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An optimisation algorithm applied to the one-dimensional 
stratification problem 

José André de Moura Brito, Tomás Moura da Veiga and Pedro Luis do Nascimento Silva1 

Abstract 

This paper presents a new algorithm to solve the one-dimensional optimal stratification problem, which reduces 
to just determining stratum boundaries. When the number of strata H and the total sample size n are fixed, the 
stratum boundaries are obtained by minimizing the variance of the estimator of a total for the stratification 
variable. This algorithm uses the Biased Random Key Genetic Algorithm (BRKGA) metaheuristic to search for 
the optimal solution. This metaheuristic has been shown to produce good quality solutions for many optimization 
problems in modest computing times. The algorithm is implemented in the R package stratbr available from 
CRAN (de Moura Brito, do Nascimento Silva and da Veiga, 2017a). Numerical results are provided for a set of 
27 populations, enabling comparison of the new algorithm with some competing approaches available in the 
literature. The algorithm outperforms simpler approximation-based approaches as well as a couple of other 
optimization-based approaches. It also matches the performance of the best available optimization-based 
approach due to Kozak (2004). Its main advantage over Kozak’s approach is the coupling of the optimal 
stratification with the optimal allocation proposed by de Moura Brito, do Nascimento Silva, Silva Semaan and 
Maculan (2015), thus ensuring that if the stratification bounds obtained achieve the global optimal, then the 
overall solution will be the global optimum for the stratification bounds and sample allocation. 

 
Key Words: Optimal stratification; Genetic algorithm; Integer programming; Nonlinear optimization; BRKGA 

Metaheuristic. 

 
 

1  Introduction 
 

Stratified sampling is a widely used approach to achieve efficiency in sampling designs. The substantial 

literature on optimal stratification (to be reviewed later in this paper) signals to both the importance of this 

topic for research and to its wide range of applications. Recently, Hidiroglou and Kozak (2017) compared 

optimization-based and approximate methods for one-dimensional stratification of skewed populations and 

concluded that optimization methods are superior and should be used in practice. 

In this paper, we propose applying a new optimisation algorithm to determine the stratum boundaries, 

which we coupled with an approach to obtain the globally optimal sample size allocation to the defined 

strata. The one-dimensional stratification problem is addressed using a global optimisation technique (a 

metaheuristic) called Biased Random Key Genetic Algorithm (BRKGA), proposed by Gonçalves and 

Resende (2011). This technique does not ensure achieving the global optimum for the stratum boundaries, 

but has been shown to produce good quality solutions for many optimization problems in modest computing 

times (see Gonçalves and Resende, 2004; Gonçalves, Mendes and Resende, 2005; Festa, 2013 and Oliveira, 

Chaves and Lorena, 2017).  

Our approach for sample allocation given a defined stratification (see de Moura Brito et al., 2015), 

namely a stratification by a specified variable and given number of strata, is based on an integer 

programming formulation, and always achieves the global optimum for either minimizing the total sample 
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size given precision constraints or minimizing variance for a fixed total sample size, while providing an 

exact integer sample allocation, and allowing the specification of minimum and maximum sample sizes per 

strata, as is often required in practical applications. The approach is implemented in the stratbr R package 

(see de Moura Brito et al., 2017a), thus providing a practical alternative to existing approximate methods, 

which it clearly outperforms in terms of efficiency. It also compares favourably with other optimization 

methods, which are not guaranteed to provide the optimal allocation given the stratification. 

We compared this new approach with methods proposed by Dalenius and Hodges (1959), Gunning and 

Horgan (2004), Kozak (2004, 2006), Keskintürk and Er (2007), and de Moura Brito, Silva Semaan, Fadel 

and Brito (2017b), using a set comprising 27 real and artificial survey populations. Our empirical study is 

much larger than that of Hidiroglou and Kozak (2017), who have used only two populations in their 

comparison. It is also larger than other studies in earlier literature. 

We have not considered, as suggested, comparing our approach with classification or regression trees or 

other machine learning algorithms that synthesise one or more covariates into groupings that can be used 

for strata. The main reason for this is that such methods do not consider the variance of the target sample 

estimator or the sample size given precision constraints as the criteria to optimize. Therefore, they cannot 

be expected to achieve the optimum for the problem we wish to address. In addition, for classification or 

regression trees the analyst must also specify a “response variable”, in addition to the predictors or auxiliary 

variables. In many typical sampling situations, the analyst will not have access to data on such a “response 

variable”, and must aim to minimize variance of the estimator for the total of the size or stratification 

variable instead (as is the case in most of the literature on this topic).  

Although we have addressed only the “one-dimensional stratification problem”, in that a single size 

measure is used for stratification, one could always use some predictive model or alternative variable 

reduction technique to summarise auxiliary variables or covariates into a single “ x ” or size variable to be 

used in our proposed approach. Nevertheless, our approach can easily be extended to address multivariate 

stratification coupled with optimum allocation given the nature of the components of the approach. 

The paper is divided as follows: Section 2 contains the key concepts of stratified sampling. Section 3 

contains a detailed description of the stratification problem. Section 4 presents the Biased Random Key 

Genetic Algorithm (BRKGA) and its novel implementation to resolve the stratification problem, in 

combination with the optimal allocation method proposed by de Moura Brito et al. (2015). Section 5 

contains the results of the application of the proposed method compared to those of five other methods 

available in the literature previously mentioned. Section 6 presents the conclusions of the comparative study. 

 
2  Stratified sampling 
 

In stratified sampling, the first step is to partition the elements of the target population into well defined, 

preferably homogeneous, mutually exclusive and exhaustive subgroups called strata. Each population 
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element (unit) is the focus of the survey and provider of the information which it aims to obtain. Survey 

units can be households, people, farms, business establishments or companies, etc. 

Stratified sampling is recommended in practice for several reasons: 

 It can improve precision of the overall population estimates for a fixed total cost; 

 It enables controlling sample sizes and precision of estimates for the strata, if required; 

 It may facilitate balancing workload distribution;  

 It may help reduce travelling costs between survey elements, if stratification includes geography. 

 
When the strata are formed such that the intra-stratum variability is small for a key set of variables, 

stratification is considered successful, since this enables achieving better precision for the estimates relative 

to other stratification schemes.  

Figure 2.1 presents the basic notation to be used in this paper. In stratified sampling, the population U  

is partitioned into 1H   nonempty subpopulations called strata (Lohr, 2010), of sizes 1 ,N  

2 , , , , .h HN N N   These subpopulations are non-overlapping and such that, when taken jointly, 

combine to form the full population, such that: 

 1 2 .HN N N N     (2.1) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Notation to be used in the paper. 
 

 1, 2, ,U N   Set of elements comprising the target population; 

N   Number of population elements, or population size; 

n   Number of elements in the sample, or sample size; 

1H    Total number of strata; 

h   Index for the strata; 

hU   Set of elements in stratum ,h  satisfying hU U  and ;hU    

hN   Number of population elements, or population size, in stratum ;h  

hs   Set of elements sampled in the thh  stratum ;h hs U   

hn   Number of sample elements, or sample size, in stratum ;h  

iy   Value of survey variable for population element   ;i i U  

ix   Value of stratification variable for population element   ;i i U  

h
h ii U

Y y


   Total of survey variable y  in stratum ;h  

h
h ii U

X x


   Total of stratification variable x  in stratum ;h  

h h hY Y N   Population mean of survey variable y  in stratum ;h  and 

h h hX X N   Population mean of stratification variable x  in stratum .h  
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Cochran (1977) lists the following factors which affect the efficiency of a stratified sampling design: 

choice of stratification variable(s); number of strata   ;H  delimitation of strata; total sample size   ;n  

allocation of the total sample to the strata; and selection method for sampling within strata. The strata are 

defined using one or more variables for which the values are known for each population element. In the 

sequence, samples are selected independently within each of the H  strata. Samples sizes in the strata are 

such that 1 2 .Hn n n n     

Stratified Simple Random Sampling (SSRS) corresponds to the case when sampling within each stratum 

is carried out using simple random sampling without replacement. Under SSRS, the Horvitz-Thompson 

(HT) estimator of the overall population total 
1

H

hh
Y Y


   is given by Cochran (1977) as: 

                                                              SSRS 1
ˆ H

h hh
Y N y


   (2.2) 

where 
h

h i hi s
y y n


   is the sample average for elements sampled in stratum .h  

The sampling Variance (Var) and Coefficient of Variation (CV) of the estimator SSRSŶ  are given 

respectively by: 

                                                        2
SSRS 1

ˆVar
H

h h h hy hh
Y N N n S n


   (2.3) 

                                                        SSRS SSRS
ˆ ˆCV VarY Y Y  (2.4) 

where    22 1
h

hy i h hi U
S y Y N


    is the population variance of the survey variable y  in stratum .h  

Analogous quantities are defined for the HT estimator for the total 
1

H

hh
X X


   of the stratification 

variable ,x  namely: 

                                                             SSRS 1
ˆ H

h hh
X N x


   (2.5) 

                                                       2
SSRS 1

ˆVar
H

h h h hx hh
X N N n S n


   (2.6) 

                                                       SSRS SSRS
ˆ ˆCV VarX X X  (2.7) 

where 
h

h i hi s
x x n


   is the sample average of x  for elements sampled in stratum ,h  and 2

hxS   

   2
1

h
i h hi U

x X N


   is the population variance of the variable x  in stratum .h  

 
3  The one-dimensional stratification problem 
 

Consider the population vector  1 2, , ,U NX x x x   corresponding to the stratification variable .x  

Without loss of generality, we assume that the population elements in U  are ordered by the stratification 

variable such that 1 2 .Nx x x    The stratum boundaries are used to define the H  strata according 

to the rule: 

1)  1 1 ;iU i U x b    
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2)  1h h i hU i U b x b     for 2, 3, , 1;h H   

3)  1 .H H iU i U b x    

 

The stratification problem corresponds to determining the cut-off points, i.e., the stratum boundaries 

1 2 1h Hb b b b        such that the variance (or equivalently the CV) of the estimator of total 

SSRSŶ  is minimised. In this section, we consider that the total number of strata H  is defined before applying 

the optimal stratification methods considered. 

In practice, the values of the survey variable y  are not available and hence the variance in expression 

(2.3) is not computable. A common approach is to minimise instead the variance (or CV) of the estimator 

SSRSX̂  for the total of the stratification variable .x  Several authors have developed methods that focus on 

this optimization problem, which from now on we call the one-dimensional “stratification problem”. We 

adopted the same approach here.  

Finding the boundary points that minimize the variance (2.6) or the CV (2.7) corresponds to a hard 

problem both from analytic and computational points of view. This is so because the integer population and 

sample sizes ( hN  and ,hn  respectively) depend in a nonlinear way on the stratum boundaries. According 

to de Moura Brito, Ochi, Montenegro and Maculan (2010a), depending on ,N ,H  and the number of 

distinct population x  values, the number of possible choices for the boundary points can be very large. 

In view of this difficulty, over the past decades, various methods were developed to search for the 

optimum stratum boundaries, aiming to provide at least solutions which correspond to local minima of good 

quality. 

Dalenius (1951) tackled the problem for the case 2H   by approximating the variance in (2.6) by 

ignoring the finite population correction, which is equivalent to assuming that the sampling within strata 

would have been simple random sampling with replacement. The approximate variance to be minimised is 

then given by: 

   2 2
SSRS 1

ˆVar .
H

h hx hh
X N S n


   (3.1) 

Under the Neyman allocation (Cochran, 1977) using the x  variable, and replacing the sample sizes hn  

in (3.1) by their theoretical values 
1

H

h h hx k kxk
n N S N S


   leads to the expression used by Dalenius 

(1951): 

         2

SSRS 1
ˆVar .

H

h hxh
X N S n


   (3.2) 

Dalenius and Hodges (1959) considered the case when 2,H   and offered an analytic solution which 

relied on approximating the distribution of the x  variable by its histogram with a moderate number of 

classes. Still considering the approximate variance and assuming Neyman’s allocation, Ekman (1959) 

provided a solution using a geometric approach to find the stratum boundaries. Hedlin (2000) further 

extended Ekman’s solution while retaining the original variance (2.6) as the function to be minimised, which 

he labelled the extended Ekman rule. 
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Hidiroglou (1986) proposed an approach which pre-specifies the required precision (CV) for the 

estimator of total, and which divides the population into two strata  2H   such that the total sample size 

n  is minimised. In this paper, the second stratum corresponds to a “take-all” or “certainty” stratum, where 

all elements are included in the sample with probability one  2 2 .n N  Lavallée and Hidiroglou (1988) 

generalized the approach to 2H   strata, while retaining the idea that the stratum containing the largest 

population units is to be sampled completely. Their approach relied on adopting a special type of allocation 

called Power Allocation (Bankier, 1988). More recently, Rivest (2002) further generalised the approach of 

Lavallée and Hidiroglou (1988) while considering that the target is minimising the variance for the estimator 

of a total of a model-based prediction of the survey variable ,y  instead of the stratification variable .x  

Gunning and Horgan (2004) proposed the so-called Geometric method for defining the stratum 

boundaries. This method assumes that the CVs of the stratification variable x  are approximately constant, 

and that the distribution of the stratification variable is approximately uniform within each stratum. Under 

these assumptions, the optimum stratum boundaries would form a Geometric progression, thus leading to a 

very simple analytic solution. 

Keskintürk and Er (2007) proposed an approach based on a global optimisation technique called Genetic 

Algorithms. Following a similar idea, de Moura Brito et al. (2017b) applied another global optimisation 

technique called GRASP to the stratification problem. Here we followed a route like Keskintürk and Er 

(2007), but have adopted an efficient choice of Genetic Algorithm, namely the Biased Random Key Genetic 

Algorithm (BRKGA), described in Section 4. 

Kozak (2004) proposed a method called random search, followed later by Kozak and Verma (2006), 

where this approach was compared to the Geometric method of Gunning and Horgan (2004). Khan, Nand 

and Ahmad (2008) used ideas of dynamic programming to develop an algorithm that determines the stratum 

boundaries considering that the stratification variable has either a Triangular or Normal distribution, and 

that sampling within strata is with replacement. De Moura Brito, Maculan, Lila and Montenegro (2010b) 

proposed an exact algorithm based on graph theory, where proportional allocation to the strata is assumed.  

Er (2011) compared the efficiency of several methods available in the literature, taking the Geometric 

approach of Gunning and Horgan (2004) as the initial solution. Kozak (2014) compared his random search 

with the Genetic Algorithm proposed by Keskintürk and Er (2007). Rao, Khan and Reddy (2014) developed 

a method that tackles the stratum boundary determination and stratum allocation problems simultaneously. 

Their algorithm relies on the assumption that the stratification variable follows a Pareto distribution. Our 

approach is more general and does not assume that the size variable follows a particular distribution. 

 
4  Biased Random-Key Genetic Algorithm 
 

The Biased Random-Key Genetic Algorithm (BRKGA, from now on), proposed by Gonçalves and 

Resende (2011), is a metaheuristic approach which has been applied to address several optimization 
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problems – see for example Festa (2013) and Oliveira et al. (2017). The principle behind this approach 

mimics the biologic theory of evolution of species.  

The algorithm starts with an initial “population” of feasible solutions to the target problem generated by 

a specified random mechanism. This population then evolves over successive iterations by preserving the 

best solutions available at each iteration (elite solutions), and by replacing the other (non-elite) solutions 

with solutions generated through random perturbation operations that mimic crossing and mutation in 

natural populations. Over the iterations, solutions are selected to be preserved or to evolve based on the 

value of the function to be optimized.  

In BRKGA, the candidate solutions are encoded, i.e., are represented by vectors where the components 

are numbers in the  0; 1  interval. Given an observed vector, a decoding procedure must be applied. The 

decoding procedure maps the value of a vector with a corresponding feasible solution of the target 

optimization problem. The decoding procedure is what connects BRKGA with the specific optimization 

problem to be addressed. Figure 4.1 displays the pseudo-code for a generic BRKGA algorithm. 

The approach is described and illustrated in detail in Section 4.1 using an example that considers the 

one-dimensional stratification problem and describes all the steps mentioned in Figure 4.1. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.1  Pseudo-code for a BRKGA. 

 
4.1  BRKGA for the one-dimensional stratification problem 
 

First consider the population vector  1 2, , , ,U NX x x x   and derive the set  1 2, , , KC c c c   

containing the K  distinct values of x  observed in the population. For example, if {1, 3, 3, 5, 6,UX   

7, 7, 7, 8, 9, 10, 10, 11},  then  1, 3, 5, 6, 7, 8, 9, 10, 11 .C   When 100,K   compute the ten largest 

1) Generate the initial population composed of p  random vectors (keys) ,v  where each 

value is a random draw from the Uniform  0; 1  distribution. 

2) Apply the decoding procedure to each vector v  in the population, yielding p  feasible 

solutions to the optimization problem. 

3) Compute the value of the objective function for each solution in the population. 

4) Select the best  1e ep p p   solutions (designated elite) based on the values of the 

objective function and add them to the population that will be considered in the next 

iteration. 

5) Generate  1m mp p p   new random vectors as in step 1), called mutants, and add 

them to the population that will be considered in the next iteration. 

6) Generate the remaining  e mp p p   vectors, designated crossed, to complete the 

population that will be considered in the next iteration by crossing one of the ep  vectors 

corresponding to an elite solution with one of the  ep p  vectors corresponding to one 

of the non-elite solutions in the current iteration. 

7) Iterate from step 2) while the stopping criteria are not satisfied.  
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percentiles of x  to obtain the set  90 91 99 100, , , , .Q q q q q   When 100,K   compute the selected 

percentiles of x  to obtain the set  5 10 95 100, , , , .Q q q q q   The cut-off point of 100 for K  was chosen 

after some initial experimentation of the approach with some of the populations considered in the numerical 

experiments to be described in Section 5. The alternative definitions for the set Q  help with achieving larger 

diversity in the set of feasible solutions to be generated by the BRKGA.  

To apply BRKGA to the one-dimensional stratification problem, each solution is represented by a vector 

 1 , , Hv vv   with H  positions, where the first 1H   positions contain values between 0 and 1, and 

position H  contains the value of a percentile of the distribution of the stratification variable .x  

Then take minx  as the smallest value in ,C  and Hv  as an element selected at random from .Q  For the 

first iteration, sample the values in the first 1H   positions of each vector v  independently from the 

Uniform  0; 1  distribution.  

The decoding procedure to obtain a solution to the one-dimensional stratification problem from each 

vector v generated is defined as: 

  min min for 1, , 1.h h Hb x v v x h H      (4.1) 

After obtaining the 1H   values for ,hb  these must be sorted in increasing order, such that the elements 

of the resulting vector       1 2 1, , , Hb b b b   form the solution boundary points for the corresponding 

vector ,v  where  hb  is the thh  order statistic of the values 1 1, , Hb b   calculated using (4.1). 

To illustrate an example of decoding, suppose that 4,H  min 10,x  300,K  {200, 215,Q   

280.5, 300, 318, 400, 425, 478, 500, 510}  Consider also the vector  0.48, 0.35, 0.20v  generated as 

described above. Then it follows that:  1 10 0.48 200 10 ;b      2 10 0.35 200 10 ;b      and 

 3 10 0.20 200 10 .b      Then it follows, after sorting, that  48, 76.5, 101.2 .b  

Given the vector ,b  the values of hN  and 2
hxS  are easily obtained for each of the H  strata. The values 

of the sample sizes hn  for each of the strata are obtained by applying the approach for optimal allocation 

proposed by de Moura Brito et al. (2015). This approach computes the sample sizes hn  such that a weighted 

sum of variances (or CVs) of the estimators of totals of m  survey variables is minimized, while the total 

sample size n  is kept fixed.  

Since here we consider the variance of the estimator for the total of the stratification variable x  as the 

target for minimization, we set 1m   and use formulation (D) as provided in de Moura Brito et al. (2015) 

to resolve the one-dimensional optimal allocation problem taking equation (2.6) as the variance to be 

minimized. Note that the approach used provides the global optimum for the allocation problem. 

The algorithm then proceeds as indicated in Figure 4.1 by generating an initial set of p  vectors .v  In 

step 2, each of these vectors v  is decoded to obtain a feasible solution b  to the optimum stratification 

problem. In step 3, the optimum allocation corresponding to b  is obtained and the value of the objective 
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function is calculated. Steps 4 to 6 are then applied to obtain the next population of feasible solutions, and 

the process is repeated until the stopping criteria are satisfied. Step 4 identifies the ep  elite solutions and 

add these to the next population. In Step 5, mp  mutant solutions are generated and added to the next 

population. In Step 6,  e mp p p   crossed solutions are generated using the “uniform crossover” 

operator proposed by Spears and DeJong (1991) to produce a new vector v  from one of the ep  elite 

solutions and one of the current  e mp p p   non-elite solutions. The process is as follows: once the two 

vectors (say ev  and )nv  to cross are selected, an auxiliary random-key vector  av  is generated with 

independent draws from the Uniform  0; 1  distribution. Let 0.5cr   be a pre-specified probability that a 

value is copied from the elite vector .ev  Then the crossed vector cv  is formed by taking the values from 

ev  in the positions where the corresponding value in av  is less than cr  (equal to 0.7 in the example of 

Figure 4.2) and from nv  in all other positions. 

To produce each one of the  e mp p p   vectors for the next generation, the algorithm selects a vector 

ev  at random (using the sample function from R)  from the ep  elite vectors and another vector nv  from 

the ep p  non-elite vectors, and crosses these vectors. The selection of vectors from both subsets is done 

with replacement, implying that individual elite or non-elite vectors may be selected for crossing more 

than once. 

 
 

Vectors\positions 1 2 3 

v e  0.31 0.77 0.65 

v n  0.26 0.18 0.36 

v a  0.58 0.89 0.11 

v c  0.31 0.18 0.65 

 

Figure 4.2  Uniform crossing with 0.7.cr   

 
Now consider the example where 4,H  min 10,x  300,K  8,p  3,ep  3,mp  0.7cr   and 

 200, 215, 280.5, 300, 318, 400, 425, 478, 500, 510 .Q   Figure 4.3 illustrates the application of all the 

steps in BRKGA to the one-dimensional stratification problem, for two consecutive iterations of the 

algorithm. 

The BRKGA approach described here for the one-dimensional optimal stratification problem was 

implemented in the R package stratbr (see de Moura Brito et al., 2017a), which is available from CRAN. 

This package was used to obtain all the results presented in Section 5. 
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Figure 4.3  Illustration of BRKGA approach for optimal stratification. 
 
 
 

   
  xmin                    v (initial population)                          b1             b2                  b3                  cv                 cv                                          v                                                                         v (new population) 

   10                0.20      0.35      0.48      200                   48.0         76.5       101.2               0.30            0.09                    0.08     0.33     0.77     425                                               0.08     0.33     0.77     425 

   10                0.10      0.57      0.81      400                   49.0       232.3       325.9                0.10            0.10                    0.10     0.57     0.81     400                                               0.10     0.57     0.81     400 

   10                0.23      0.41      0.95      478                 117.6       201.9       454.6              0.15            0.12                    0.04     0.27     0.83     318                                               0.04     0.27     0.83     318 

   10                0.35      0.49      0.67      400                 146.5       201.1       271.3              0.28            0.15                    0.23     0.41     0.95     478                                               0.15     0.81     0.92     200 

   10                0.11      0.58      0.91      200                   30.9       120.2       182.9                0.43            0.28                    0.35     0.49     0.67     400                                               0.08     0.45     0.82     318 

   10                0.56      0.61      0.83      478                 272.1       295.5       398.4              0.57            0.30                    0.20     0.35     0.48     200                                               0.27     0.40     0.79     318 

   10                0.04      0.27      0.83      318                   22.3         93.2       265.6             0.12            0.43                   0.11     0.58     0.91     200                                                0.08     0.33     0.48     425 

   10                0.08      0.33      0.77      425                  43.2        147.0       329.6               0.09            0.57                    0.56     0.61     0.83     478                                               0.11     0.58     0.83     200 

 
                                                                                                                                                                                                            Crossover 

                                                                                                                                                                                   ve         0.08     0.33     0.77     425 

                                                                                                                                                                                   vn         0.20     0.35     0.48     200 

                                                                                                                                                                                   va         0.11     0.30     0.90     0.12 

 

                                                                                                                                                                                   ve         0.04     0.27     0.83     318 

                                                                                                                                                                                   vn         0.11     0.58     0.91     200 

                                                                                                                                                                                   va         0.77     0.90     0.40     0.81 

 
                               v (initial population)                         b1           b2                 b3                    cv                cv                                           v                                                                         v (new population) 

                         0.08      0.33      0.77      425                  43.2     147.0      329.6                 0.09              0.07                   0.15     0.81     0.92     200                                               0.15     0.81     0.92     200

                         0.10      0.57      0.81      400                  49.0     232.3      325.9                 0.10              0.09                   0.08     0.33     0.77     425                                               0.08     0.33     0.77     425 

                         0.04      0.27      0.83      318                  22.3       93.2      265.6                0.12              0.10                   0.10     0.57     0.81     400                                               0.10     0.57     0.81     400 

                         0.15      0.81      0.92      200                  38.5     163.9      184.8                0.07              0.12                   0.04     0.27     0.83     318                                               0.21     0.72     0.83     400 

                         0.08      0.45      0.82      318                  34.6     148.6      262.6                0.31              0.28                    0.27     0.40     0.79     318                                               0.05     0.36       0.9     478 

                         0.27      0.40      0.79      318                  93.2     133.2      253.3                0.28              0.31                   0.08     0.45     0.82     318                                                0.14     0.31     0.88    510 

                         0.08      0.33      0.48      425                  43.2     147.0      209.2                0.79              0.53                     0.11     0.58     0.83     200                                               0.04     0.57     0.83    400 

                         0.11      0.58      0.83      200                  30.9     120.2      167.7                0.53              0.79                    0.08     0.33     0.48     425                                               0.08     0.58     0.77    200 

 
                                                                                                                                                                                                           Crossover 
 

                                                                                                                                                                                   ve         0.10     0.57     0.81     400 

                                                                                                                                                                                   vn         0.04     0.27     0.83     318 

                                                                                                                                                                                   va         0.78     0.43     0.91     0.15 

 

                                                                                                                                                                                   ve         0.08     0.33     0.77     425 

                                                                                                                                                                                   vn         0.11     0.58     0.83     200 

                                                                                                                                                                                   va         0.23     0.88     0.40     0.84 

 
 
 
                                                                                                                                                               If stopping criterion is not reached 
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5  Computational results 
 

In this section, we present the results of application of six methods to solve the stratification problem, 

namely: Dalenius and Hodges (DH), Geometric (GH), Kozak (KO), Genetic Algorithm of Keskinturk and 

Er (KE), GRASP (GR) and the new BRKGA method described in Section 4 (BR). All experiments where 

carried out using R version 3.3.1. The methods DH, GH and KO are available from the R package 

stratification of Baillargeon and Rivest (2014) (version 2.2-5). With these methods, the Neyman sample 

allocation method was used. The KE method is available from the R package GA4Stratification of Er, 

Keskintürk and Daly (2010) (version 1.0). With this method, the maximum number of iterations considered 

was 10,000 and the values of the other parameters required were the same as those reported by Keskintürk 

and Er (2007), namely using 35p   candidate solutions in each population, a mutation rate of 15% and 

the sample allocation based also on the Genetic Algorithm. Both the GR and the BR methods were 

implemented in R by the authors, and the code is provided in package stratbr of de Moura Brito et al. 

(2017a) (version 1.2) available from CRAN. 

For the BR method, 100p   candidate solutions were considered in each iteration, with 20% of the 

solutions being made elite  20ep   and 30% of the solutions being mutant  30mp   in each iteration. 

The probability of copying a gene from the elite vector was set at 0.6.cr   The total number of iterations 

was set at 1,500. For the sample allocation, both the BR and the GR methods were coupled with the 

formulation proposed by de Moura Brito et al. (2015) which is available from the R package MultAlloc, also 

available from CRAN. 

To compare the relative efficiency of these methods, they were applied to 27 different populations. Some 

of these populations are available from the R packages stratification and GA4Stratification, and were 

previously used in other comparison studies such as Keskintürk and Er (2007), Er (2011), and 

de Moura Brito et al. (2017b). Appendix A contains brief descriptions of all these populations, including 

information on which variable was considered as the “ x  variable” in each population. Table 5.1 provides 

some summaries to describe these populations.  

The 27 populations considered here form a very diverse set, with total sizes varying from a few hundred 

(ME84 and P75 with 284N   are the smallest) to several thousand (Coffee with 18,570N   is the 

largest). In the size measure that matters most for efficiency of our optimization algorithm, namely the 

number K  of distinct values of the stratification variable, there’s also large variation (from 51K   for 

Kozak1 to 5,453K   to Kozak3). They also display wide variation in the asymmetry of the x  variable’s 

distributions, ranging from modestly negative (-0,70 for Beta103 to a substantial 40.04 for CensoCO). 

All the calculations for the computational experiment were performed using R in a computer with 24 

GB RAM, with 8 processors of 3.40 GHz (I7). Taking advantage of the multicore architecture in modern 

computers, the snowfall R package was used to parallelize the BRKGA algorithm. More specifically, at 

each iteration, the decoding procedure produces a set of solutions for the boundary points. These boundary 

points are then supplied to the MultAlloc package for optimum allocation, to obtain the sample sizes in each 

stratum, and then to compute the objective variance function. Since the computation time for this step is 
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impacted directly by the use of this global optimization formulation, the allocation and calculation of the 

objective function were parallelized. 

 
 
Table 5.1 
Summaries of the stratification variable for the 27 populations 
 

Populations N K Minimum Maximum Skewness

AgrMinas 844 226 5.00 47,800.00 7.32
BeefFarms 430 353 50.00 24,250.00 4.56
Beta103 1,000 1,000 357.98 985.96 -0.70
CensoCO 9,977 79 1.00 911.00 40.04
Chi5 1,000 1,000 0.06 23.43 1.40
Coffee 18,570 538 0.01 13,212.00 19.69
Debtors 3,369 1,129 40.00 28,000.00 6.44
HHinctot 16,025 224 1.00 6,900.00 2.71
Iso2004 487 487 6.36 1,044.66 10.03
Kozak1 4,000 51 72.00 3.00 1.40
Kozak3 2,000 581 2,793.00 6.00 3.55
Kozak4 10,000 5,453 74,400.00 62.00 4.20
ME84 284 264 173.00 47,074.00 8.64
MRTS 2,000 2,000 1.41 4,863.66 8.61

P100e10 1,000 1,000 73.56 127.32 -0.03

P75 284 68 4.00 671.00 8.43

Pop500 500 261 0.01 47,841.42 21.53

Pop800 800 402 0.01 4,735.10 22.13

pop1076 1,076 88 5.00 1,643.00 13.23

pop1616 1,616 165 5.00 2,618.00 11.09

pop2911 2,911 247 5.00 2,497.00 11.50

REV84 284 277 347.00 59,877.00 7.83

SugarCaneFarms 338 101 18.00 280.00 2.26

Swiss 2,896 881 0.00 3,634.00 2.73

USbanks 357 200 70.00 977.00 2.07

UScities 1,038 116 10.00 198.00 2.87
UScolleges 677 576 200.00 9,623.00 2.45

Note:  N is the total population size, and K is the number of unique values for the stratification variable. 

 
 

All six methods considered in the numerical experiment were applied to each of the 27 populations, for 

numbers of strata H  equal to 3, 4, 5 and 6. These values were used since they are often considered in 

applications, as well as in similar comparative studies available in the literature, such as Er (2011) and 

Gunning and Horgan (2004). We did not consider larger values for H  since the additional gains in 

efficiency for 6H   are modest. The sample size 100n   (i.e., fixed cost) was used, as in the numerical 

experiments of Er (2011) and Kozak and Verma (2006). 

To assess the efficiency of the methods, the CVs of the estimator for the total of the stratification variable 

x  were calculated for each population and number of strata, leading to 27 × 4 = 108 scenarios for each 



Survey Methodology, June 2019 307 
 

 
Statistics Canada, Catalogue No. 12-001-X 

method. CVs were obtained from equation (2.7) and multiplied by 100, to be presented as percentages. 

Table 5.2 provides the CVs attained by the six methods. The shaded cells indicate methods providing the 

best solution (minimum CV) for each of 108 scenarios. The NAs in these tables represent cases where 

solutions could not be obtained due to problems of the specific stratification method or with the 

corresponding allocation. 

Analyzing the results provided in Table 5.2, and in particular, the shaded cells, it is evident that BR has 

excellent performance when compared to the five competitors considered. This perception is reinforced by 

the plots in Figure 5.1, where BR was compared with all competitors. Points above the straight line represent 

scenarios where the method chosen for comparison is outperformed by BR. It is evident from these plots 

that the three best performing methods are GR, KO and BR. 

Table 5.3 provides the percentage of times that each method produced the best solution over the 108 

scenarios. Both BR and KO display performance which is superior to that of the other methods and have 

tied in the number of times that they have achieved the best solution. DH produced the best solution for only 

three of the 108 scenarios, and GH has never produced a best solution.  

The Geometric method GH, besides leading to high CVs, also often provided infeasible solutions, where 

the stratum limits lead to allocations where sample sizes were larger than the corresponding population 

sizes. This method also sometimes partitioned the population such that there were very few population 

elements in some strata. According to Gunning and Horgan (2004), and as noted by Keskintürk and Er 

(2007), since the interval widths increase geometrically, the GH method will not perform well when the 

stratification variable has small values, since this will lead to some narrow strata. This method is also not 

applicable when the smallest value in the stratification variable is zero. 

For most populations, the KE method has produced CVs close to those obtained by the KO, GR and BR 

methods, which are the most efficient in terms of computing time. Large variation on computing time was 

observed between different methods. The KE method showed the worst results in this criterion, having 

displayed computing times much larger than those of the competing methods. The KO method, on the other 

hand, was the fastest in terms of computing time, while at the same time often achieving the best possible 

precision (lowest CV). The BR method showed computing time in between those of the KO and KE 

methods. 

The graph in Figure 5.2 shows the percentages of times that each of the methods BR, KO, KE and GR 

produced the best solution, separated by number of strata. It shows a clear advantage of the BR method 

when compared to the KE and GR methods. When compared to KO, BR performed better for 3H   and 

6,H   while KO was the winner for 4H   and 5.H   GR performed as well as KO for 3H   and 

6,H   but was outperformed by both BR and KO for 4H   and 5.H   KE was the clear loser in this 

analysis, for any number of strata .H  

We have also searched for associations between performance and other potential drivers, such as the 

skewness or the size (N  or )K  of the populations, but have not found any meaningful association within 

our limited set of populations. 



308 de Moura Brito et al.: An optimisation algorithm applied to the one-dimensional stratification problem 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 

Table 5.2 
CVs for the estimator of total of the stratification variable by scenario 
 

Populations  H CVDH CVGH CVKO CVKE CVGR CVBR 

AgrMinas 3 4.158 7.187 4.050 4.089 4.050 4.050 
 4 2.714 4.965 2.643 2.811 2.645 2.645 
 5 2.325 3.828 1.945 2.262 1.945 1.945 
 6 1.821 2.975 1.593 1.932 1.580 1.580 
BeefFarms 3 2.758 2.491 1.875 2.086 1.875 1.875 
 4 1.853 1.825 1.188 1.557 1.188 1.188 
 5 1.455 1.369 0.902 1.280 0.902 0.902 
 6 1.148 1.167 0.726 0.990 0.726 0.726 
Beta103 3 0.561 0.810 0.560 0.560 0.559 0.559 
 4 0.413 0.579 0.410 0.408 0.410 0.410 
 5 0.337 0.500 0.329 0.329 0.329 0.329 
 6 0.280 0.418 0.276 0.275 0.277 0.276 
CensoCO 3 NA 4.839 4.334 4.336 4.334 4.334 
 4 NA 4.388 3.078 3.062 3.078 3.078 
 5 NA NA 2.401 2.435 2.401 2.401 
 6 NA NA 1.949 1.956 1.943 1.943 
Chi5 3 2.522 4.217 2.502 2.489 2.502 2.502 
 4 1.897 3.199 1.889 1.881 1.889 1.889 
 5 1.518 2.875 1.515 1.538 1.515 1.515 
 6 1.258 NA 1.248 1.251 1.248 1.248 
Coffe 3 10.049 12.598 6.906 6.876 6.906 6.906 
 4 NA 10.450 4.996 5.027 4.996 4.996 
 5 NA 8.124 3.877 3.939 3.877 3.877 
 6 NA 6.756 3.176 3.477 3.176 3.176 
Debtors 3 5.626 6.150 5.554 5.554 5.554 5.554 
 4 4.098 4.387 4.049 4.049 4.049 4.049 
 5 3.163 3.595 3.131 3.131 3.131 3.131 
 6 2.639 2.897 2.562 2.562 2.562 2.562 
HHinctot 3 3.206 5.106 3.184 3.184 3.184 3.184 
 4 2.436 4.542 2.429 2.430 2.429 2.429 
 5 1.993 4.225 1.973 1.979 1.973 1.973 
 6 1.676 3.794 1.629 1.629 1.629 1.629 
Iso2004 3 2.716 3.330 1.894 1.894 1.894 1.894 
 4 2.059 2.154 1.206 1.206 1.207 1.207 
 5 1.616 1.839 0.908 0.908 0.909 0.909 
 6 1.380 NA 0.702 0.703 0.704 0.703 
Kozak1 3 1.695 2.432 1.695 1.695 1.695 1.695 
 4 1.305 2.020 1.301 1.301 1.301 1.301 
 5 1.051 1.705 1.050 1.052 1.050 1.050 
 6 0.904 1.402 0.890 0.917 0.890 0.890 
Kozak3 3 3.673 5.049 3.663 3.659 3.663 3.663 
 4 2.733 3.980 2.723 2.724 2.723 2.723 
 5 2.208 3.199 2.178 2.231 2.178 2.178 
 6 1.823 2.733 1.817 1.827 1.819 1.817 
Kozak4 3 4.263 5.811 4.257 4.239 4.257 4.257 
 4 3.219 4.696 3.204 3.193 3.205 3.204 
 5 2.606 3.873 2.589 2.587 2.591 2.589 
 6 2.168 3.236 2.155 2.155 2.157 2.158 
ME84 3 1.703 2.527 1.296 1.296 1.296 1.296 
 4 1.402 1.642 0.870 0.870 0.870 0.870 
 5 1.050 1.549 0.661 0.661 0.661 0.661 
 6 0.907 1.213 0.521 0.577 0.521 0.521 
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Table 5.2(continued) 
CVs for the estimator of total of the stratification variable by scenario 
 

Populations  H CVDH CVGH CVKO CVKE CVGR CVBR 

MRTS 3 4.363 5.829 4.167 4.167 4.167 4.167 
 4 3.406 5.259 2.960 2.960 2.961 2.960 
 5 2.498 4.015 2.297 2.485 2.297 2.297 
 6 2.167 3.445 1.836 1.836 1.838 1.836 
P100e10 3 0.375 0.444 0.373 0.371 0.373 0.373 
 4 0.295 0.346 0.294 0.294 0.294 0.294 
 5 0.236 0.288 0.236 0.236 0.236 0.236 
 6 0.198 0.242 0.196 0.198 0.196 0.196 
P75 3 1.635 2.592 1.459 1.459 1.459 1.459 
 4 1.415 1.798 0.966 0.966 0.966 0.966 
 5 1.047 1.563 0.829 0.835 0.713 0.713 
 6 0.896 1.250 0.769 0.553 0.552 0.552 
pop1076 3 4.597 3.715 2.437 2.775 2.437 2.437 
 4 NA 2.853 1.624 2.164 1.624 1.624 
 5 NA 2.168 1.204 1.869 1.203 1.203 
 6 NA 1.827 0.953 1.549 0.951 0.951 
pop1616 3 4.989 4.318 3.898 3.921 3.898 3.898 
 4 3.823 3.267 2.564 2.716 2.564 2.564 
 5 3.187 2.508 1.882 2.183 1.882 1.882 
 6 NA 2.050 1.527 1.962 1.496 1.496 
pop2911 3 5.925 5.935 5.605 5.569 5.605 5.605 
 4 4.070 3.992 3.807 3.807 3.807 3.807 
 5 3.262 3.183 2.918 2.943 2.918 2.918 
 6 2.632 2.649 2.281 2.418 2.281 2.281 
Pop500 3 NA 0.678 0.092 0.127 0.092 0.092 
 4 NA 0.178 0.059 0.082 0.060 0.060 
 5 NA 0.194 0.043 0.059 0.045 0.046 
 6 NA 0.117 0.033 0.046 0.036 0.037 
Pop800 3 NA 3.133 1.555 2.448 1.555 1.555 
 4 NA 2.755 0.996 1.511 0.996 0.996 
 5 NA 1.620 0.701 1.261 0.702 0.702 
 6 NA 1.436 0.546 0.823 0.550 0.548 
REV84 3 1.901 2.777 1.614 1.776 1.614 1.614 
 4 1.500 1.975 1.120 1.120 1.120 1.120 
 5 1.235 1.700 0.835 0.836 0.835 0.835 
 6 0.881 1.315 0.666 0.666 0.667 0.666 
SugarCaneFarms 3 1.640 1.929 1.627 1.628 1.627 1.627 
 4 1.152 1.440 1.118 1.122 1.118 1.118 
 5 0.912 1.186 0.839 0.858 0.839 0.839 
 6 0.707 1.041 0.691 0.732 0.682 0.682 
Swiss 3 3.726 NA 3.682 3.683 3.690 3.682 
 4 2.830 NA 2.781 2.781 2.787 2.781 
 5 2.246 NA 2.227 2.549 2.232 2.228 
 6 1.905 NA 1.860 1.880 1.864 1.860 
USbanks 3 1.861 1.843 1.802 1.802 1.802 1.802 
 4 1.364 1.417 1.270 1.270 1.270 1.270 
 5 1.118 1.079 0.861 0.861 0.861 0.861 
 6 0.794 0.850 0.718 0.710 0.710 0.710 
UScities 3 2.738 2.705 2.655 2.687 2.655 2.655 
 4 1.972 1.951 1.927 1.934 1.927 1.927 
 5 1.483 1.451 1.436 1.437 1.436 1.436 
 6 1.260 1.305 1.228 1.214 1.209 1.209 
UScolleges 3 2.928 3.169 2.749 2.749 2.749 2.749 
 4 2.106 2.185 2.018 2.018 2.018 2.018 
 5 1.707 1.838 1.606 1.607 1.607 1.606 
 6 1.486 1.488 1.323 1.323 1.323 1.323 
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Figure 5.1 Comparing CVs of total estimators under alternative stratification methods, for all populations and 
numbers of strata   .H  

 
 
Table 5.3 
Percentage of times that method produced the best solution 
 

Method % Times best 

DH 2.8 

GH 0.0 

KE 42.6 

GR 71.3 

KO 78.7 

BR 78.7 
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Figure 5.2 Percentage of best solutions yielded by method and number of strata   .H  

 
6  Conclusions 
 

As already mentioned, stratified sampling is a very important idea in survey sampling design, in helping 

to achieve improved precision of survey estimates for a given sample size or survey budget. This is 

particularly true for skewed or heterogeneous populations often found in business or establishment surveys. 

The potential gains due to stratification are strongly dependent on the delimitation of the strata and on the 

allocation of the sample to the strata, given a specified stratification variable and sample selection method. 

The present paper presented a new optimization method for the stratification problem based on the 

Biased Random-Key Genetic Algorithm (BRKGA). Our approach (named BR) couples BRKGA for the 

definition of the stratum boundaries with the formulation for optimum sample allocation proposed in 

de Moura Brito et al. (2015), which is efficient with respect to computing time for large populations 

(large ).N  

The results reported here for the comparison of this approach with the five competitors considered 

suggest that BR offers a good alternative for addressing the stratification and allocation problems in a 

practical situation. 

Our approach can be easily generalised to cases where the stratification variable x  is not “measured”, 

but instead represents a summary of several covariates in the form of a predicted y  variable. The same is 

true for generalising to two or more numeric x  variables, which can be easily accomplished by changing 

the decoding function used to retrieve feasible solutions from the BRKGA algorithm with the R package 

stratbr (see de Moura Brito et al., 2017a). 

Future work will focus on developing and evaluating alternative decoding procedures which may be 

used in BR, aiming to produce solutions with superior quality when compared to those produced using the 

decoding procedure considered here. This research may also focus on solving the dual problem of 

minimising the total sample size for a specified precision, such as did Lavallée and Hidiroglou (1988). 
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Finally, additional empirical work may focus on considering varying sample sizes across the various study 

populations, as did Kozak (2004) and Gunning and Horgan (2004). 

 

Appendix A 
 

Table A1 
Description of the 27 populations considered in the numerical experiment 
 

Population Description 
AgrMinas Agricultural production of municipalities in Minas Gerais State, Brazil, from 2006 Agricultural Census. 

Stratification variable: planted area. 
BeefFarms Australian beef farms, stratified into seven industrial regions, as considered by (Chambers and Dunstan, 1986). 

Stratification variable: farm size. 
Beta103 Simulated population generated from a Beta distribution with parameters 10a   and 3b   as considered by (Keskintürk 

and Er, 2007). 
Chi5 Simulated population generated from a Chi-square distribution with 5df   as considered by (Keskintürk and Er, 2007).  
Coffee Coffee farms in the state of Paraná, Brazil, in the 1996 Agricultural Census, as considered by (de Moura Brito et al., 2015). 

Stratification variable: number of coffee trees. 
CensoCO Data from the 2012 school census in Brazil for the mid-west region. 

Stratification variable: number of classrooms. 
Debtors Population of debtors of an Irish firm as considered by (Er, 2011).  

Stratification variable: Irish debtors’ stated liabilities. 
HHinctot Population of gross family income values (income before tax) from a Family Expenditure Survey 2001 carried out by 

Statistics Canada, as considered by (Er, 2011). 
Iso2004 Data on net sales of 487 Turkish Industrial Enterprises out of the 500 largest enterprises in 2004, obtained by the Istanbul 

Industrial Chamber, as considered by (Keskintürk and Er, 2007). 
Stratification variable: net sales. 

Kozak1, 
Kozak3,  
Kozak4 

Populations considered by (Kozak and Verma, 2006). 
Stratification variable: were generated based on following formula:  exp ,X Z  where Z  is a realization of a normal 
random variable. 

ME84 This data is from Särndal, Swensson and Wretman (1992) as considered by (Er, 2011). 
Stratification variable: number of municipal employees in 1984. 

MRTS Population simulated from the Monthly Survey on Sales in Retail Trade from Statistics Canada, as considered by (Er, 2011).  
Stratification variable: the size measure used for Canadian retailers in the Monthly Retail Trade Survey (MRTS) carried out 
by Statistics Canada. This size measure is created using a combination of independent survey data and three administrative 
variables from the corporation tax return. 

P75 Population in thousands of the 284 Swedish municipalities in 1975, as considered by (Er, 2011). 
Stratification variable: population in thousands. 

P100e10 Population simulated from a Normal distribution with 100   and 10   as considered by (Keskintürk and Er, 2007). 
pop1076 Population extracted from the Brazilian Annual Manufacturing Survey as considered by (de Moura Brito et al., 2017b). 

Stratification variable: number of employees. 
pop1616 Population extracted from the Brazilian Annual Manufacturing Survey as considered by (de Moura Brito et al., 2017b). 

Stratification variable: number of employees. 
pop2911 Population extracted from the Brazilian Annual Manufacturing Survey as considered by (de Moura Brito et al., 2017b). 

Stratification variable: number of employees. 
Pop500 Population with 500N   simulated from the Log-Normal Distribution zX e  where Z  is Normal with 4   and 

2 2.7   as considered by (Hedlin, 2000). 
Pop800 Population with 800N   simulated from the Log-Normal Distribution zX e  where Z  is Normal with 4   and 

2 2.7   as considered by (Hedlin, 2000). 
REV84 Value of buildings in million Swedish Crown for the 284 Swedish municipalities in 1984, as considered by (Er, 2011). 

Stratification variable: the revenues from the 1985 municipal taxation. 
SugarCaneFarms Australian sugar cane farms as considered by (Chambers and Dunstan, 1986). 

Stratification variable: total cane harvested. 
USbanks Assets in millions of US Dollars for the large north American commercial banks, as considered by (Er, 2011). 

Stratification variable: the resources in millions of dollars of large commercial US banks. 
UScities Population in thousands for North American cities in 1940, as considered by (Er, 2011). 

Stratification variable: population in thousands. 
UScolleges Numbers of students in four-year US faculties in 1952-1953 as considered by (Er, 2011).  

Stratification variable: number of students. 
Swiss Data on Swiss municipalities in 2003, as available from the SamplingStrata package in R.  

Stratification variable: area under cultivation. 
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