Development of a small area estimation system at Statistics Canada

Section 7. Conclusion

A frequent demand from users of data from NSOs is for more granularity for use in planning and policy research purposes. NSOs can no longer simply increase the sample sizes of their surveys to obtain reliable estimates at the requested level of detail. Reasons for this include the high costs of doing so, response burden concerns, as well as the difficult task of obtaining responses from sampled units. An alternative being investigated by many NSOs is the use of small area estimation techniques that provide a way to address the demand for more granular data. With this in mind, Statistics Canada began the development of an SAE production system in the early 2000s and now have such a system available to their statistical programs. The production system handles area and unit level models, with multiple options such as different methods to estimate the variance components, different linking models and both the EBLUP and HB estimation methods. It is currently being used to produce experimental estimates for several Statistics Canada statistical programs and it is expected that the first published small area estimates will be available in 2019.

As it was mentioned in the introduction, the only existing software in 2006 that would produce small area estimates and their associated mean squared estimates was sponsored by the EURAREA (2004) project. The current production system developed at Statistics Canada is written in SAS, with its methodology closely following Rao (2003) and includes some recent advances. As it stands, it satisfies the existing requirements for small area estimation at Statistics Canada. However, as the use of small area estimation becomes more common within Statistics Canada, there will be a need to add functionality to the system to meet this demand. The recent book authored by Rao and Molina (2015) provides an idea of how much development has taken place in small area estimation during recent years. The incorporation of all this development into the production system would be extremely time consuming, expensive, and may not be directly applicable to the needs of Statistics Canada. It, therefore, follows that options other than programming these new functionalities in the current SAS production system should be considered. One option would be to investigate how packages developed elsewhere, such as those written in R , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaacY caaaa@377E@ can be integrated into it. Notable packages written in R include sae (Molina and Marhuenda, 2015), mme (Lopez-Vizcaino, Lombardia and Morales, 2014), saery (Esteban, Morales and Perez, 2014) and sae2 (Fay and Diallo, 2015). These packages include small area procedures that are not in the present system such as multinomial linear mixed models, area level models with time effects and time series area level models supporting univariate and multivariate applications. The existing SAS production system meets the needs of Statistics Canada at this point in time, and there are no concrete plans to add functionality to it.

Acknowledgements

We would like to thank the reviewers for their comments and suggestions that led to improvements in this paper.

Appendix

Justification of the coefficient of determination

In order to determine a coefficient of determination associated with the linking model, θ i = z i T β + b i v i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaCOEamaaDaaaleaacaWGPbaa baGaamivaaaakiaahk7acqGHRaWkcaWGIbWaaSbaaSqaaiaadMgaae qaaOGaamODamaaBaaaleaacaWGPbaabeaakiaacYcaaaa@43D2@ we first rewrite it as

θ ˜ i = z ˜ i T β + v i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaG aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpceWH6bGbaGaadaqhaaWc baGaamyAaaqaaiaadsfaaaGccaWHYoGaey4kaSIaamODamaaBaaale aacaWGPbaabeaakiaacYcaaaa@41E4@

where θ ˜ i = θ i / b i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaG aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpdaWcgaqaaiabeI7aXnaa BaaaleaacaWGPbaabeaaaOqaaiaadkgadaWgaaWcbaGaamyAaaqaba aaaaaa@3ED7@ and z ˜ i = z i / b i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOEayaaia WaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaSGbaeaacaWH6bWaaSba aSqaaiaadMgaaeqaaaGcbaGaamOyamaaBaaaleaacaWGPbaabeaaaa GccaGGUaaaaa@3E2D@ We assume that an intercept is implicitly or explicitly included in z ˜ i ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOEayaaia WaaSbaaSqaaiaadMgaaeqaaOGaai4oaaaa@38EC@ i.e., there exists a vector λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4Udaaa@373E@ such that λ T z ˜ i = 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4UdmaaCa aaleqabaGaamivaaaakiqahQhagaacamaaBaaaleaacaWGPbaabeaa kiabg2da9iaaigdacaGGUaaaaa@3CF7@ In other words, we assume that there exists a vector λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4Udaaa@373E@ such that b i = λ T z i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGPbaabeaakiabg2da9iaahU7adaahaaWcbeqaaiaadsfa aaGccaWH6bWaaSbaaSqaaiaadMgaaeqaaOGaaiOlaaaa@3E38@ If θ ˜ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaG aadaWgaaWcbaGaamyAaaqabaGccaGGSaaaaa@3990@ i = 1 , , m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2 da9iaaigdacaGGSaGaaGjbVlablAciljaacYcacaaMe8UaamyBaiaa cYcaaaa@3FE4@ were known, we could estimate the unknown vector of model parameters β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdaaa@3735@ by the least squares estimator

β ^ * = ( i = 1 m z ˜ i z ˜ i T ) 1 i = 1 m z ˜ i θ ˜ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja WaaSbaaSqaaiaacQcaaeqaaOGaeyypa0ZaaeWaaeaadaaeWbqaaiqa hQhagaacamaaBaaaleaacaWGPbaabeaakiqahQhagaacamaaDaaale aacaWGPbaabaGaamivaaaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaa d2gaa0GaeyyeIuoaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0 IaaGymaaaakmaaqahabaGabCOEayaaiaWaaSbaaSqaaiaadMgaaeqa aOGafqiUdeNbaGaadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2 da9iaaigdaaeaacaWGTbaaniabggHiLdaaaa@52A1@

and the unknown model variance σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@399E@ by the unbiased estimator

σ ^ v * 2 = i = 1 m ( θ ˜ i z ˜ i T β ^ * ) 2 m q . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaacQcaaeaacaaIYaaaaOGaeyypa0ZaaSaa aeaadaaeWaqaamaabmaabaGafqiUdeNbaGaadaWgaaWcbaGaamyAaa qabaGccqGHsislceWH6bGbaGaadaqhaaWcbaGaamyAaaqaaiaadsfa aaGcceWHYoGbaKaadaWgaaWcbaGaaiOkaaqabaaakiaawIcacaGLPa aadaahaaWcbeqaaiaaikdaaaaabaGaamyAaiabg2da9iaaigdaaeaa caWGTbaaniabggHiLdaakeaacaWGTbGaeyOeI0IaamyCaaaacaGGUa aaaa@502E@

The well-known adjusted coefficient of determination is

R ideal 2 = 1 σ ^ v * 2 ( m 1 ) 1 i = 1 m ( θ ˜ i θ ˜ ¯ ) 2 , ( A .1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaqGPbGaaeizaiaabwgacaqGHbGaaeiBaaqaaiaaikdaaaGc cqGH9aqpcaaIXaGaeyOeI0YaaSaaaeaacuaHdpWCgaqcamaaDaaale aacaWG2bGaaiOkaaqaaiaaikdaaaaakeaadaqadaqaaiaad2gacqGH sislcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXa aaaOWaaabmaeaadaqadeqaaiqbeI7aXzaaiaWaaSbaaSqaaiaadMga aeqaaOGaeyOeI0IafqiUdeNbaGGbaebaaiaawIcacaGLPaaadaahaa WcbeqaaiaaikdaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGTbaa niabggHiLdaaaOGaaiilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8 UaaiikaiaabgeacaqGUaGaaGymaiaacMcaaaa@6343@

where θ ˜ ¯ = m 1 i = 1 m θ ˜ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaG GbaebacqGH9aqpcaWGTbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWa aabmaeaacuaH4oqCgaacamaaBaaaleaacaWGPbaabeaaaeaacaWGPb Gaeyypa0JaaGymaaqaaiaad2gaa0GaeyyeIuoakiaac6caaaa@44DD@ It is an ideal coefficient of determination because it cannot be computed (since θ ˜ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaG aadaWgaaWcbaGaamyAaaqabaaaaa@38D6@ is unknown) but this is the target we would like to estimate. Simply replacing θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaaaa@38C7@ with θ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaaaaaaa@38D8@ does not solve the problem as θ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaaaaaaaa@38D8@ reflects the combined model and not just the linking model. The resulting coefficient of determination would typically be too small. To obtain a better estimate of R ideal 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaqGPbGaaeizaiaabwgacaqGHbGaaeiBaaqaaiaaikdaaaGc caGGSaaaaa@3CFF@ we first decompose i = 1 m ( θ ˜ i θ ˜ ¯ ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabmaeaada qadeqaaiqbeI7aXzaaiaWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0Ia fqiUdeNbaGGbaebaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaa aabaGaamyAaiabg2da9iaaigdaaeaacaWGTbaaniabggHiLdaaaa@43B4@ as

i = 1 m ( θ ˜ i θ ˜ ¯ ) 2 = i = 1 m ( θ ˜ i z ˜ i T β ^ * ) 2 + i = 1 m ( z ˜ i T β ^ * θ ˜ ¯ ) 2 + 2 i = 1 m ( θ ˜ i z ˜ i T β ^ * ) ( z ˜ i T β ^ * θ ˜ ¯ ) . ( A .2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaada qadaqaaiqbeI7aXzaaiaWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0Ia fqiUdeNbaGGbaebaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaa aabaGaamyAaiabg2da9iaaigdaaeaacaWGTbaaniabggHiLdGccqGH 9aqpdaaeWbqaamaabmaabaGafqiUdeNbaGaadaWgaaWcbaGaamyAaa qabaGccqGHsislceWH6bGbaGaadaqhaaWcbaGaamyAaaqaaiaadsfa aaGcceWHYoGbaKaadaWgaaWcbaGaaiOkaaqabaaakiaawIcacaGLPa aadaahaaWcbeqaaiaaikdaaaaabaGaamyAaiabg2da9iaaigdaaeaa caWGTbaaniabggHiLdGccqGHRaWkdaaeWbqaamaabmaabaGabCOEay aaiaWaa0baaSqaaiaadMgaaeaacaWGubaaaOGabCOSdyaajaWaaSba aSqaaiaacQcaaeqaaOGaeyOeI0IafqiUdeNbaGGbaebaaiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaaabaGaamyAaiabg2da9iaaigda aeaacaWGTbaaniabggHiLdGccqGHRaWkcaaIYaWaaabCaeaadaqada qaaiqbeI7aXzaaiaWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IabCOE ayaaiaWaa0baaSqaaiaadMgaaeaacaWGubaaaOGabCOSdyaajaWaaS baaSqaaiaacQcaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaaceWH6bGb aGaadaqhaaWcbaGaamyAaaqaaiaadsfaaaGcceWHYoGbaKaadaWgaa WcbaGaaiOkaaqabaGccqGHsislcuaH4oqCgaacgaqeaaGaayjkaiaa wMcaaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGTbaaniabggHiLd GccaGGUaGaaGzbVlaaywW7caGGOaGaaeyqaiaab6cacaaIYaGaaiyk aaaa@8AC7@

Assuming that an intercept is implicitly or explicitly included in z ˜ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOEayaaia WaaSbaaSqaaiaadMgaaeqaaaaa@3823@ and from the expression for β ^ * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja WaaSbaaSqaaiaacQcaaeqaaOGaaiilaaaa@38D9@ we have that

i = 1 m ( θ ˜ i z ˜ i T β ^ * ) z ˜ i = 0 ( A .3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaada qadaqaaiqbeI7aXzaaiaWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0Ia bCOEayaaiaWaa0baaSqaaiaadMgaaeaacaWGubaaaOGabCOSdyaaja WaaSbaaSqaaiaacQcaaeqaaaGccaGLOaGaayzkaaGabCOEayaaiaWa aSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaam yBaaqdcqGHris5aOGaeyypa0JaaCimaiaaywW7caaMf8UaaGzbVlaa ywW7caaMf8UaaiikaiaabgeacaqGUaGaaG4maiaacMcaaaa@55B5@

and

i = 1 m ( θ ˜ i z ˜ i T β ^ * ) = 0. ( A .4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaada qadaqaaiqbeI7aXzaaiaWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0Ia bCOEayaaiaWaa0baaSqaaiaadMgaaeaacaWGubaaaOGabCOSdyaaja WaaSbaaSqaaiaacQcaaeqaaaGccaGLOaGaayzkaaaaleaacaWGPbGa eyypa0JaaGymaaqaaiaad2gaa0GaeyyeIuoakiabg2da9iaaicdaca GGUaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaeyqaiaa b6cacaaI0aGaaiykaaaa@5448@

From (A.4), we can rewrite θ ˜ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaG Gbaebaaaa@37D3@ as θ ˜ ¯ = z ˜ ¯ T β ^ * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaG GbaebacqGH9aqpceWH6bGbaGGbaebadaahaaWcbeqaaiaadsfaaaGc ceWHYoGbaKaadaWgaaWcbaGaaiOkaaqabaGccaGGSaaaaa@3DF4@ where z ˜ ¯ = m 1 i = 1 m z ˜ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOEayaaiy aaraGaeyypa0JaamyBamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaa qadabaGabCOEayaaiaWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacq GH9aqpcaaIXaaabaGaamyBaaqdcqGHris5aOGaaiOlaaaa@4377@ As a result, the cross product term in (A.2) vanishes and equation (A.2) reduces to

i=1 m ( θ ˜ i θ ˜ ¯ ) 2 = i=1 m ( θ ˜ i z ˜ i T β ^ * ) 2 + i=1 m ( z ˜ i T β ^ * z ˜ ¯ T β ^ * ) 2 = ( mq ) σ ^ v* 2 +( m1 ) S 2 ( β ^ * ), (A.5) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiWaaa qaamaaqahabaWaaeWaaeaacuaH4oqCgaacamaaBaaaleaacaWGPbaa beaakiabgkHiTiqbeI7aXzaaiyaaraaacaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamyBaaqd cqGHris5aaGcbaGaeyypa0dabaWaaabCaeaadaqadaqaaiqbeI7aXz aaiaWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IabCOEayaaiaWaa0ba aSqaaiaadMgaaeaacaWGubaaaOGabCOSdyaajaWaaSbaaSqaaiaacQ caaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqaaiaa dMgacqGH9aqpcaaIXaaabaGaamyBaaqdcqGHris5aOGaey4kaSYaaa bCaeaadaqadaqaaiqahQhagaacamaaDaaaleaacaWGPbaabaGaamiv aaaakiqahk7agaqcamaaBaaaleaacaGGQaaabeaakiabgkHiTiqahQ hagaacgaqeamaaCaaaleqabaGaamivaaaakiqahk7agaqcamaaBaaa leaacaGGQaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaa aaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad2gaa0GaeyyeIuoaaOqa aaqaaiabg2da9aqaamaabmaabaGaamyBaiabgkHiTiaadghaaiaawI cacaGLPaaacuaHdpWCgaqcamaaDaaaleaacaWG2bGaaiOkaaqaaiaa ikdaaaGccqGHRaWkdaqadaqaaiaad2gacqGHsislcaaIXaaacaGLOa GaayzkaaGaam4uamaaCaaaleqabaGaaGOmaaaakmaabmaabaGabCOS dyaajaWaaSbaaSqaaiaacQcaaeqaaaGccaGLOaGaayzkaaGaaiilaa aacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaqGbbGaaeOl aiaaiwdacaGGPaaaaa@8AB1@

where

S 2 ( β ^ * ) = i = 1 m ( z ˜ i T β ^ * z ˜ ¯ T β ^ * ) 2 m 1 . ( A .6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaakmaabmaabaGabCOSdyaajaWaaSbaaSqaaiaa cQcaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaadaaeWaqaam aabmaabaGabCOEayaaiaWaa0baaSqaaiaadMgaaeaacaWGubaaaOGa bCOSdyaajaWaaSbaaSqaaiaacQcaaeqaaOGaeyOeI0IabCOEayaaiy aaraWaaWbaaSqabeaacaWGubaaaOGabCOSdyaajaWaaSbaaSqaaiaa cQcaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqaai aadMgacqGH9aqpcaaIXaaabaGaamyBaaqdcqGHris5aaGcbaGaamyB aiabgkHiTiaaigdaaaGaaiOlaiaaywW7caaMf8UaaGzbVlaaywW7ca aMf8UaaiikaiaabgeacaqGUaGaaGOnaiaacMcaaaa@5DE0@

From (A.5), it follows that the ideal coefficient of determination (A.1) can be rewritten as

R ideal 2 = 1 σ ^ v * 2 ( m q ) ( m 1 ) σ ^ v * 2 + S 2 ( β ^ * ) f ( β ^ * , σ ^ v * 2 ) . ( A .7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaqGPbGaaeizaiaabwgacaqGHbGaaeiBaaqaaiaaikdaaaGc cqGH9aqpcaaIXaGaeyOeI0YaaSaaaeaacuaHdpWCgaqcamaaDaaale aacaWG2bGaaiOkaaqaaiaaikdaaaaakeaadaWcaaqaamaabmaabaGa amyBaiabgkHiTiaadghaaiaawIcacaGLPaaaaeaadaqadaqaaiaad2 gacqGHsislcaaIXaaacaGLOaGaayzkaaaaaiqbeo8aZzaajaWaa0ba aSqaaiaadAhacaGGQaaabaGaaGOmaaaakiabgUcaRiaadofadaahaa WcbeqaaiaaikdaaaGcdaqadaqaaiqahk7agaqcamaaBaaaleaacaGG QaaabeaaaOGaayjkaiaawMcaaaaacqGHHjIUcaWGMbGaaiikaiqahk 7agaqcamaaBaaaleaacaGGQaaabeaakiaacYcacaaMe8Uafq4WdmNb aKaadaqhaaWcbaGaamODaiaacQcaaeaacaaIYaaaaOGaaiykaiaac6 cacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaqGbbGaaeOl aiaaiEdacaGGPaaaaa@6FD5@

The only unknown quantities in (A.7) are β ^ * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja WaaSbaaSqaaiaacQcaaeqaaaaa@381F@ and σ ^ v * 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaacQcaaeaacaaIYaaaaOGaaiOlaaaa@3B18@ A computable coefficient of determination can thus be obtained by replacing β ^ * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja WaaSbaaSqaaiaacQcaaeqaaaaa@381F@ and σ ^ v * 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaacQcaaeaacaaIYaaaaaaa@3A5C@ in (A.7) with β ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja aaaa@3745@ and σ ^ v 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdaaaGccaGGSaaaaa@3A68@ the consistent estimators of β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdaaa@3735@ and σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@399E@ implemented in the SAE system and described in Section 3. The resulting coefficient of determination can be expressed as R 2 = f ( β ^ , σ ^ v 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGOmaaaakiabg2da9iaadAgadaqadaqaaiqahk7agaqc aiaacYcacaaMe8Uafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaik daaaaakiaawIcacaGLPaaacaGGSaaaaa@4337@ with the function f ( , ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaGaeyyXICTaaiilaiabgwSixdGaayjkaiaawMcaaaaa@3DAF@ defined in (A.7), and is a consistent estimator of the ideal coefficient of determination R ideal 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaqGPbGaaeizaiaabwgacaqGHbGaaeiBaaqaaiaaikdaaaGc caGGUaaaaa@3D01@

References

Battese, G.E., Harter, R.M. and Fuller, W.A. (1988). An error-components model for prediction of crop areas using survey and satellite data. Journal of the American Statistical Association, 83, 28-36.

Beaumont , J.-F., and Bocci, C. (2016). Small area estimation in the Labour Force Survey. Paper presented at the Advisory Committee on Statistical Methods, May 2016, Statistics Canada.

Brackstone, G.J. (1987). Small area data: Policy issues and technical challenges. In Small Area Statistics, (Eds., R. Platek, J.N.K. Rao, C.-E. Särndal and M.P. Singh), New York : John Wiley & Sons, Inc., 3-20.

Chib, S., and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. American Statistician, 49, 327-335.

Dick, P. (1995). Modelling net undercoverage in the 1991 Canadian Census. Survey Methodology, 21, 1, 45-54. Paper available at https://www150.statcan.gc.ca/n1/en/pub/12-001-x/1995001/article/14411-eng.pdf.

Drew, D., Singh, M.P. and Choudhry, G.H. (1982). Evaluation of small area estimation techniques for the Canadian Labour Force Survey. Survey Methodology, 8, 1, 17-47. Paper available at https://www150.statcan.gc.ca/n1/en/pub/12-001-x/1982001/article/14328-eng.pdf.

Esteban, M.D., Morales, D. and Perez, A. (2014). saery: Small Area Estimation for Rao and Yu Model. URL http://CRAN.R-project.org/package=saery. R package version 1.0.

Estevao, V., Hidiroglou, M.A. and You, Y. (2015). Area Level Model, Unit Level, and Hierarchical Bayes Methodology Specifications. Internal document, Statistics Canada.

EURAREA (2004). Enhancing Small Area Estimation Techniques to meet European Needs. https://cordis.europa.eu/project/rcn/58374_en.html.

Fay, R.E., and Diallo, M. (2015). sae2: Small Area Estimation: Time-Series Models. URL http://CRAN.Rproject.org/package=sae2. R package version 0.1-1.

Fay, R.E., and Herriot, R.A. (1979). Estimation of income for small places: An application of James-Stein procedures to Census data. Journal of the American Statistical Association, 74, 269-277.

Fuller, W.A., and Rao, J.N.K. (2001). A regression composite estimator with application to the Canadian Labour Force Survey. Survey Methodology, 27, 1, 45-51. Paper available at https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2001001/article/5853-eng.pdf.

Gambino, J., Kennedy, B. and Singh, M.P. (2001). Regression composite estimation for the Canadian Labour Force Survey: Evaluation and implementation. Survey Methodology, 27, 1, 65-74. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/2001001/article/5855-eng.pdf.

Gelfand, A.E., and Smith, A.F.M. (1990). Sample-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 972-985.

Ghangurde, P.D., and Singh, M.P. (1977). Synthetic estimation in periodic household surveys. Survey Methodology, 3, 2, 152-181.

Gonzalez, M.E., and Hoza, C. (1978). Small-area estimation with application to unemployment and housing estimates. Journal of the American Statistical Association, 73, 7-15.

Kott, P. (1989). Robust small domain estimation using random effects modeling. Survey Methodology, 15, 1, 3-12. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/1989001/article/14581-eng.pdf.

Li, H., and Lahiri, P. (2010). Adjusted maximum method in the small area estimation problem. Journal of Multivariate Analysis, 101, 882-892.

Lopez-Vizcaino, E., Lombardia, M.J. and Morales, D. (2014). mme: Multinomial Mixed Effects Models, 2014. URL http://CRAN.R-project.org/package=mme. R package version 0.1-5.

Molina, I. , and Marhuenda, Y. (2015). sae: An R package for small area estimation. The R Journal, 7, 1, 81-98.

Prasad, N.G.N., and Rao, J.N.K. (1990). The estimation of the mean squared error of small-area estimators. Journal of the American Statistical Association, 85, 163-171.

Prasad, N.G.N., and Rao, J.N.K. (1999). On robust small area estimation using a simple random effects model. Survey Methodology, 25, 1, 67-72. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/1999001/article/4713-eng.pdf.

Rao, J.N.K. (2003). Small Area Estimation. New York : John Wiley & Sons, Inc.

Rao, J.N.K., and Molina, I. (2015). Small Area Estimation. New York : John Wiley & Sons, Inc.

Rivest, L.-P., and Belmonte, E. (2000). A conditional mean squared error of small area estimators. Survey Methodology, 26, 1, 67-78. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/2000001/article/5179-eng.pdf.

Rubin-Bleuer, S. (2014). Specifications for EBLUP and Pseudo-EBLUP Estimators with Nonnegligible Sampling Fractions. Statistics Canada document.

Rubin-Bleuer, S., Jang, L. and Godbout, S. (2016). The Pseudo-EBLUP estimator for a weighted average with an application to the Canadian Survey of Employment, Payrolls and Hours. Journal of Survey Statistics and Methodology, 4, 417-435.

Singh, M.P., and Tessier, R. (1976). Some estimators for domain totals. Journal of the American Statistical Association, 71, 322-325.

Singh, A.C., Kennedy, B. and Wu, S. (2001). Regression composite estimation for the Canadian Labour Force Survey with a rotating panel design. Survey Methodology, 27, 1, 33-44. Paper available at https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2001001/article/5852-eng.pdf.

Stukel, D., and Rao, J.N.K. (1997). Small-area estimation under two-fold nested error regression model. Journal of Statistical Planning and Inference, 78, 131-147.

Wang, J., and Fuller, W.A. (2003). The mean square error of small area estimators constructed with estimated area variances. Journal of American Statistical Association, 98, 716-723.

Wang, J., Fuller, W.A. and Qu, Y. (2008). Small area estimation under a restriction. Survey Methodology, 34, 1, 29-36. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/2008001/article/10619-eng.pdf.

You, Y., and Rao, J.N.K. (2002). A pseudo empirical best linear unbiased prediction approach to small area estimation using survey weights. The Canadian Journal of Statistics, 30, 431-439.

You, Y., Rao, J.N.K. and Dick, P. (2004). Benchmarking hierarchical Bayes small area estimators in the Canadian census undercoverage estimation. Statistics in Transition, 6, 631-640.

You, Y., Rao, J.N.K. and Hidiroglou, M. (2013). On the performance of self benchmarked small area estimators under the Fay-Herriot area level model. Survey Methodology, 39, 1, 217-229. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/2013001/article/11830-eng.pdf.


Date modified: