Strategies for subsampling nonrespondents for economic programs
Section 4. Conclusion

In general, the NRFU procedures for economic programs conducted by the U.S. Census Bureau follow a calendar schedule. Budget is tied to the fiscal year, and contact strategies are budgeted accordingly. Since economic populations are highly skewed and the statistics of interest are totals, a large fraction of the NRFU budget is allocated to the larger units. The smaller units are believed to be homogeneous MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Jc9qqqrpepC0xbbL8F4rqqrFfFv0dg9Wqpe0dar pepeuf0xe9q8qiYRWFGCk9vi=dbvc9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeaaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@3690@ at least in size. However, it is difficult to validate that belief in the absence of collected respondent data. Given that the NRFU procedures rely on obtaining response data from the larger units, the response rates from smaller units tend to be much lower. It is quite likely that the realized respondent set is neither “balanced…which means (the selected sample has) the same or almost the same characteristics as the whole population” for selected items (Särndal, 2011) nor “representative… with respect to the sample if the response propensities ρ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHbpGCdaWgaaWcbaGaamyAaaqaba aaaa@3499@ are the same for all units in the population” (Schouten et al., 2009). The emphasis on obtaining responses from the larger units at the cost of the lower unit response in turn creates a bias in the estimates, as imputed or adjusted values for smaller units resemble the large unit values (Thompson and Washington, 2013).

By limiting the target domain for nonrespondent subsampling to the smaller units, we can reduce this unmeasurable bias. Our allocation method increases the potential of obtaining a balanced and representative sample by targeting the low responding areas that usually would not receive any special treatment. It can be implemented at any stage of the data collection process and with any sample design, making it quite flexible although not necessarily optimal for specific sample designs and estimators. It is a “safe” approach for a multi-purpose survey, presumably designed to obtain reliable estimates for a variety of items. Moreover, selecting a systematic subsample from a list sorted by a unit measure of size avoids incidence of additional nonresponse bias incurred by focusing NRFU efforts on high response propensity cases (Tourangeau et al., 2016; Beaumont et al., 2014). We acknowledge that the increased variability in design weights and reduction in response rates are less than desirable effects caused by subsampling. However, these effects can be lessened via the choice of estimator, as demonstrated by our improved results with a ratio estimator. More sophisticated calibration estimators or other collapsed estimators could likewise be considered at the estimation stage.

Without probability subsampling, the contention that the realized respondent set of small businesses remains a probability sample is debatable. Several discussions of the summary report of the AAPOR Task Force on non-probability sampling (Baker, Brick, Bates, Battaglia, Couper, Dever, Gile and Tourangeau, 2013) specifically question whether “a probability sample with less than full coverage and high nonresponse should still be considered a probability sample”. That question is certainly relevant in our studied context, where sampled smaller units truly “opt in” to respond. Selecting a probability subsample of nonrespondents and instructing survey analysts to limit NRFU contact to these cases may limit this phenomenon. In addition, with a probability subsample, one can use accepted quality measures such as sampling error or response rates for evaluation.

All of the results presented for our case study assume that the existing NRFU contact strategies are used with the subsampled designs. However, subsampling nonrespondents without changing the data collection procedure may have minimal tangible benefits besides cost reduction. The reverse is also true: for example, Kirgis and Lepkowski (2013) present improved response data results for targeted small domains obtained with probability samples and revised contact strategies.

Tourangeau et al. (2016) note that “it is not always clear how to intervene to obtain cases, particularly cases with low underlying propensities, to respond”. This is especially relevant in the business survey context. Business surveys can draw on a wealth of cognitive research on data collection strategies for large companies: see Paxson, Dillman and Tarnai, 1995; Tuttle, Morrison and Willimack, 2010; Willimack and Nichols, 2010; Snijkers, Haraldsen, Jones and Willimack, 2013. In contrast, the smaller businesses receive very little personal contact (if any) and there is limited cognitive research on preferable contact strategies to draw upon. That said, the literature suggests that there are differences in collected data quality between large and small businesses: see Thompson and Washington (2013), Willimack and Nichols (2010), Bavdaž (2010), Torres van Grinsven, Bolko and Bavdaž (2014), and Thompson, Oliver and Beck (2015). Additional cognitive research for small establishments combined with field tests could yield better contact strategies. Subsampling nonrespondents paired with a new contact strategy for these “hard to reach” establishments would create a truly adaptive approach for all units, not just the larger ones. To this point, in response to these presented analyses, the Census Bureau conducted an embedded field experiment to test alternative NRFU strategies for selected small units in the 2014 ASM (Thompson and Kaputa, 2017). The outcome of that study was a new NRFU protocol implemented in the 2015 ASM and a second embedded field experiment that paired our proposed nonrespondent subsampling design with the most effective follow-up procedures determined from the 2014 test (Kaputa, Thompson and Beck, 2017).

Acknowledgements

Any views expressed are those of the author(s) and not necessarily those of the U.S. Census Bureau. The authors thank Eric Fink, Xijian Liu, Jared Martin, Edward Watkins III, Hannah Thaw, the Associate Editor, and two referees for their review of an earlier version of the manuscript, David Haziza for his thoughtful discussion of the paper, and Barry Schouten for his useful suggestions on the optimization problems.

Appendix

Our objective is to estimate Y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbGaaiilaaaa@334D@ population total of characteristic y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bGaaiilaaaa@336D@ from the realized sample of respondents. Let

S h i = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGtbWaaSbaaSqaaiaadIgacaWGPb aabeaakiabg2da9aaa@35AE@
1 if unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbaaaa@32AD@ in domain h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObaaaa@32AC@ was in original sample; 0 otherwise.
θ h i = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH4oqCdaWgaaWcbaGaamiAaiaadM gaaeqaaOGaeyypa0daaa@368C@
the probability of sampling unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbaaaa@32AD@ in domain h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObaaaa@32AC@ into the original sample ( w h i = 1 / θ h i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaadEhadaWgaaWcbaGaam iAaiaadMgaaeqaaOGaeyypa0ZaaSGbaeaacaaIXaaabaGaeqiUde3a aSbaaSqaaiaadIgacaWGPbaabeaaaaaakiaawIcacaGLPaaacaGGUa aaaa@3CA5@
R h i = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGsbWaaSbaaSqaaiaadIgacaWGPb aabeaakiabg2da9aaa@35AD@
1 if unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbaaaa@32AD@ in domain h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObaaaa@32AC@ provided a response before subsampling time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0baaaa@32B8@ (value for y ) ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bGaaiykaiaacUdaaaa@3429@ 0 otherwise.
I h i = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGjbWaaSbaaSqaaiaadIgacaWGPb aabeaakiabg2da9aaa@35A4@
1 if unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbaaaa@32AD@ in domain h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObaaaa@32AC@ was selected for NRFU (i.e., was a subsampled nonrespondent); 0 otherwise.
J h i = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGkbWaaSbaaSqaaiaadIgacaWGPb aabeaakiabg2da9aaa@35A5@
1 if unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbaaaa@32AD@ in domain h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObaaaa@32AC@ responds, given selected into nonrespondent subsample; 0 otherwise.
f h i = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGMbWaaSbaaSqaaiaadIgacaWGPb aabeaakiabg2da9aaa@35C1@
adjustment factor for nonrespondent subsampling and unit nonresponse after NRFU.
y h i = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bWaaSbaaSqaaiaadIgacaWGPb aabeaakiabg2da9aaa@35D4@
value of characteristic y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5baaaa@32BD@ for unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbaaaa@32AD@ in domain h , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObGaaiilaaaa@335C@ available only for respondents.
x h i = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG4bWaaSbaaSqaaiaadIgacaWGPb aabeaakiabg2da9aaa@35D3@
value of characteristic x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG4baaaa@32BC@ for unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbaaaa@32AD@ in domain h , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObGaaiilaaaa@335C@ available for all sampled units considered for nonrespondent subsampling (i.e., the nonrespondent subsampling frame). Then Y ^ = h i w h i y h i S h i R h i + h i w h i   f h i y h i   S h i ( 1 R h i ) I h i J h i = Y ^ R 1 + Y ^ R 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiqadMfapaGbaKaape Gaeyypa0ZaaabeaeaadaaeqaqaaiaadEhapaWaaSbaaSqaa8qacaWG ObGaamyAaaWdaeqaaOWdbiaadMhapaWaaSbaaSqaa8qacaWGObGaam yAaaWdaeqaaOWdbiaadofapaWaaSbaaSqaa8qacaWGObGaamyAaaWd aeqaaOWdbiaadkfapaWaaSbaaSqaa8qacaWGObGaamyAaaWdaeqaaa WdbeaacaWGPbaabeqdcqGHris5aaWcbaGaamiAaaqab0GaeyyeIuoa kiabgUcaRmaaqababaWaaabeaeaacaWG3bWdamaaBaaaleaapeGaam iAaiaadMgaa8aabeaak8qacaGGGcGaamOza8aadaWgaaWcbaWdbiaa dIgacaWGPbaapaqabaGcpeGaamyEa8aadaWgaaWcbaWdbiaadIgaca WGPbaapaqabaGcpeGaaiiOaiaadofapaWaaSbaaSqaa8qacaWGObGa amyAaaWdaeqaaaWdbeaacaWGPbaabeqdcqGHris5aaWcbaGaamiAaa qab0GaeyyeIuoakmaabmaapaqaa8qacaaIXaGaeyOeI0IaamOua8aa daWgaaWcbaWdbiaadIgacaWGPbaapaqabaaak8qacaGLOaGaayzkaa Gaamysa8aadaWgaaWcbaWdbiaadIgacaWGPbaapaqabaGcpeGaamOs a8aadaWgaaWcbaWdbiaadIgacaWGPbaapaqabaGcpeGaeyypa0Jabm ywa8aagaqcamaaBaaaleaapeGaamOuaiaaigdaa8aabeaak8qacqGH RaWkceWGzbWdayaajaWaaSbaaSqaa8qacaWGsbGaaGOmaaWdaeqaaO Wdbiaac6caaaa@715A@

We consider three different adjustment-to-sample reweighting estimators of Y ^ R 2 : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGzbGbaKaadaWgaaWcbaGaamOuai aaikdaaeqaaOGaaGjcVlaacQdaaaa@36C5@

  Double Expansion (DE):       Y ^ R 2 DE = h i h w h i K h ( m 1 h r 2 h ) y h i S h i ( 1 R h i ) I h i J h i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGzbGbaKaadaqhaaWcbaGaamOuai aaikdaaeaacaqGebGaaeyraaaakiabg2da9maaqafabaWaaabuaeaa caWG3bWaaSbaaSqaaiaadIgacaWGPbaabeaakiaadUeadaWgaaWcba GaamiAaaqabaGcdaqadaqaamaalaaabaGaamyBamaaBaaaleaacaaI XaGaamiAaaqabaaakeaacaWGYbWaaSbaaSqaaiaaikdacaWGObaabe aaaaaakiaawIcacaGLPaaacaWG5bWaaSbaaSqaaiaadIgacaWGPbaa beaakiaadofadaWgaaWcbaGaamiAaiaadMgaaeqaaOWaaeWaaeaaca aIXaGaeyOeI0IaamOuamaaBaaaleaacaWGObGaamyAaaqabaaakiaa wIcacaGLPaaacaWGjbWaaSbaaSqaaiaadIgacaWGPbaabeaakiaadQ eadaWgaaWcbaGaamiAaiaadMgaaeqaaaqaaiaadMgacqGHiiIZcaWG ObaabeqdcqGHris5aaWcbaGaamiAaaqab0GaeyyeIuoaaaa@5D97@

Separate Ratio (SR):              Y ^ R2 SR = h ih w hi K h ( i m 1h x hi i r 2h x hi ) y hi S hi ( 1 R hi ) I hi J hi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGzbGbaKaadaqhaaWcbaGaamOuai aaikdaaeaacaqGtbGaaeOuaaaakiabg2da9maaqafabaWaaabuaeaa caWG3bWaaSbaaSqaaiaadIgacaWGPbaabeaakiaadUeadaWgaaWcba GaamiAaaqabaGcdaqadaqaamaalaaabaWaaabeaeaacaWG4bWaaSba aSqaaiaadIgacaWGPbaabeaaaeaacaWGPbGaeyicI4SaamyBamaaBa aameaacaaIXaGaamiAaaqabaaaleqaniabggHiLdaakeaadaaeqaqa aiaadIhadaWgaaWcbaGaamiAaiaadMgaaeqaaaqaaiaadMgacqGHii IZcaWGYbWaaSbaaWqaaiaaikdacaWGObaabeaaaSqab0GaeyyeIuoa aaaakiaawIcacaGLPaaacaWG5bWaaSbaaSqaaiaadIgacaWGPbaabe aakiaadofadaWgaaWcbaGaamiAaiaadMgaaeqaaOWaaeWaaeaacaaI XaGaeyOeI0IaamOuamaaBaaaleaacaWGObGaamyAaaqabaaakiaawI cacaGLPaaacaWGjbWaaSbaaSqaaiaadIgacaWGPbaabeaakiaadQea daWgaaWcbaGaamiAaiaadMgaaeqaaaqaaiaadMgacqGHiiIZcaWGOb aabeqdcqGHris5aaWcbaGaamiAaaqab0GaeyyeIuoaaaa@6C68@

Combined Ratio (CR):         Y ^ R2 CR = h ih w hi K h ( m 1h r 2h )( i m 1h w hi K h x hi i r 2h w hi K h ( m 1h r 2h ) x hi ) y hi S hi ( 1 R hi ) I hi J hi . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGzbGbaKaadaqhaaWcbaGaamOuai aaikdaaeaacaqGdbGaaeOuaaaakiabg2da9maaqafabaWaaabuaeaa caWG3bWaaSbaaSqaaiaadIgacaWGPbaabeaakiaadUeadaWgaaWcba GaamiAaaqabaGcdaqadaqaamaalaaabaGaamyBamaaBaaaleaacaaI XaGaamiAaaqabaaakeaacaWGYbWaaSbaaSqaaiaaikdacaWGObaabe aaaaaakiaawIcacaGLPaaadaqadaqaamaalaaabaWaaabeaeaacaWG 3bWaaSbaaSqaaiaadIgacaWGPbaabeaakiaadUeadaWgaaWcbaGaam iAaaqabaGccaWG4bWaaSbaaSqaaiaadIgacaWGPbaabeaaaeaacaWG PbGaeyicI4SaamyBamaaBaaameaacaaIXaGaamiAaaqabaaaleqani abggHiLdaakeaadaaeqaqaaiaadEhadaWgaaWcbaGaamiAaiaadMga aeqaaOGaam4samaaBaaaleaacaWGObaabeaakmaabmaabaWaaSaaae aacaWGTbWaaSbaaSqaaiaaigdacaWGObaabeaaaOqaaiaadkhadaWg aaWcbaGaaGOmaiaadIgaaeqaaaaaaOGaayjkaiaawMcaaiaadIhada WgaaWcbaGaamiAaiaadMgaaeqaaaqaaiaadMgacqGHiiIZcaWGYbWa aSbaaWqaaiaaikdacaWGObaabeaaaSqab0GaeyyeIuoaaaaakiaawI cacaGLPaaacaWG5bWaaSbaaSqaaiaadIgacaWGPbaabeaakiaadofa daWgaaWcbaGaamiAaiaadMgaaeqaaOWaaeWaaeaacaaIXaGaeyOeI0 IaamOuamaaBaaaleaacaWGObGaamyAaaqabaaakiaawIcacaGLPaaa caWGjbWaaSbaaSqaaiaadIgacaWGPbaabeaakiaadQeadaWgaaWcba GaamiAaiaadMgaaeqaaaqaaiaadMgacqGHiiIZcaWGObaabeqdcqGH ris5aaWcbaGaamiAaaqab0GaeyyeIuoakiaac6caaaa@8591@

Note that the DE and CR estimators are variations of the recommended reweighting procedure described in Brick (2013) and are discussed in Binder et al. (2000) among others. The DE estimator is the InfoS estimator presented in Särndal and Lundström (2005), studied in Shao and Thompson (2009), among others; the SR estimator is a variation of the InfoP estimator presented in Särndal and Lundström (2005), treating the realized sample as the “population”. Sampling weights were not included in the SR so that the adjustment reduces to the DE adjustment when x h i 1 i h ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG4bWaaSbaaSqaaiaadIgacaWGPb aabeaakiabggMi6kaaigdacaaMc8UaeyiaIiIaaGPaVlaadMgacqGH iiIZcaWGObGaai4oaaaa@3F55@ note that this unweighted response rate adjustment is recommended in Little and Vartivarian (2005). The CR estimator is presented in Binder et al. (2000), and is also studied in Shao and Thompson (2009). In our case study, a better choice might have been the quasi-randomization estimator from Oh and Scheuren (1983), which incorporates sampling weights in the adjustment factor, thus reducing their variability.

Collapsed estimators are used in three scenarios: (1) All units in the domain receive NRFU (no subsampling); (2) No units in the domain receive NRFU because response rate targets have been achieved (no subsampling); and (3) A single subsampled unit responded to NRFU (subsampling). The collapsed estimators analogues are given as follows:

Collapsed DE:           Y ^ h DE , C = i h w h i ( n h r 1 h + r 2 h ) y h i S h i R h i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGzbGbaKaadaqhaaWcbaGaamiAaa qaaiaabseacaqGfbGaaiilaiaaboeaaaGccqGH9aqpdaaeqbqaaiaa dEhadaWgaaWcbaGaamiAaiaadMgaaeqaaOWaaeWaaeaadaWcaaqaai aad6gadaWgaaWcbaGaamiAaaqabaaakeaacaWGYbWaaSbaaSqaaiaa igdacaWGObaabeaakiabgUcaRiaadkhadaWgaaWcbaGaaGOmaiaadI gaaeqaaaaaaOGaayjkaiaawMcaaiaadMhadaWgaaWcbaGaamiAaiaa dMgaaeqaaOGaam4uamaaBaaaleaacaWGObGaamyAaaqabaGccaWGsb WaaSbaaSqaaiaadIgacaWGPbaabeaaaeaacaWGPbGaeyicI4SaamiA aaqab0GaeyyeIuoaaaa@5371@

Collapsed SR:            Y ^ h SR,C = ih w hi ( i n h x hi i r 1h + r 2h x hi ) y hi S hi ( 1 R hi ) I hi J hi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGzbGbaKaadaqhaaWcbaGaamiAaa qaaiaacofacaGGsbGaaiilaiaaboeaaaGccqGH9aqpdaaeqbqaaiaa dEhadaWgaaWcbaGaamiAaiaadMgaaeqaaOWaaeWaaeaadaWcaaqaam aaqababaGaamiEamaaBaaaleaacaWGObGaamyAaaqabaaabaGaamyA aiabgIGiolaad6gadaWgaaadbaGaamiAaaqabaaaleqaniabggHiLd aakeaadaaeqaqaaiaadIhadaWgaaWcbaGaamiAaiaadMgaaeqaaaqa aiaadMgacqGHiiIZcaWGYbWaaSbaaWqaaiaaigdacaWGObaabeaali abgUcaRiaadkhadaWgaaadbaGaaGOmaiaadIgaaeqaaaWcbeqdcqGH ris5aaaaaOGaayjkaiaawMcaaiaadMhadaWgaaWcbaGaamiAaiaadM gaaeqaaOGaam4uamaaBaaaleaacaWGObGaamyAaaqabaGcdaqadaqa aiaaigdacqGHsislcaWGsbWaaSbaaSqaaiaadIgacaWGPbaabeaaaO GaayjkaiaawMcaaiaadMeadaWgaaWcbaGaamiAaiaadMgaaeqaaOGa amOsamaaBaaaleaacaWGObGaamyAaaqabaaabaGaamyAaiabgIGiol aadIgaaeqaniabggHiLdaaaa@6B35@

Collapsed CR:           Y ^ h CR,C = ih w hi ( n h r 1h + r 2h )( i n h w hi x hi i r 1h + r 2h w hi ( n h r 1h + r 2h ) x hi ) y hi S hi R hi . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGzbGbaKaadaqhaaWcbaGaamiAaa qaaiaaboeacaqGsbGaaiilaiaaboeaaaGccqGH9aqpdaaeqbqaaiaa dEhadaWgaaWcbaGaamiAaiaadMgaaeqaaOWaaeWaaeaadaWcaaqaai aad6gadaWgaaWcbaGaamiAaaqabaaakeaacaWGYbWaaSbaaSqaaiaa igdacaWGObaabeaakiabgUcaRiaadkhadaWgaaWcbaGaaGOmaiaadI gaaeqaaaaaaOGaayjkaiaawMcaamaabmaabaWaaSaaaeaadaaeqaqa aiaadEhadaWgaaWcbaGaamiAaiaadMgaaeqaaOGaamiEamaaBaaale aacaWGObGaamyAaaqabaaabaGaamyAaiabgIGiolaad6gadaWgaaad baGaamiAaaqabaaaleqaniabggHiLdaakeaadaaeqaqaaiaadEhada WgaaWcbaGaamiAaiaadMgaaeqaaOWaaeWaaeaadaWcaaqaaiaad6ga daWgaaWcbaGaamiAaaqabaaakeaacaWGYbWaaSbaaSqaaiaaigdaca WGObaabeaakiabgUcaRiaadkhadaWgaaWcbaGaaGOmaiaadIgaaeqa aaaaaOGaayjkaiaawMcaaiaadIhadaWgaaWcbaGaamiAaiaadMgaae qaaaqaaiaadMgacqGHiiIZcaWGYbWaaSbaaWqaaiaaigdacaWGObaa beaaliabgUcaRiaadkhadaWgaaadbaGaaGOmaiaadIgaaeqaaaWcbe qdcqGHris5aaaaaOGaayjkaiaawMcaaiaadMhadaWgaaWcbaGaamiA aiaadMgaaeqaaOGaam4uamaaBaaaleaacaWGObGaamyAaaqabaGcca WGsbWaaSbaaSqaaiaadIgacaWGPbaabeaaaeaacaWGPbGaeyicI4Sa amiAaaqab0GaeyyeIuoakiaac6caaaa@7D81@

References

Baker, R., Brick, J.M., Bates, N., Battaglia, M., Couper, M., Dever, J., Gile, K. and Tourangeau, R. (2013). Summary report of the AAPOR task force on non-probability sampling – Report and rejoinder. Journal of Survey Statistics and Methodology, 1, 90-137.

Bavdaž, M. (2010). The multidimensional integral business survey response model. Survey Methodology, 36, 1, 81- 93. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/2010001/article/11245-eng.pdf.

Beaumont, J.-F., Bocci, C. and Haziza, D. (2014). An adaptive data collection procedure for call prioritization. Journal of Official Statistics, 30(4), 607-621.

Bechtel, L., and Thompson, K.J. (2013). Optimizing unit nonresponse adjustment procedures after subsampling nonrespondents in the Economic Census. Proceedings of the Federal Committee on Statistical Methods Research Conference, https://nces.ed.gov/FCSM/index.asp.

Biemer, P. (2010). Total survey error: Design, implementation, and evaluation. The Public Opinion Quarterly, 74(5), 817-848.

Binder, D., Babyak, C., Brodeur, M., Hidiroglou, M. and Wisner, J. (2000). Variance estimation for two-phase stratified sampling. The Canadian Journal of Statistics, 28, 751-764.

Brick, J.M. (2013). Unit nonresponse and weighting adjustments: A critical review. Journal of Official Statistics, 29, 329-353.

Federal Register Notice (2006). OMB Standards and Guidelines for Statistical Surveys, Washington, DC.

Fink, E., and Lineback, J.F. (2013). Using paradata to understand business survey reporting patterns. Proceedings of the Federal Committee on Statistical Methods Research Conference, https://nces.ed.gov/FCSM/index.asp.

Groves, R., and Herringa, S. (2006). Responsive design for household surveys: Tools for actively controlling survey errors and costs. Journal of the Royal Statistical Society Series A, 169(3), 439-57.

Hansen, M.H., and Hurwitz, W.N. (1946). The problem of non-response in sample surveys. Journal of the American Statistical Association, 41, 517-529.

Harter, R.M., Mach, T.L., Chaplin, J.F. and Wolken, J.D. (2007). Determining subsampling rates for nonrespondents. Proceedings of the Third International Conference on Establishment Surveys, American Statistical Association.

Haziza, D., Thompson, K.J. and Yung, W. (2010). The effect of nonresponse adjustments on variance estimation. Survey Methodology, 36, 1, 35-43. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/2010001/article/11246-eng.pdf.

Kalton, G., and Flores-Cervantes, I. (2003). Weighting methods. Journal of Official Statistics, 19, 2, 81-97.

Kaputa, S., Thompson, K.J. and Beck, J. (2017). An embedded experiment for targeted nonresponse follow-up in establishment surveys. Proceedings of the Section on Survey Research Methods, American Statistical Association.

Kirgis, N., and Lepkowski, J. (2013). Design and management strategies for paradata-driven responsive design: Illustrations for the 2006-2010 National Survey of Family Growth. Improving Surveys with Paradata, (Ed., Frauke Kreuter). Hoboken, NJ: John Wiley & Sons, Inc.

Kish, L. (1992). Weighting for unequal Pi. Journal of Official Statistics, 8(2), 183-200.

Kott, P. (1994). A note on handling nonresponse in sample surveys. Journal of the American Statistical Association, 89, 693-696.

Little, R.J., and Vartivarian, S. (2005). Does weighting for nonresponse increase the variance of survey means? Survey Methodology, 31, 2, 161-168. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/2005002/article/9046-eng.pdf.

Lohr, S.L. (2010). Sampling: Design and Analysis. Boston: Brooks/Cole.

Oh, H.L., and Scheuren, F.J. (1983). Weighting adjustment of unit nonresponse. Incomplete Data in Sample Surveys. New York: Academic Press, 20, 143-184.

Olson, K., and Groves, R.M. (2012). An examination of within-person variation in response propensity over the data collection field period. Journal of Official Statistics, 28, 29-51.

Paxson, M.C., Dillman, D.A. and Tarnai, J. (1995). Improving response to business mail surveys. In Business Survey Methods, (Eds., B.G. Cox, D. Binder, B. Nanajamma Chinnappa, M. Colledge and P. Kott). New York: John Wiley & Sons, Inc.

Särndal, C.-E. (2011). The 2010 Morris Hansen lecture: Dealing with survey nonresponse in data collection, in estimation. Journal of Official Statistics, 27, 1-21.

Särndal, C., and Lundquist, P. (2014). Accuracy in estimation with nonresponse: A function of degree of imbalance and degree of explanation. Journal of Survey Statistics and Methodology, 2(4), 361-387.

Särndal, C.-E., and Lundström, S. (2005). Estimation in Surveys with Nonresponse. Hoboken, NJ: John Wiley & Sons, Inc.

Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling. New York: Springer Verlag.

Schouten, B., Calinescu, M. and Luiten, A. (2013). Optimizing quality of response through adaptive survey designs. Survey Methodology, 39, 1, 29-58. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/2013001/article/11824-eng.pdf.

Schouten, B., Cobben, F. and Bethlehem, J. (2009). Indicators for the representativeness of survey response. Survey Methodology, 35, 1, 101-113. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/2009001/article/10887-eng.pdf.

Shao, J., and Thompson, K.J. (2009). Variance estimation in the presence of nonrespondents and certainty strata. Survey Methodology, 35, 2, 215-225. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/2009002/article/11043-eng.pdf.

Snijkers, G., Haraldsen, G., Jones, J. and Willimack, D.K. (2013). Designing and Conducting Business Surveys. Hoboken, NJ: John Wiley & Sons, Inc.

Thompson, K.J., and Kaputa, S. (2017). Investigating adaptive nonresponse follow-up strategies for small businesses through embedded experiments. Journal of Official Statistics, 33(3), 1-23.

Thompson, K.J., and Oliver, B. (2012). Response rates in business surveys: Going beyond the usual performance measure. Journal of Official Statistics, 27, 221-237.

Thompson, K.J., Oliver, B. and Beck, J. (2015). An analysis of the mixed collection modes for two business surveys conducted by the US Census Bureau. Public Opinion Quarterly, 79(3), 769-789.

Thompson, K.J., and Washington, K.T. (2013). Challenges in the treatment of unit nonresponse for selected business surveys: A case study. Survey Methods: Insights from the Field. Retrieved from http://surveyinsights.org/?p=2991.

Torres van Grinsven, V., Bolko, I. and Bavdaž, M. (2014). In search of motivation for the business survey response task. Journal of Official Statistics, 30(4), 579-606.

Tourangeau, R., Brick, J.M., Lohr, S. and Li, J. (2016). Adaptive and responsive survey designs: A review and assessment. Journal of the Royal Statistical Society A, 180, 203-223.

Tuttle, A., Morrison, R. and Willimack, D. (2010). From start to pilot: A multi-method approach to the comprehensive redesign of an economic survey questionnaire. Journal of Official Statistics, 26, 87-103.

Wagner, J. (2012). Research synthesis: A comparison of alternative indicators for the risk of nonresponse bias. Public Opinion Quarterly, 76(3), 555-575.

Willimack, D., and Nichols, E. (2010). A hybrid response process model for business surveys. Journal of Official Statistics, 26, 3-24.

Zhang, L.C. (2008). On some common practices of systematic sampling. Journal of Official Statistics, 24, 557-569.


Date modified: