Survey Methodology
An optimisation algorithm applied to the one-dimensional stratification problem

Warning View the most recent version.

Archived Content

Information identified as archived is provided for reference, research or recordkeeping purposes. It is not subject to the Government of Canada Web Standards and has not been altered or updated since it was archived. Please "contact us" to request a format other than those available.

by José André de Moura Brito, Tomás Moura da Veiga and Pedro Luis do Nascimento SilvaNote 1

  • Release date: June 27, 2019

Abstract

This paper presents a new algorithm to solve the one-dimensional optimal stratification problem, which reduces to just determining stratum boundaries. When the number of strata H and the total sample size n are fixed, the stratum boundaries are obtained by minimizing the variance of the estimator of a total for the stratification variable. This algorithm uses the Biased Random Key Genetic Algorithm (BRKGA) metaheuristic to search for the optimal solution. This metaheuristic has been shown to produce good quality solutions for many optimization problems in modest computing times. The algorithm is implemented in the R package stratbr available from CRAN (de Moura Brito, do Nascimento Silva and da Veiga, 2017a). Numerical results are provided for a set of 27 populations, enabling comparison of the new algorithm with some competing approaches available in the literature. The algorithm outperforms simpler approximation-based approaches as well as a couple of other optimization-based approaches. It also matches the performance of the best available optimization-based approach due to Kozak (2004). Its main advantage over Kozak’s approach is the coupling of the optimal stratification with the optimal allocation proposed by de Moura Brito, do Nascimento Silva, Silva Semaan and Maculan (2015), thus ensuring that if the stratification bounds obtained achieve the global optimal, then the overall solution will be the global optimum for the stratification bounds and sample allocation.

Key Words:      Optimal stratification; Genetic algorithm; Integer programming; Nonlinear optimization; BRKGA Metaheuristic.

Table of contents

How to cite

de Moura Brito, J.A., da Veiga, T.M. and do Nascimento Silva, P.L. (2019). An optimisation algorithm applied to the one-dimensional stratification problem. Survey Methodology, Statistics Canada, Catalogue No. 12-001-X, Vol. 45, No. 2. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/2019002/article/00006-eng.htm.

Note


Date modified: