadMgacaWGHbGaam4yaaqabaGcceWH6bGbaebadaWgaa WcbaGaamyAaiaadggacaWGJbaabeaaaOGaayjkaiaawMcaaiaadMha daWgaaWcbaGaamyAaiaadQgaaeqaaaqaaiaadQgacqGHiiIZcaWGZb WaaSbaaWqaaiaadMgaaeqaaaWcbeqdcqGHris5aaWcbaGaamyAaiab g2da9iaaigdaaeaacaWGTbaaniabggHiLdGccaGGUaaaaa@8927@

The PEBLUP estimator, θ ^ i PEBLUP , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabcfacaqGfbGaaeOqaiaabYeacaqG vbGaaeiuaaaakiaacYcaaaa@3E6C@ is given by

θ ^ i PEBLUP = { γ ^ i w c y ¯ i w c + ( Z ¯ i c γ ^ i w c z ¯ i w c ) T β ^ PEBLUP if i A Z ¯ i c T β ^ PEBLUP if i A ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabcfacaqGfbGaaeOqaiaabYeacaqG vbGaaeiuaaaakiabg2da9maaceaabaqbaeaabiGaaaqaaiqbeo7aNz aajaWaaSbaaSqaaiaadMgacaWG3bGaam4yaaqabaGcceWG5bGbaeba daWgaaWcbaGaamyAaiac0b4G3bGaam4yaaqabaGccqGHRaWkdaqada qaaiqahQfagaqeamaaBaaaleaacaWGPbGaam4yaaqabaGccqGHsisl c0alas4SdCMbiWcGjaWaiWcGBaaaleacSaOaiWcGdMgacGalao4Dai acSa4GJbaabKalacGcceWH6bGbaebadaWgaaWcbaGaamyAaiaadEha caWGJbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaaki qahk7agaqcamaaCaaaleqabaGaaeiuaiaabweacaqGcbGaaeitaiaa bwfacaqGqbaaaaGcbaGaaeyAaiaabAgacaaMe8UaaGPaVlaadMgacq GHiiIZcaWGbbaabaGabCOwayaaraWaa0baaSqaaiaadMgacaWGJbaa baGaamivaaaakiqahk7agaqcamaaCaaaleqabaGaaeiuaiaabweaca qGcbGaaeitaiaabwfacaqGqbaaaaGcbaGaaeyAaiaabAgacaaMe8Ua aGPaVlaadMgacqGHiiIZceWGbbGbaebaaaaacaGL7baaaaa@80B5@

where γ ^ i w c = ( σ ^ v 2 + σ ^ e 2 δ i w c 2 ) 1 ( σ ^ v 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4SdCMbaK aadaWgaaWcbaGaamyAaiaadEhacaWGJbaabeaakiabg2da9maabmaa baGafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaaGccqGHRa WkcuaHdpWCgaqcamaaDaaaleaacaWGLbaabaGaaGOmaaaakiabes7a KnaaDaaaleaacaWGPbGaam4DaiaadogaaeaacaaIYaaaaaGccaGLOa GaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacuaH dpWCgaqcamaaDaaaleaacaWG2baabaGaaGOmaaaaaOGaayjkaiaawM caaiaacYcaaaa@52DB@ and δ i w c 2 = ( j s i w i j c i j ) 2 ( j s i ( w i j c i j ) 2 / a i j ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aa0 baaSqaaiaadMgacaWG3bGaam4yaaqaaiaaikdaaaGccqGH9aqpdaqa daqaamaaqababaGaam4DamaaBaaaleaacaWGPbGaamOAaaqabaGcca WGJbWaaSbaaSqaaiaadMgacaWGQbaabeaaaeaacaWGQbGaeyicI4Sa am4CamaaBaaameaacaWGPbaabeaaaSqab0GaeyyeIuoaaOGaayjkai aawMcaamaaCaaaleqabaGaeyOeI0IaaGOmaaaakmaabmaabaWaaSGb aeaadaaeqaqaamaabmaabaGaam4DamaaBaaaleaacaWGPbGaamOAaa qabaGccaWGJbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaaaeaacaWGQbGaeyicI4Saam4Cam aaBaaameaacaWGPbaabeaaaSqab0GaeyyeIuoaaOqaaiaadggadaWg aaWcbaGaamyAaiaadQgaaeqaaaaaaOGaayjkaiaawMcaaiaac6caaa a@607C@ The terms y ¯ i w c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaara WaaSbaaSqaaiaadMgacGaDao4Daiaadogaaeqaaaaa@3B07@ and z ¯ i w c , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOEayaara WaaSbaaSqaaiaadMgacaWG3bGaam4yaaqabaGccaGGSaaaaa@3ACA@ are the previously defined design based weighted means for y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36F5@ and z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOEaaaa@36FA@ respectively. The regression vector β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdaaa@3735@ is estimated as

β ^ PEBLUP = ( i = 1 m j s i w i j a i j ( z i j γ ^ i w a z ¯ i w a ) z i j T ) 1 i = 1 m j s i w i j a i j ( z i j γ ^ i w a z ¯ i w a ) y i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja WaaWbaaSqabeaacaqGqbGaaeyraiaabkeacaqGmbGaaeyvaiaabcfa aaGccqGH9aqpdaqadaqaamaaqahabaWaaabuaeaacaWG3bWaaSbaaS qaaiaadMgacaWGQbaabeaakiaadggadaWgaaWcbaGaamyAaiaadQga aeqaaOWaaeWaaeaacaWH6bWaaSbaaSqaaiaadMgacaWGQbaabeaaki abgkHiTiqbeo7aNzaajaWaaSbaaSqaaiaadMgacaWG3bGaamyyaaqa baGcceWH6bGbaebadaWgaaWcbaGaamyAaiaadEhacaWGHbaabeaaaO GaayjkaiaawMcaaiaahQhadaqhaaWcbaGaamyAaiaadQgaaeaacaWG ubaaaaqaaiaadQgacqGHiiIZcaWGZbWaaSbaaWqaaiaadMgaaeqaaa WcbeqdcqGHris5aaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGTbaa niabggHiLdaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaig daaaGcdaaeWbqaamaaqafabaGaam4DamaaBaaaleaacaWGPbGaamOA aaqabaGccaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaakmaabmaaba GaaCOEamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsislcuaHZoWz gaqcamaaBaaaleaacaWGPbGaam4DaiaadggaaeqaaOGabCOEayaara WaaSbaaSqaaiaadMgacaWG3bGaamyyaaqabaaakiaawIcacaGLPaaa caWG5bWaaSbaaSqaaiaadMgacaWGQbaabeaaaeaacaWGQbGaeyicI4 Saam4CamaaBaaameaacaWGPbaabeaaaSqab0GaeyyeIuoaaSqaaiaa dMgacqGH9aqpcaaIXaaabaGaamyBaaqdcqGHris5aaaa@89B7@

where z ¯ i w a = ( j s i w i j a i j ) 1 j s i w i j a i j z i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOEayaara WaaSbaaSqaaiaadMgacaWG3bGaamyyaaqabaGccqGH9aqpdaqadeqa amaaqababaGaam4DamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGHb WaaSbaaSqaaiaadMgacaWGQbaabeaaaeaacaWGQbGaeyicI4Saam4C amaaBaaameaacaWGPbaabeaaaSqab0GaeyyeIuoaaOGaayjkaiaawM caamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaaqababaGaam4Damaa BaaaleaacaWGPbGaamOAaaqabaGccaWGHbWaaSbaaSqaaiaadMgaca WGQbaabeaakiaahQhadaWgaaWcbaGaamyAaiaadQgaaeqaaaqaaiaa dQgacqGHiiIZcaWGZbWaaSbaaWqaaiaadMgaaeqaaaWcbeqdcqGHri s5aOGaaiilaaaa@5B2F@ γ ^ i w a = ( σ ^ v 2 + σ ^ e 2 δ i w a 2 ) 1 σ ^ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4SdCMbaK aadaWgaaWcbaGaamyAaiaadEhacaWGHbaabeaakiabg2da9maabmqa baGafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaaGccqGHRa WkcuaHdpWCgaqcamaaDaaaleaacaWGLbaabaGaaGOmaaaakiabes7a KnaaDaaaleaacaWGPbGaam4DaiaadggaaeaacaaIYaaaaaGccaGLOa GaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGafq4WdmNbaKaa daqhaaWcbaGaamODaaqaaiaaikdaaaaaaa@5095@ and with δ i w a 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aa0 baaSqaaiaadMgacaWG3bGaamyyaaqaaiaaikdaaaaaaa@3B55@ computed as δ i w a 2 = ( j s i w i j a i j ) 2 ( j s i ( w i j a i j ) 2 / a i j ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aa0 baaSqaaiaadMgacaWG3bGaamyyaaqaaiaaikdaaaGccqGH9aqpdaqa deqaamaaqababaGaam4DamaaBaaaleaacaWGPbGaamOAaaqabaGcca WGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaeaacaWGQbGaeyicI4Sa am4CamaaBaaameaacaWGPbaabeaaaSqab0GaeyyeIuoaaOGaayjkai aawMcaamaaCaaaleqabaGaeyOeI0IaaGOmaaaakmaabmqabaWaaSGb aeaadaaeqaqaamaabmqabaGaam4DamaaBaaaleaacaWGPbGaamOAaa qabaGccaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaaaeaacaWGQbGaeyicI4Saam4Cam aaBaaameaacaWGPbaabeaaaSqab0GaeyyeIuoaaOqaaiaadggadaWg aaWcbaGaamyAaiaadQgaaeqaaaaaaOGaayjkaiaawMcaaiaac6caaa a@6079@

The components of variance, σ e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadwgaaeaacaaIYaaaaaaa@398D@ and σ v 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaaiilaaaa@3A58@ are estimated using the fitting-of-constants (not weighted by the survey weights) method, as given by Battese et al. (1988) or Rao (2003). The resulting estimators of σ e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadwgaaeaacaaIYaaaaaaa@398D@ are always greater than or equal to zero, but the estimator of σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@399E@ may be negative. If σ v 2 < 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbam badaqhaaWcbaGaamODaaqaaiaaikdaaaGccqGH8aapcaaIWaGaaiil aaaa@3C30@ it is set to zero, implying that there are no area effects. The associated estimated MSEs are obtained by extending You and Rao (2002) and Stukel and Rao (1997).

Note that if the sample s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@36EF@ is selected from the universe U , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaacY caaaa@3781@ the realized sampling fraction, f i = n i / N i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGPbaabeaakiabg2da9maalyaabaGaamOBamaaBaaaleaa caWGPbaabeaaaOqaaiaad6eadaWgaaWcbaGaamyAaaqabaaaaOGaai ilaaaa@3DE0@ could be non-negligible. For estimating a population mean, Y ¯ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaara WaaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@38C1@ Rao and Molina (2015), accounted for non-negligible sampling fractions by expressing it as

Y ¯ i = f i y ¯ i s + ( 1 f i ) y ¯ is ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaara WaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaamOzamaaBaaaleaacaWG PbaabeaakiqadMhagaqeamaaBaaaleaacaWGPbGaam4CaaqabaGccq GHRaWkdaqadaqaaiaaigdacqGHsislcaWGMbWaaSbaaSqaaiaadMga aeqaaaGccaGLOaGaayzkaaGabmyEayaaraWaaSbaaSqaaiaadMgace WGZbGbaebaaeqaaaaa@47B9@

where y ¯ i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaara WaaSbaaSqaaiaadMgacaWGZbaabeaaaaa@391F@ is the sample mean of the i th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaCa aaleqabaGaaeiDaiaabIgaaaaaaa@38F4@ sampled area and y ¯ is ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaara WaaSbaaSqaaiaadMgaceWGZbGbaebaaeqaaaaa@3937@ is the sample mean of the non-sampled units within that area. They predicted y ¯ is ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaara WaaSbaaSqaaiaadMgaceWGZbGbaebaaeqaaaaa@3937@ using the unit level model given by equation (4.1). Their expressions correspond to the case when c i j = 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGPbGaamOAaaqabaGccqGH9aqpcaaIXaGaaiOlaaaa@3B65@ This estimator was extended by Rubin-Bleuer (2014) to include the EBLUP and PEBLUP estimators for the case that c i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@38E8@ is arbitrary. Specific details that also account for MSE estimation can be found in Estevao et al. (2015).

4.1  Benchmarking

The current production system does not have a procedure to benchmark the estimates obtained via the unit level model. However, the difference adjustment approach can be suitably modified to allow this. The EBLUP and PEBLUP estimators are of the form

θ ^ i SAE = { γ ^ i * y ¯ i * + ( Z ¯ i c γ ^ i * z ¯ i * ) T β ^ SAE if  i A Z ¯ i c T β ^ SAE if  i A ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabofacaqGbbGaaeyraaaakiabg2da 9maaceaabaqbaeaabiGaaaqaaiqbeo7aNzaajaWaa0baaSqaaiaadM gaaeaacaGGQaaaaOGabmyEayaaraWaa0baaSqaaiaadMgaaeaacaGG QaaaaOGaey4kaSIaaiikaiqahQfagaqeamaaBaaaleaacaWGPbGaam 4yaaqabaGccqGHsislcuaHZoWzgaqcamaaDaaaleaacaWGPbaabaGa aiOkaaaakiqahQhagaqeamaaDaaaleaacaWGPbaabaGaaiOkaaaaki aacMcadaahaaWcbeqaaiaadsfaaaGcceWHYoGbaKaadaahaaWcbeqa aiaabofacaqGbbGaaeyraaaaaOqaaiaabMgacaqGMbGaaeiiaiaadM gacqGHiiIZcaWGbbaabaGabCOwayaaraWaa0baaSqaaiaadMgacaWG JbaabaGaamivaaaakiqahk7agaqcamaaCaaaleqabaGaae4uaiaabg eacaqGfbaaaaGcbaGaaeyAaiaabAgacaqGGaGaamyAaiabgIGiolqa dgeagaqeaaaaaiaawUhaaaaa@68C3@

where γ ^ i * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4SdCMbaK aadaqhaaWcbaGaamyAaaqaaiaacQcaaaGccaGGSaaaaa@3A31@ y ¯ i * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaara Waa0baaSqaaiaadMgaaeaacaGGQaaaaOGaaiilaaaa@3990@ z ¯ i * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOEayaara Waa0baaSqaaiaadMgaaeaacaGGQaaaaOGaaiilaaaa@3995@ and β ^ SAE MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja WaaWbaaSqabeaacaqGtbGaaeyqaiaabweaaaaaaa@39D4@ correspond to the terms defined previously: γ ^ i * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4SdCMbaK aadaqhaaWcbaGaamyAaaqaaiaacQcaaaaaaa@3977@ is equal to γ ^ i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4SdCMbaK aadaWgaaWcbaGaamyAaiaadggaaeqaaaaa@39AE@ for EBLUP, and to γ ^ i w c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4SdCMbaK aadaWgaaWcbaGaamyAaiaadEhacaWGJbaabeaaaaa@3AAC@ for PEBLUP; y ¯ i * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaara Waa0baaSqaaiaadMgaaeaacaGGQaaaaaaa@38D6@ is equal to y ¯ i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaara WaaSbaaSqaaiaadMgacaWGHbaabeaaaaa@390D@ for EBLUP, and to y ¯ i w c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaara WaaSbaaSqaaiaadMgacGaDao4Daiaadogaaeqaaaaa@3B07@ for PEBLUP; z ¯ i * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOEayaara Waa0baaSqaaiaadMgaaeaacaGGQaaaaaaa@38DB@ is equal to z ¯ i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOEayaara WaaSbaaSqaaiaadMgacaWGHbaabeaaaaa@3912@ for EBLUP, and to z ¯ i w c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOEayaara WaaSbaaSqaaiaadMgacaWG3bGaam4yaaqabaaaaa@3A10@ for PEBLUP; and, β ^ SAE MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja WaaWbaaSqabeaaciGGtbGaaiyqaiaacweaaaaaaa@39D9@ is equal to β ^ EBLUP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja WaaWbaaSqabeaacaqGfbGaaeOqaiaabYeacaqGvbGaaeiuaaaaaaa@3B79@ for EBLUP, and to β ^ PEBLUP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja WaaWbaaSqabeaacaqGqbGaaeyraiaabkeacaqGmbGaaeyvaiaabcfa aaaaaa@3C4C@ for PEBLUP.

Suppose that θ ^ i SAE MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabofacaqGbbGaaeyraaaaaaa@3B3A@ needs to be benchmarked to θ ^ * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaahaaWcbeqaaiaacQcaaaGccaGGUaaaaa@3954@ The corresponding benchmarked estimator is

θ ^ i SAE , b = { θ ^ i SAE + α i ( θ * d A ω d θ ^ d SAE ) if i A Z ¯ i c T β ^ SAE if i A ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabofacaqGbbGaaeyraiaacYcacaaM e8UaamOyaaaakiabg2da9maaceaabaqbaeaabiGaaaqaaiqbeI7aXz aajaWaa0baaSqaaiaadMgaaeaacaqGtbGaaeyqaiaabweaaaGccqGH RaWkcqaHXoqydaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiabeI7aXn aaCaaaleqabaGaaiOkaaaakiabgkHiTmaaqafabaGaeqyYdC3aaSba aSqaaiaadsgaaeqaaaqaaiaadsgacqGHiiIZcaWGbbaabeqdcqGHri s5aOGafqiUdeNbaKaadaqhaaWcbaGaamizaaqaaiaabofacaqGbbGa aeyraaaaaOGaayjkaiaawMcaaaqaaiaabMgacaqGMbGaaGjbVlaayk W7caWGPbGaeyicI4SaamyqaaqaaiqahQfagaqeamaaDaaaleaacaWG PbGaam4yaaqaaiaadsfaaaGcceWHYoGbaKaadaahaaWcbeqaaiaabo facaqGbbGaaeyraaaaaOqaaiaabMgacaqGMbGaaGjbVlaaykW7caWG PbGaeyicI4SabmyqayaaraaaaaGaay5Eaaaaaa@7442@

where α i = ( d A ω d 2 τ d ) 1 ( ω i τ i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaeWaaeaadaaeqaqaaiabeM8a 3naaDaaaleaacaWGKbaabaGaaGOmaaaakiabes8a0naaBaaaleaaca WGKbaabeaaaeaacaWGKbGaeyicI4Saamyqaaqab0GaeyyeIuoaaOGa ayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaaba GaeqyYdC3aaSbaaSqaaiaadMgaaeqaaOGaeqiXdq3aaSbaaSqaaiaa dMgaaeqaaaGccaGLOaGaayzkaaGaaiOlaaaa@50D5@ The ω i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadMgaaeqaaaaa@38DE@ term is defined as follows: ω i = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaGymaaaa@3AA9@ if the benchmarking is to a total and ω i = N i / N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaSGbaeaacaWGobWaaSbaaSqa aiaadMgaaeqaaaGcbaGaamOtaaaaaaa@3CCE@ if the benchmarking is for the mean. Possible choices of the τ i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaadMgaaeqaaGqaaOGaa8xgGiaa=nhaaaa@3A97@ are σ ^ v 2 + σ ^ e 2 δ i a 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdaaaGccqGHRaWkcuaHdpWCgaqc amaaDaaaleaacaWGLbaabaGaaGOmaaaakiabes7aKnaaDaaaleaaca WGPbGaamyyaaqaaiaaikdaaaGccaGGSaaaaa@4366@ δ i a 2 = ( j = 1 n i a i j ) 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aa0 baaSqaaiaadMgacaWGHbaabaGaaGOmaaaakiabg2da9maabmaabaWa aabmaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaeaacaWGQb Gaeyypa0JaaGymaaqaaiaad6gadaWgaaadbaGaamyAaaqabaaaniab ggHiLdaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaa GccaGGSaaaaa@492F@ for EBLUP, and σ ^ v 2 + σ ^ e 2 δ i w c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdaaaGccqGHRaWkcuaHdpWCgaqc amaaDaaaleaacaWGLbaabaGaaGOmaaaakiabes7aKnaaDaaaleaaca WGPbGaam4DaiaadogaaeaacaaIYaaaaaaa@43AA@ for PEBLUP.

4.2  Mean squared error estimation

The mean squared error estimates of the unit level estimators are based on estimating its mean squared error, given model (4.1) and error structure e i j ind ( 0 , σ e 2 / a i j ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbGaamOAaaqabaGccaaMe8+aaybyaeqaleqabaGaaeyA aiaab6gacaqGKbaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbwacqWF8i IoaaGccaaMe8+aaeWaaeaacaaIWaGaaiilaiaaysW7daWcgaqaaiab eo8aZnaaDaaaleaacaWGLbaabaGaaGOmaaaaaOqaaiaadggadaWgaa WcbaGaamyAaiaadQgaaeqaaaaaaOGaayjkaiaawMcaaiaac6caaaa@51CF@ Table 4.1 displays these estimated MSE’s.


Table 4.1
MSE estimates for the unit level estimators
Table summary
This table displays the results of MSE estimates for the unit level estimators. The information is grouped by Estimator (appearing as row headers), mse (appearing as column headers).
Estimator mse
EBLUP mse( θ ^ i EBLUP )={ g 1ia + g 2ia +2 g 3ia for  iA Z ¯ i T var( β ^ EBLUP ) Z ¯ i + σ ^ v 2 for  i A ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaeWaaeaacuaH4oqCgaqcamaaDaaaleaacaWGPbaabaGa aeyraiaabkeacaqGmbGaaeyvaiaabcfaaaaakiaawIcacaGLPaaacq GH9aqpdaGabaqaauaabaqaciaaaeaacaWGNbWaaSbaaSqaaiaaigda caWGPbGaamyyaaqabaGccqGHRaWkcaWGNbWaaSbaaSqaaiaaikdaca WGPbGaamyyaaqabaGccqGHRaWkcaaIYaGaam4zamaaBaaaleaacaaI ZaGaamyAaiaadggaaeqaaaGcbaGaaeOzaiaab+gacaqGYbGaaeiiai aabccacaWGPbGaeyicI4SaamyqaaqaaiqahQfagaqeamaaDaaaleaa caWGPbaabaGaamivaaaakiGacAhacaGGHbGaaiOCamaabmaabaGabC OSdyaajaWaaWbaaSqabeaacaqGfbGaaeOqaiaabYeacaqGvbGaaeiu aaaaaOGaayjkaiaawMcaaiqahQfagaqeamaaBaaaleaacaWGPbaabe aakiabgUcaRiqbeo8aZzaajaWaa0baaSqaaiaadAhaaeaacaaIYaaa aaGcbaGaaeOzaiaab+gacaqGYbGaaeiiaiaabccacaWGPbGaeyicI4 SabmyqayaaraaaaaGaay5Eaaaaaa@7583@
PEBLUP mse( θ ^ i PEBLUP )={ g 1iw + g 2iw +2 g 3iw foriA Z ¯ i T var( β ^ PEBLUP ) Z ¯ i + σ ^ v 2 fori A ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaeWaaeaacuaH4oqCgaqcamaaDaaaleaacaWGPbaabaGa aeiuaiaabweacaqGcbGaaeitaiaabwfacaqGqbaaaaGccaGLOaGaay zkaaGaeyypa0ZaaiqaaeaafaqaaeGacaaabaGaam4zamaaBaaaleaa caaIXaGaamyAaiaadEhaaeqaaOGaey4kaSIaam4zamaaBaaaleaaca aIYaGaamyAaiaadEhaaeqaaOGaey4kaSIaaGOmaiaadEgadaWgaaWc baGaaG4maiaadMgacaWG3baabeaaaOqaaiaabAgacaqGVbGaaeOCai aaysW7caaMc8UaamyAaiabgIGiolaadgeaaeaaceWHAbGbaebadaqh aaWcbaGaamyAaaqaaiaadsfaaaGcciGG2bGaaiyyaiaackhadaqada qaaiqahk7agaqcamaaCaaaleqabaGaaeiuaiaabweacaqGcbGaaeit aiaabwfacaqGqbaaaaGccaGLOaGaayzkaaGabCOwayaaraWaaSbaaS qaaiaadMgaaeqaaOGaey4kaSIafq4WdmNbaKaadaqhaaWcbaGaamOD aaqaaiaaikdaaaaakeaacaqGMbGaae4BaiaabkhacaaMe8UaaGPaVl aadMgacqGHiiIZceWGbbGbaebaaaaacaGL7baaaaa@7B0F@

The various g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36E3@ terms in Table 4.1 can be interpreted in a similar way to those associated with the area level MSE’s. The g 1 i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaaIXaGaamyAaaqabaacbaGccaWFzaIaa83Caaaa@3A79@ are denoted as g 1 i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaaIXaGaamyAaiaadggaaeqaaaaa@399E@ for EBLUP, and g 1 i w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaaIXaGaamyAaiaadEhaaeqaaaaa@39B4@ for PEBLUP account for most of the MSE if the number of areas is large. The g 2 i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaaIYaGaamyAaaqabaacbaGccaWFzaIaa83Caaaa@3A7A@ account for the estimation of β , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdiaacY caaaa@37E5@ and the 2 g 3 i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadE gadaWgaaWcbaGaaG4maiaadMgaaeqaaGqaaOGaa8xgGiaa=nhaaaa@3B37@ account for the estimation of σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@399E@ and σ e 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadwgaaeaacaaIYaaaaOGaaiOlaaaa@3A49@

The estimated variances of β ^ EBLUP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja WaaWbaaSqabeaacaqGfbGaaeOqaiaabYeacaqGvbGaaeiuaaaaaaa@3B79@ and β ^ PEBLUP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja WaaWbaaSqabeaacaqGqbGaaeyraiaabkeacaqGmbGaaeyvaiaabcfa aaaaaa@3C4C@ are respectively given by

var ( β ^ EBLUP ) = σ ^ e 2 ( i A j s i a i j ( z i j γ ^ i a x ¯ i a ) z i j T ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaGeciGG2b Gaaiyyaiaackhadaqadaqaaiqahk7agaqcamaaCaaaleqabaGaaeyr aiaabkeacaqGmbGaaeyvaiaabcfaaaaakiaawIcacaGLPaaacqGH9a qpcuaHdpWCgaqcamaaDaaaleaacaWGLbaabaGaaGOmaaaakmaabmaa baWaaabuaeaadaaeqbqaaiaadggadaWgaaWcbaGaamyAaiaadQgaae qaaOWaaeWaaeaacaWH6bWaaSbaaSqaaiaadMgacaWGQbaabeaakiab gkHiTiqbeo7aNzaajaWaaSbaaSqaaiaadMgacaWGHbaabeaakiqahI hagaqeamaaBaaaleaacaWGPbGaamyyaaqabaaakiaawIcacaGLPaaa caWH6bWaa0baaSqaaiaadMgacaWGQbaabaGaamivaaaaaeaacaWGQb GaeyicI4Saam4CamaaBaaameaacaWGPbaabeaaaSqab0GaeyyeIuoa aSqaaiaadMgacqGHiiIZcaWGbbaabeqdcqGHris5aaGccaGLOaGaay zkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaaa@6768@

and

var ( β ^ PEBLUP ) = σ ^ e 2 ( i A j s i z i j * z i j * T ) 1 ( i A j s i z i j * z i j * T / a i j ) ( i A j s i z i j * z i j * T ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciODaiaacg gacaGGYbWaaeWaaeaaceWHYoGbaKaadaahaaWcbeqaaiaabcfacaqG fbGaaeOqaiaabYeacaqGvbGaaeiuaaaaaOGaayjkaiaawMcaaiabg2 da9iqbeo8aZzaajaWaa0baaSqaaiaadwgaaeaacaaIYaaaaOWaaeWa aeaadaaeqbqaamaaqafabaGaaCOEamaaDaaaleaacaWGPbGaamOAaa qaaiaacQcaaaGccaWH6bWaa0baaSqaaiaadMgacaWGQbaabaGaaiOk aiaadsfaaaaabaGaamOAaiabgIGiolaadohadaWgaaadbaGaamyAaa qabaaaleqaniabggHiLdaaleaacaWGPbGaeyicI4Saamyqaaqab0Ga eyyeIuoaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaa aakmaabmaabaWaaSGbaeaadaaeqbqaamaaqafabaGaaCOEamaaDaaa leaacaWGPbGaamOAaaqaaiaacQcaaaGccaWH6bWaa0baaSqaaiaadM gacaWGQbaabaGaaiOkaiaadsfaaaaabaGaamOAaiabgIGiolaadoha daWgaaadbaGaamyAaaqabaaaleqaniabggHiLdaaleaacaWGPbGaey icI4Saamyqaaqab0GaeyyeIuoaaOqaaiaadggadaWgaaWcbaGaamyA aiaadQgaaeqaaaaaaOGaayjkaiaawMcaamaabmaabaWaaabuaeaada aeqbqaaiaahQhadaqhaaWcbaGaamyAaiaadQgaaeaacaGGQaaaaOGa aCOEamaaDaaaleaacaWGPbGaamOAaaqaaiaacQcacaWGubaaaaqaai aadQgacqGHiiIZcaWGZbWaaSbaaWqaaiaadMgaaeqaaaWcbeqdcqGH ris5aaWcbaGaamyAaiabgIGiolaadgeaaeqaniabggHiLdaakiaawI cacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@8DFE@

where z i j * = w i j a i j ( z i j γ ^ i w a z ¯ i w a ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOEamaaDa aaleaacaWGPbGaamOAaaqaaiaacQcaaaGccqGH9aqpcaWG3bWaaSba aSqaaiaadMgacaWGQbaabeaakiaadggadaWgaaWcbaGaamyAaiaadQ gaaeqaaOWaaeWaaeaacaWH6bWaaSbaaSqaaiaadMgacaWGQbaabeaa kiabgkHiTiqbeo7aNzaajaWaaSbaaSqaaiaadMgacaWG3bGaamyyaa qabaGcceWH6bGbaebadaWgaaWcbaGaamyAaiac0b4G3bGaamyyaaqa baaakiaawIcacaGLPaaacaGGUaaaaa@50E2@

The specific form of the g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36E3@ terms and the estimated variances can be found in Estevao et al. (2015).


Date modified: