Development of a small area estimation system at Statistics Canada

Section 5. Hierarchical Bayes (HB) method

The basic Fay-Herriot area level model includes a linear sampling model for direct survey estimates and a linear linking model for the parameters of interest. Such models are matched because θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaaaa@38C7@ appears as a linear function in both the sampling and linking models. There are instances when these equations are not matched such as when a function, h ( θ i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabm aabaGaeqiUde3aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGa aiilaaaa@3BF7@ is modelled as a linear function of explanatory variables instead of θ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaOGaaiOlaaaa@3983@ The sampling model and linking model pair is

θ ^ i = θ i + e i ( 5.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcqaH4oqCdaWgaaWcbaGa amyAaaqabaGccqGHRaWkcaWGLbWaaSbaaSqaaiaadMgaaeqaaOGaaG zbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGynaiaac6cacaaI XaGaaiykaaaa@4AFB@

and

h ( θ i ) = z i T β + b i v i ( 5.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabm aabaGaeqiUde3aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGa eyypa0JaaCOEamaaDaaaleaacaWGPbaabaGaamivaaaakiaahk7acq GHRaWkcaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaamODamaaBaaaleaa caWGPbaabeaakiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikai aaiwdacaGGUaGaaGOmaiaacMcaaaa@50E3@

where e i ind N ( 0 , ψ i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbaabeaakiaaysW7daGfGbqabSqabeaacaqGPbGaaeOB aiaabsgaaeaarqqr1ngBPrgifHhDYfgaiuaajugybiab=XJi6aaaki aaysW7caWGobWaaeWaaeaacaaIWaGaaiilaiaaysW7cqaHipqEdaWg aaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaaa@4D44@ and v i ind N ( 0 , σ v 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGPbaabeaakiaaysW7daGfGbqabSqabeaacaqGPbGaaeOB aiaabsgaaeaarqqr1ngBPrgifHhDYfgaiuaajugybiab=XJi6aaaki aaysW7caWGobWaaeWaaeaacaaIWaGaaiilaiaaysW7cqaHdpWCdaqh aaWcbaGaamODaaqaaiaaikdaaaaakiaawIcacaGLPaaacaGGUaaaaa@4EC6@

The model pair given by (5.1) and (5.2) is referred to as an unmatched model. Nonlinear linking models are often needed in practice to provide a better model fit to the data. For example, if the parameter of interest is a probability or a rate within the range of 0 and 1, a linear linking model with normal random effects may not be appropriate. A linking model, in this case, could be a logistic or log-linear model. Such a model was used to adjust counts for detailed levels for the 2011 Census of Canada. A good description of what is involved to carry out such an adjustment can be found in Dick (1995) and You, Rao and Dick (2004).

The production system includes the following choices of h ( θ i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabm aabaGaeqiUde3aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaa aa@3B47@

h ( θ i ) = { θ i :  Matched Fay-Herriot  ( FH )  model log ( θ i ) :  Unmatched log-linear model log ( θ i / ( θ i + C i ) ) :  Unmatched log census undercount model . ( 5.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabm aabaGaeqiUde3aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGa eyypa0ZaaiqaaeaafaqaaeWacaaabaGaeqiUde3aaSbaaSqaaiaadM gaaeqaaaGcbaGaaiOoaiaabccaqaaaaaaaaaWdbiaab2eacaqGHbGa aeiDaiaabogacaqGObGaaeyzaiaabsgacaqGGaGaaeOraiaabggaca qG5bGaaeylaiaabIeacaqGLbGaaeOCaiaabkhacaqGPbGaae4Baiaa bshacaqGGaWdamaabmaabaWdbiaabAeacaqGibaapaGaayjkaiaawM caa8qacaqGGaGaaeyBaiaab+gacaqGKbGaaeyzaiaabYgaa8aabaGa ciiBaiaac+gacaGGNbWaaeWaaeaacqaH4oqCdaWgaaWcbaGaamyAaa qabaaakiaawIcacaGLPaaaaeaacaGG6aGaaeiia8qacaqGvbGaaeOB aiaab2gacaqGHbGaaeiDaiaabogacaqGObGaaeyzaiaabsgacaqGGa GaaeiBaiaab+gacaqGNbGaaeylaiaabYgacaqGPbGaaeOBaiaabwga caqGHbGaaeOCaiaabccacaqGTbGaae4BaiaabsgacaqGLbGaaeiBaa WdaeaaciGGSbGaai4BaiaacEgadaqadaqaamaalyaabaGaeqiUde3a aSbaaSqaaiaadMgaaeqaaaGcbaWaaeWaaeaacqaH4oqCdaWgaaWcba GaamyAaaqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiaadMgaaeqaaaGc caGLOaGaayzkaaaaaaGaayjkaiaawMcaaaqaaiaacQdacaqGGaWdbi aabwfacaqGUbGaaeyBaiaabggacaqG0bGaae4yaiaabIgacaqGLbGa aeizaiaabccacaqGSbGaae4BaiaabEgacaqGGaGaae4yaiaabwgaca qGUbGaae4CaiaabwhacaqGZbGaaeiiaiaabwhacaqGUbGaaeizaiaa bwgacaqGYbGaae4yaiaab+gacaqG1bGaaeOBaiaabshacaqGGaGaae yBaiaab+gacaqGKbGaaeyzaiaabYgacaqGUaaaaaWdaiaawUhaaiaa ywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaiwdacaGGUaGaaG 4maiaacMcaaaa@B8D9@

The inclusion of h ( θ i ) = θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabm aabaGaeqiUde3aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGa eyypa0JaeqiUde3aaSbaaSqaaiaadMgaaeqaaaaa@3F1D@ corresponds to the matched model represented by equations (3.1) and (3.2). An advantage of choosing the Hierarchical Bayes method is that the estimated σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@399E@ cannot be negative. The function log ( θ i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbWaaeWaaeaacqaH4oqCdaWgaaWcbaGaamyAaaqabaaakiaa wIcacaGLPaaacaqGSaaaaa@3DD9@ where θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaaaa@38C7@ is equal to the population mean Y ¯ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaara WaaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@38C1@ was used in Fay and Herriot (1979). Their context was to estimate per capita income (PCI) for small places in the United States with a population less than 1,000. The function h ( θ i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabm aabaGaeqiUde3aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGa aiilaaaa@3BF7@ log ( θ i / ( θ i + C i ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbWaaeWaaeaadaWcgaqaaiabeI7aXnaaBaaaleaacaWGPbaa beaaaOqaamaabmaabaGaeqiUde3aaSbaaSqaaiaadMgaaeqaaOGaey 4kaSIaam4qamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaa aiaawIcacaGLPaaacaGGSaaaaa@4521@ was included to support the methodology to estimate the net undercoverage in Canadian Censuses. In this model, θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaaaa@38C7@ represents the number of individuals not counted in the census, while C i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGPbaabeaaaaa@37D9@ is the known census count. As a result, θ i / ( θ i + C i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacq aH4oqCdaWgaaWcbaGaamyAaaqabaaakeaadaqadaqaaiabeI7aXnaa BaaaleaacaWGPbaabeaakiabgUcaRiaadoeadaWgaaWcbaGaamyAaa qabaaakiaawIcacaGLPaaaaaaaaa@4018@ is the proportion of individuals undercounted by the Census.

The sampling variances, ψ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaOGaaiilaaaa@3999@ are assumed known for all the linking models represented by (5.2). The variances are assumed to be estimated for the first two functions (the matched Fay-Herriot and unmatched log-linear model) given in (5.3). If the sampling variances, ψ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaOGaaiilaaaa@3999@ are assumed known, then the unknown parameters in the sampling model (5.1) and the linking model (5.2) can be presented in a hierarchical Bayes (HB) framework as follows

[ θ ^ i | θ i ] N ( θ i , ψ i ) , i = 1 , , m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaggdaWada qaaiqbeI7aXzaajaWaaSbaaSqaaiaadMgaaeqaaOGaaGPaVpaaeeaa baGaaGPaVlabeI7aXnaaBaaaleaacaWGPbaabeaaaOGaay5bSdaaca GLBbGaayzxaaqeeuuDJXwAKbsr4rNCHbacfaGae8hpIOJaamOtamaa bmaabaGaeqiUde3aaSbaaSqaaiaadMgaaeqaaOGaaiilaiaaysW7cq aHipqEdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacaGGSaGa aGjbVlaaysW7caWGPbGaeyypa0JaaGymaiaacYcacaaMe8UaeSOjGS KaaiilaiaaysW7caWGTbaaaa@5FF6@

and

[ h ( θ i ) | β , σ v 2 ] N ( z i T β , b i 2 σ v 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGObWaaeWaaeaacqaH4oqCdaWgaaWcbaGaamyAaaqabaaakiaawIca caGLPaaacaaMc8+aaqqaaeaacaaMc8UaeqOSdiMaaiilaiaaysW7cq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakiaawEa7aaGaay5w aiaaw2faaebbfv3ySLgzGueE0jxyaGqbaiab=XJi6iaad6eadaqada qaaiaahQhadaqhaaWcbaGaamyAaaqaaiaadsfaaaGccaWHYoGaaiil aiaaysW7caWGIbWaa0baaSqaaiaadMgaaeaacaaIYaaaaOGaeq4Wdm 3aa0baaSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaaiOl aaaa@5F2D@

If the sampling variances are unknown, they are estimated by adding

[ d i ψ i | ψ i ] ψ i χ d i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGKbWaaSbaaSqaaiaadMgaaeqaaOGafqiYdKNbambadaWgaaWcbaGa amyAaaqabaGccaaMc8+aaqqaaeaacaaMc8UaeqiYdK3aaSbaaSqaai aadMgaaeqaaaGccaGLhWoaaiaawUfacaGLDbaarqqr1ngBPrgifHhD YfgaiuaacqWF8iIocqaHipqEdaWgaaWcbaGaamyAaaqabaGccqaHhp WydaqhaaWcbaGaamizamaaBaaameaacaWGPbaabeaaaSqaaiaaikda aaaaaa@51F7@

where χ d i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aa0 baaSqaaiaadsgadaWgaaadbaGaamyAaaqabaaaleaacaaIYaaaaaaa @3AA6@ follows a chi-square distribution with d i = ( n i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGPbaabeaakiabg2da9maabmaabaGaamOBamaaBaaaleaa caWGPbaabeaakiabgkHiTiaaigdaaiaawIcacaGLPaaaaaa@3E52@ degrees of freedom.

The model parameters β , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdiaacY caaaa@37E5@ σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@399E@ and ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaaaa@38DF@ (when it is unknown) are assumed to obey prior distributions. The distributions used in the production system for β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdaaa@3735@ and σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@399E@ are the flat prior, π ( β ) 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aae WaaeaacaWHYoaacaGLOaGaayzkaaGaeyyhIuRaaGymaiaacYcaaaa@3D66@ and π ( σ v 2 ) ( σ v 2 ) 1 / 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aae WaaeaacqaHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakiaawIca caGLPaaacqGHDisTdaqadaqaaiabeo8aZnaaDaaaleaacaWG2baaba GaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0YaaSGb aeaacaaIXaaabaGaaGOmaaaaaaGccaGGUaaaaa@470B@ If ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaaaa@38DF@ is estimated, the prior π ( ψ i ) ( ψ i ) 1 / 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aae WaaeaacqaHipqEdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaa cqGHDisTdaqadaqaaiabeI8a5naaBaaaleaacaWGPbaabeaaaOGaay jkaiaawMcaamaaCaaaleqabaGaeyOeI0YaaSGbaeaacaaIXaaabaGa aGOmaaaaaaaaaa@44D1@ is added to the Bayesian model. These prior distributions are multiplied by the density functions of the distributions associated with the sampling and linking models. This yields a joint likelihood function in terms of the model parameters. This function is used to obtain a full conditional (posterior) distribution for each of the unknown parameters. For some of these, the resulting distribution has a tractable or well-known form. For others, the resulting distribution is a product of density functions with no known form. All HB methods involve estimation of the model parameters through repeated sampling of their respective full conditional distributions.

Markov Chain Monte Carlo (MCMC) methods are used to obtain estimates from the full conditional distribution of each parameter. Gibbs sampling is used repeatedly to sample from the full conditional distributions. The Gibbs sampling method (Gelfand and Smith, 1990) with the Metropolis-Hastings algorithm (Chib and Greenberg, 1995) are used to find the posterior means and posterior variances; see Estevao et al. (2015) for details. The various estimators of θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaaaa@38C7@ resulting from (5.3) are denoted as θ ^ i HB . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabIeacaqGcbaaaOGaaiOlaaaa@3B24@

5.1  Benchmarked HB estimator

Benchmarking of the estimators uses the difference adjustment method described in Section 3.2. That is, the benchmarked estimators θ ^ i HB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabIeacaqGcbaaaaaa@3A68@ are computed as

θ ^ i HB , b = { θ ^ i HB + α i ( θ ^ * d A ω d θ ^ d HB ) for i A z i T β ^ for i A ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaiaabIeacaqGcbGaaiilaiaaysW7caWG IbaaaOGaeyypa0ZaaiqaaeaafaqaaeGacaaabaGafqiUdeNbaKaada qhaaWcbaGaamyAaaqaaiaabIeacaqGcbaaaOGaey4kaSIaeqySde2a aSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacuaH4oqCgaqcamaaCaaale qabaGaaiOkaaaakiabgkHiTmaaqababaGaeqyYdC3aaSbaaSqaaiaa dsgaaeqaaOGafqiUdeNbaKaadaqhaaWcbaGaamizaaqaaiaabIeaca qGcbaaaaqaaiaadsgacqGHiiIZcaWGbbaabeqdcqGHris5aaGccaGL OaGaayzkaaaabaGaaeOzaiaab+gacaqGYbGaaGjbVlaaykW7caWGPb GaeyicI4SaamyqaaqaaiaahQhadaqhaaWcbaGaamyAaaqaaiaadsfa aaGcceWHYoGbaKaaaeaacaqGMbGaae4BaiaabkhacaaMe8UaaGPaVl aadMgacqGHiiIZceWGbbGbaebaaaaacaGL7baaaaa@7019@

where α i = ( i A ω i 2 ( ψ ¨ i + b i 2 σ ^ v 2 HB ) ) 1 ω i ( ψ ¨ i + b i 2 σ ^ v 2 HB ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefi0BVTwBH5 gipXgzGmfD5XwzaGqbaKqzaeGaa8hiaOGaeqySde2aaSbaaSqaaiaa dMgaaeqaaOGaeyypa0ZaaeWaaeaadaaeqaqaaiabeM8a3naaDaaale aacaWGPbaabaGaaGOmaaaakmaabmaabaGafqiYdKNbamaadaWgaaWc baGaamyAaaqabaGccqGHRaWkcaWGIbWaa0baaSqaaiaadMgaaeaaca aIYaaaaOGafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdacaqG ibGaaeOqaaaaaOGaayjkaiaawMcaaaWcbaGaamyAaiabgIGiolaadg eaaeqaniabggHiLdaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHi TiaaigdaaaGccqaHjpWDdaWgaaWcbaGaamyAaaqabaGcdaqadaqaai qbeI8a5zaadaWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamOyamaa DaaaleaacaWGPbaabaGaaGOmaaaakiqbeo8aZzaajaWaa0baaSqaai aadAhaaeaacaaIYaGaaeisaiaabkeaaaaakiaawIcacaGLPaaaiiWa jugabiab+bcaGaaa@6CA0@ for i A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgI GiolaadgeacaGGSaaaaa@39DF@ and θ ^ * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaahaaWcbeqaaiaacQcaaaaaaa@3898@ is the benchmark value. The terms ω i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadMgaaeqaaaaa@38DE@ are defined as follows: ω i = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaGymaaaa@3AA9@ if the benchmarking is to a total, and ω i = N i / N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaSGbaeaacaWGobWaaSbaaSqa aiaadMgaaeqaaaGcbaGaamOtaaaaaaa@3CCE@ if the benchmarking is for the mean. The ψ ¨ i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbam aadaWgaaWcbaGaamyAaaqabaacbaGccaWFzaIaa83Caaaa@3AAA@ are either known or unknown. The θ ^ * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaahaaWcbeqaaiaacQcaaaaaaa@3898@ can be a value provided by the user that represents the total or mean of the y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36F5@ -values of population U . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaac6 caaaa@3783@ The benchmarking ensures that i A A ¯ ω i θ ^ i HB , b = θ ^ * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabeaeaacq aHjpWDdaWgaaWcbaGaamyAaaqabaGccuaH4oqCgaqcamaaDaaaleaa caWGPbaabaGaaeisaiaabkeacaGGSaGaaGjbVlaadkgaaaaabaGaam yAaiabgIGiolaadgeacqGHQicYceWGbbGbaebaaeqaniabggHiLdGc cqGH9aqpcuaH4oqCgaqcamaaCaaaleqabaGaaiOkaaaakiaac6caaa a@4C78@


Report a problem on this page

Is something not working? Is there information outdated? Can't find what you're looking for?

Please contact us and let us know how we can help you.

Privacy notice

Date modified: