Sample-based estimation of mean electricity consumption curves for small domains
Section 5. Application to electricity consumption curves

We will now test the methods that we have just presented to compare their performance on electricity consumption data for French residential clients.

5.1  Presentation of the data set

We worked with a data set belonging to EDF that contains electricity consumption curves for N = 1,905 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGobGaaGypaiaabgdacaqGSaGaae yoaiaabcdacaqG1aaaaa@3690@ French residential clients by daily interval from October 2011 to March 2012, without any missing values ( L = 177 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaGGOaGaamitaiaai2dacaaIXaGaaG 4naiaaiEdaaaa@35ED@ points). This population is subdivided into D = 8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGebGaaGypaiaaiIdaaaa@33BE@ domains corresponding to geographic areas with respective sizes of 573, 195, 304, 121, 228, 219, 45 and 220. For confidentiality purposes, we cannot describe the data set in great detail, or show the mean curves by domain.

By way of illustration, Figure 5.1 shows the appearance of the standardized curves (i.e., each curve is divided by its mean calculated over the period of time studied) for five random individuals, and Figure 5.2 shows the appearance of the first five principal components of the functional PCA created for this data set.

We see that the first component, the overall appearance of which is similar to that of the mean curve, is a “level” effect. Components two and three, which present peaks during the coldest period in February, describe the sensitivity of consumption to outside temperatures. The fourth compares “mid-season” consumption to “wintertime” consumption and, finally, the fifth shows a low at about Christmas (and about February 14).

Figure 5.1 of article 54955 issue 2018002

Description for Figure 5.1

Linear graph showing the standardized electricity consumption curves by daily interval for residential clients during the 2011/2012 winter. Power is on the y-axis, ranging from 0 to 3.5. Time is on the x-axis, going from October 1st, 2011 to April 1st, 2012. There are five lines on the graph, each one representing the standardized electricity consumption of a randomly selected client. The consumption is generally between 0.5 and 1.5 exept for the occasional peaks.

Figure 5.2 of article 54955 issue 2018002

Description for Figure 5.2

Figure made of five linear graphes each one presenting one of the first five components of the principal component analysis. Power is on the y-axis, ranging from -0.2 to 0.2. Time is on the x-axis, going from October 1st, 2011 to April 1st, 2012. We see that the first component, the overall appearance of which is similar to that of the mean curve, is a “level” effect. Components two and three, which present peaks during the coldest period in February, describe the sensitivity of consumption to outside temperatures. The fourth compares “mid-season” consumption to “wintertime” consumption and, finally, the fifth shows a low at about Christmas (and about February 14).

For each individual in our population of study, we have four auxiliary variables at the individual level: contract power (in three classes), rate option (base or off-peak periods) (in the base option, the price per kWh remains constant, while the rate for off-peak periods is reduced for eight hours [referred to as off-peak]. The largest consumers tend to prefer that rate. Off-peak periods can vary from one client to another, but this factor has no impact here, as we are working on a daily interval), the previous year’s annual consumption, and the type of dwelling (apartment or single home). These auxiliary variables remain the same for all methods used in order to compare identical auxiliary information. All tests were implemented in R.

5.2  Test protocol

We compare various estimators obtained using the methods set out in this chapter, for various types of modelling (unit-level linear mixed models, linear functional regressions, regression trees, random forests). We test two versions of the unit-level linear mixed model, one by placing linear mixed models on the PCA scores, as suggested in Section 4.2, and the other by applying them directly to the values of the curves of instants of discretization.

For non-parametric methods, the forests and trees have a depth (number of levels) of 5 and a minimum size of 5 leaves. There are 40 trees in the forests. The algorithms can be applied by separating the estimation of the level of the curve and its form (standardization = “yes”) or not separating (standardization = “no”). To not multiply the possible combinations, we finally focused on the estimators listed in Table 5.1. The parameters of the regression tree and random forest models are set out in Table 5.2.

Table 5.1
Various estimation method tests
Table summary
This table displays the results of Various estimation method tests. The information is grouped by Title (appearing as row headers), Reference and Projection (appearing as column headers).
Title Reference Projection
Horvitz-Thompson Equation (3.1) None
Calibration Equation (3.2) None
Linear mixed model Section (4.2) None
Linear mixed model on PCA Equation (4.11) PCA
Linear regression Equation (4.4) None
Courbotree Section (4.3) None
Standardized Courbotree Section (4.3) None
Courboforest Section (4.4) None
Table 5.2
Parameters for trees and random forests
Table summary
This table displays the results of Parameters for trees and random forests. The information is grouped by Title (appearing as row headers), Depth (number of levels), Number of trees and Standardization (appearing as column headers).
Title Depth (number of levels) Number of trees Standardization
Courbotree 5 1 No
Standardized Courbotree 5 1 Yes
Courboforest 5 40 No

To evaluate the quality of our estimation methods, our test protocol consists of conducting a large number E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbaaaa@3236@ of sampling simulations from our original population and then estimating the mean curve for each D = 8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGebGaaGypaiaaiIdaaaa@33BE@ domain based on each sample gathered by the various proposed methods. In our simulations, the eighth domain ( d = D = 8 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaadsgacaaI9aGaamirai aai2dacaaI4aaacaGLOaGaayzkaaaaaa@36F7@ will always be unsampled in order to measure the performance of our various estimators in this scenario. For each simulation, we select n = 200 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbGaaGypaiaaikdacaaIWaGaaG imaaaa@3556@ individuals by simple random sampling from among those in the seven sampled domains ( d = 1, , 7 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaadsgacaaI9aGaaGymai aaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caaI3aaacaGLOaGaayzk aaGaaiOlaaaa@3C7B@

Let μ d ( t l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH8oqBdaWgaaWcbaGaamizaaqaba GcdaqadaqaaiaadshadaWgaaWcbaGaamiBaaqabaaakiaawIcacaGL Paaaaaa@37EA@ the mean curve for the domain d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbaaaa@3255@ at the instant t l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bWaaSbaaSqaaiaadYgaaeqaaa aa@3382@ and μ ^ d ( t l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaBaaaleaacaWGKb aabeaakmaabmaabaGaamiDamaaBaaaleaacaWGSbaabeaaaOGaayjk aiaawMcaaaaa@37FA@ its estimator by a given method. We calculate the relative bias of μ ^ d ( t l ) : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaBaaaleaacaWGKb aabeaakmaabmaabaGaamiDamaaBaaaleaacaWGSbaabeaaaOGaayjk aiaawMcaaiaaykW7caGG6aaaaa@3A43@

RB ( μ ^ d ( t l ) ) = 100 E MC [ μ ^ d ( t l ) ] μ d ( t l ) μ d ( t l ) , d = 1, , D , l = 1, , L , ( 5.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGsbGaaeOqamaabmaabaGafqiVd0 MbaKaadaWgaaWcbaGaamizaaqabaGcdaqadaqaaiaadshadaWgaaWc baGaamiBaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacaaI9a GaaGymaiaaicdacaaIWaGaaGPaVpaalaaabaGaamyramaaBaaaleaa caqGnbGaae4qaaqabaGcdaWadaqaaiqbeY7aTzaajaWaaSbaaSqaai aadsgaaeqaaOWaaeWaaeaacaWG0bWaaSbaaSqaaiaadYgaaeqaaaGc caGLOaGaayzkaaaacaGLBbGaayzxaaGaeyOeI0IaeqiVd02aaSbaaS qaaiaadsgaaeqaaOWaaeWaaeaacaWG0bWaaSbaaSqaaiaadYgaaeqa aaGccaGLOaGaayzkaaaabaGaeqiVd02aaSbaaSqaaiaadsgaaeqaaO WaaeWaaeaacaWG0bWaaSbaaSqaaiaadYgaaeqaaaGccaGLOaGaayzk aaaaaiaaiYcacaaMf8Uaamizaiaai2dacaaIXaGaaGilaiaaysW7cq WIMaYscaaISaGaaGjbVlaadseacaaISaGaaGzbVlaadYgacaaI9aGa aGymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGmbGaaGilai aaywW7caaMf8UaaGzbVlaacIcacaaI1aGaaiOlaiaaigdacaGGPaaa aa@77E1@

where E MC [ μ ^ d ( t l ) ] = e = 1 E μ ^ d ( e ) ( t l ) / E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaab2eacaqGdb aabeaakmaadmaabaGafqiVd0MbaKaadaWgaaWcbaGaamizaaqabaGc daqadaqaaiaadshadaWgaaWcbaGaamiBaaqabaaakiaawIcacaGLPa aaaiaawUfacaGLDbaacaaI9aWaaSGbaeaadaaeWaqabSqaaiaadwga caaI9aGaaGymaaqaaiaadweaa0GaeyyeIuoakiaaykW7cuaH8oqBga qcamaaDaaaleaacaWGKbaabaWaaeWaaeaacaWGLbaacaGLOaGaayzk aaaaaOWaaeWaaeaacaWG0bWaaSbaaSqaaiaadYgaaeqaaaGccaGLOa GaayzkaaaabaGaamyraaaaaaa@4DF9@ is the Monte Carlo expectation of the estimator μ ^ d ( t l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaBaaaleaacaWGKb aabeaakmaabmaabaGaamiDamaaBaaaleaacaWGSbaabeaaaOGaayjk aiaawMcaaaaa@37FA@ with μ ^ d ( e ) ( t l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaWaaeWaaeaacaWGLbaacaGLOaGaayzkaaaaaOWaaeWaaeaacaWG 0bWaaSbaaSqaaiaadYgaaeqaaaGccaGLOaGaayzkaaaaaa@3A6E@ the estimator of the mean curve obtained for the e th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGLbWaaWbaaSqabeaacaqGLbaaaa aa@336B@ simulation, for e = 1, , E . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGLbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8Uaamyraiaac6caaaa@3AFC@ A second indicator, known as relative efficiency (RE), is calculated as follows:

RE ( μ ^ d ) ( t l ) = 100 MSE MC ( μ ^ d ) ( t l ) MSE MC ( μ ^ d HT ) ( t l ) , d = 1, , D 1, l = 1, , L . ( 5.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGsbGaaeyramaabmaabaGafqiVd0 MbaKaadaWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaadaqadaqa aiaadshadaWgaaWcbaGaamiBaaqabaaakiaawIcacaGLPaaacaaI9a GaaGymaiaaicdacaaIWaWaaSaaaeaacaqGnbGaae4uaiaabweadaWg aaWcbaGaaeytaiaaboeaaeqaaOWaaeWaaeaacuaH8oqBgaqcamaaBa aaleaacaWGKbaabeaaaOGaayjkaiaawMcaamaabmaabaGaamiDamaa BaaaleaacaWGSbaabeaaaOGaayjkaiaawMcaaaqaaiaab2eacaqGtb GaaeyramaaBaaaleaacaqGnbGaae4qaaqabaGcdaqadaqaaiqbeY7a TzaajaWaa0baaSqaaiaadsgaaeaacaqGibGaaeivaaaaaOGaayjkai aawMcaamaabmaabaGaamiDamaaBaaaleaacaWGSbaabeaaaOGaayjk aiaawMcaaaaacaaISaGaaGzbVlaadsgacaaI9aGaaGymaiaaiYcaca aMe8UaeSOjGSKaaGilaiaaysW7caWGebGaeyOeI0IaaGymaiaaiYca caaMf8UaamiBaiaai2dacaaIXaGaaGilaiaaysW7cqWIMaYscaaISa GaaGjbVlaadYeacaaIUaGaaGzbVlaaywW7caaMf8Uaaiikaiaaiwda caGGUaGaaGOmaiaacMcaaaa@794A@

where MSE MC ( μ ^ d ( t l ) ) = e = 1 E ( μ ^ d ( e ) ( t l ) μ d ( t l ) ) 2 / E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGnbGaae4uaiaabweadaWgaaWcba GaaeytaiaaboeaaeqaaOWaaeWaaeaacuaH8oqBgaqcamaaBaaaleaa caWGKbaabeaakmaabmaabaGaamiDamaaBaaaleaacaWGSbaabeaaaO GaayjkaiaawMcaaaGaayjkaiaawMcaaiaai2dadaWcgaqaamaaqada beWcbaGaamyzaiaaykW7caaI9aGaaGPaVlaaigdaaeaacaWGfbaani abggHiLdGcdaqadaqaaiqbeY7aTzaajaWaa0baaSqaaiaadsgaaeaa daqadaqaaiaadwgaaiaawIcacaGLPaaaaaGcdaqadaqaaiaadshada WgaaWcbaGaamiBaaqabaaakiaawIcacaGLPaaacqGHsislcqaH8oqB daWgaaWcbaGaamizaaqabaGcdaqadaqaaiaadshadaWgaaWcbaGaam iBaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaaakeaacaWGfbaaaaaa@5AA6@ is the Monte Carlo mean square error, d = 1, , D , l = 1, , L . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamiraiaaiYcacaaMe8UaamiBaiaa i2dacaaIXaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaadYeaca aIUaaaaa@462F@ The lower the RE indicator, the more the estimator will be considered effective. An RE of 100 corresponds to an indicator as effective as the reference estimator.

Here, the reference estimator μ ^ d HT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaaeisaiaabsfaaaaaaa@35EA@ is the Horvitz-Thompson estimator (which, for our simple random sampling plan, is the simple mean of the curves in the domain considered); it corresponds to the model described by equation (3.1). This estimator cannot be calculated for the unsampled domain. The RE estimator is then obtained by dividing the MSE of the various estimators by the mean MSE of the Horvitz-Thompson estimator over the seven sampled domains, i.e.

RE ( μ ^ D ) ( t l ) = 100 MSE MC ( μ ^ D ) ( t l ) MSE ¯ MC HT ( t l ) , l = 1, , L , ( 5.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGsbGaaeyramaabmaabaGafqiVd0 MbaKaadaWgaaWcbaGaamiraaqabaaakiaawIcacaGLPaaadaqadaqa aiaadshadaWgaaWcbaGaamiBaaqabaaakiaawIcacaGLPaaacaaI9a GaaGymaiaaicdacaaIWaWaaSaaaeaacaqGnbGaae4uaiaabweadaWg aaWcbaGaaeytaiaaboeaaeqaaOWaaeWaaeaacuaH8oqBgaqcamaaBa aaleaacaWGebaabeaaaOGaayjkaiaawMcaamaabmaabaGaamiDamaa BaaaleaacaWGSbaabeaaaOGaayjkaiaawMcaaaqaamaanaaabaGaae ytaiaabofacaqGfbaaamaaDaaaleaacaqGnbGaae4qaaqaaiaabIea caqGubaaaOWaaeWaaeaacaWG0bWaaSbaaSqaaiaadYgaaeqaaaGcca GLOaGaayzkaaaaaiaaiYcacaaMf8UaamiBaiaai2dacaaIXaGaaGil aiaaysW7cqWIMaYscaaISaGaaGjbVlaadYeacaaISaGaaGzbVlaayw W7caaMf8UaaGzbVlaaywW7caGGOaGaaGynaiaac6cacaaIZaGaaiyk aaaa@6B00@

with MSE ¯ MC HT ( t l ) = d = 1 D 1 MSE MC ( μ ^ d HT ) ( t l ) , l = 1, , L . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqdaaqaaiaab2eacaqGtbGaaeyraa aadaqhaaWcbaGaaeytaiaaboeaaeaacaqGibGaaeivaaaakmaabmaa baGaamiDamaaBaaaleaacaWGSbaabeaaaOGaayjkaiaawMcaaiaai2 dadaaeWaqabSqaaiaadsgacaaI9aGaaGymaaqaaiaadseacqGHsisl caaIXaaaniabggHiLdGccaaMc8UaaeytaiaabofacaqGfbWaaSbaaS qaaiaab2eacaqGdbaabeaakmaabmaabaGafqiVd0MbaKaadaqhaaWc baGaamizaaqaaiaabIeacaqGubaaaaGccaGLOaGaayzkaaWaaeWaae aacaWG0bWaaSbaaSqaaiaadYgaaeqaaaGccaGLOaGaayzkaaGaaGil aiaaysW7caWGSbGaaGypaiaaigdacaaISaGaaGjbVlablAciljaaiY cacaaMe8Uaamitaiaai6caaaa@5E19@

For each indicator and each instant t l , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bWaaSbaaSqaaiaadYgaaeqaaO Gaaiilaaaa@343C@ the results obtained for the various sampled domains are then aggregated for all domains, RB ech ( μ ^ ) ( t l ) = 1 D 1 d = 1 D 1 RB ( μ ^ d ) ( t l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGsbGaaeOqamaaBaaaleaacaqGLb Gaae4yaiaabIgaaeqaaOWaaeWaaeaacuaH8oqBgaqcaaGaayjkaiaa wMcaamaabmaabaGaamiDamaaBaaaleaacaWGSbaabeaaaOGaayjkai aawMcaaiaai2dadaWcbaWcbaGaaGymaaqaaiaadseacqGHsislcaaI XaaaaOWaaabmaeqaleaacaWGKbGaaGypaiaaigdaaeaacaWGebGaey OeI0IaaGymaaqdcqGHris5aOGaaGPaVlaabkfacaqGcbWaaeWaaeaa cuaH8oqBgaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaam aabmaabaGaamiDamaaBaaaleaacaWGSbaabeaaaOGaayjkaiaawMca aaaa@532B@ and RE ech ( μ ^ ) ( t l ) = 1 D 1 d = 1 D 1 RE ( μ ^ d ) ( t l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGsbGaaeyramaaBaaaleaacaqGLb Gaae4yaiaabIgaaeqaaOWaaeWaaeaacuaH8oqBgaqcaaGaayjkaiaa wMcaamaabmaabaGaamiDamaaBaaaleaacaWGSbaabeaaaOGaayjkai aawMcaaiaai2dadaWcbaWcbaGaaGymaaqaaiaadseacqGHsislcaaI XaaaaOWaaabmaeqaleaacaWGKbGaaGypaiaaigdaaeaacaWGebGaey OeI0IaaGymaaqdcqGHris5aOGaaGPaVlaabkfacaqGfbWaaeWaaeaa cuaH8oqBgaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaam aabmaabaGaamiDamaaBaaaleaacaWGSbaabeaaaOGaayjkaiaawMca aaaa@5331@ for l = 1, , L , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGSbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamitaiaaiYcaaaa@3B0E@ while the indicators obtained for the unsampled domain are used as-is.

Finally, to evaluate overall performance, we consider the mean of those indicators for all instants in the test period, while still separating the sampled domains from the unsampled domain. We also look at the calculation times of the various estimators.

5.3  Results and test conclusions

The test results of the methods are presented in Table 5.3 and illustrated in Figures 5.3 to 5.5.

Table 5.3
Mean method performance indicators (RB, RE) for all instants of discretization and domains, separating the unsampled domain from the others
Table summary
This table displays the results of Mean method performance indicators (RB. The information is grouped by Domain type (appearing as row headers), Method, RE (%) and RB (%) (appearing as column headers).
Domain type Method RE (%) RB (%)
Sampled Horvitz-Thompson 100.00 0.25
Sampled Calibration 37.13 -0.47
Sampled Linear mixed model 14.69 0.60
Sampled Linear mixed model PCA 15.40 0.67
Sampled Linear regression 24.87 1.20
Sampled Courbotree 20.54 0.80
Sampled Standardized Courbotree 22.35 1.45
Sampled Courboforest 24.66 0.62
Unsampled Horvitz-Thompson This is an empty cell This is an empty cell
Unsampled Calibration This is an empty cell This is an empty cell
Unsampled Linear mixed model 13.43 4.66
Unsampled Linear mixed model PCA 13.49 4.77
Unsampled Linear regression 14.38 5.09
Unsampled Courbotree 14.29 3.48
Unsampled Standardized Courbotree 16.63 5.88
Unsampled Courboforest 15.97 0.37

Figure 5.3 of article 54955 issue 2018002

Description for Figure 5.3

Figure made of two vertical band diagrams. Each diagram presents the mean relative biases as % of eight estimation methods for either the unsampled or the sampled domains. The relative bias is on the y-axis and the estimation methods are on the x-axis. Data are in the following table:

Data table 5.3
Table summary
This table displays the results of Data table 5.3. The information is grouped by Estimation method (appearing as row headers), Sampled domains and Unsampled domains (appearing as column headers).
Estimation method Sampled domains Unsampled domains
RB (%) RB (%)
Horvitz-Thompson 0.25 This is an empty cell
Calibration -0.47 This is an empty cell
Linear mised model 0.6 4.66
Linear mixed model PCA 0.67 4.77
Linear regression 1.2 5.09
Courbotree 0.8 3.48
Standardized Courbotree 1.45 5.88
Courboforest 0.62 0.37

Figure 5.4 of article 54955 issue 2018002

Description for Figure 5.4

Figure made of two vertical band diagrams. Each diagram presents the mean relative efficiency of eight estimation methods for either the unsampled or the sampled domains. The relative efficiency is on the y-axis and the estimation methods are on the x-axis. Data are in the following table:

Data table 5.4
Table summary
This table displays the results of Data table 5.4. The information is grouped by Estimation method (appearing as row headers), Sampled domains and Unsampled domains (appearing as column headers).
Estimation method Sampled domains Unsampled domains
RE (%) RE (%)
Horvitz-Thompson 100
Calibration 37.13
Linear mised model 14.69 13.43
Linear mixed model PCA 15.4 13.49
Linear regression 24.87 14.38
Courbotree 20.54 14.29
Standardized Courbotree 22.35 16.63
Courboforest 24.66 15.97

Figure 5.5 of article 54955 issue 2018002

Description for Figure 5.5

Figure made of two linear graphes. Each graph presents the evolution of the mean MSEs for domains over time, for eight estimation methods, for either the samples or the unsampled domains. The MSE is on the y-axis, ranging from 0 to 75,000,000. Time is on the x-axis. There are eight lines on the first graph, one for each estimation methods: naive, calibration, linear mixed model, linear mixed model PCA, linear regression, courbotree, standardized courbotree and courboforest. Only the last six are represented on the second graph. For both graphes, the MSE is higher in the winter (January and February). The naive and calibration estimators adapt least well to this situation. The other methods give similar results among themselves.

For sampled domains, we see that the integration of explanatory variables in the estimate, regardless of the method used, leads to a net gain in performance: thus, for the least effective method (the estimator by calibration), the error is divided by three when explanatory variables are used.

As well, the use of our various estimators based on superpopulation models leads to an additional gain in accuracy: the RE for our various methods thus range from 15% for linear mixed models to 25% for random forests.

The linear mixed models are the most effective method, so we can assume that there are characteristics of the domains that are unexplainable using only the auxiliary variables that this type of model is able to capture. We therefore go from an RE of 25% for the linear functional regression to an RE of approximately 15% by including these random effects.

The tree and random forest methods capture non-linearities in the relationship between explanatory variables and the interest variable, which explains why these methods give better results than linear functional regressions: the RE of the various non-parametric methods are between 20% and 25%, compared to 25% for linear functional regressions. Very surprisingly, the regression tree gives better results than the random forest. We can put forth the theory that this is because our objective is to best estimate the mean curve of a series of units, not each curve individually. It is therefore possible that the tree is not as good for predicting each curve, but better at the aggregate level. As well, on this particular data set, the method gives the best results when working on raw curves, not when distinguishing between the estimation of form and level.

Projecting curves based on the PCA does not seem to lead to any significant gains in accuracy here.

The Horvitz-Thompson estimator cannot be produced on unsampled domains. The differences between the other methods are much more restricted than on the sampled domains: the random effects cannot be estimated for unsampled domains.

Finally, in Figure 5.5, we trace the mean square error of our estimators for the sampled and unsampled domains. We note that this square error is higher in the winter (January and February). This high variability could be due to a sharp drop in outside temperatures during those months, which increases the variability of heating consumption (difference in behaviour and electrical heating equipment depending on clients). The naive and calibration estimators adapt least well to this situation.

5.4  Comparison of methods and selection criteria

Each model-based method has benefits and drawbacks. Unit-level linear mixed models are the only ones that, due to random effects, make it possible for the modelling to include domain characteristics not reflected in auxiliary information. It thus seems relevant to use them when assuming that the explanatory variables do not make it possible to explain all differences between domains.

The linear functional regression ignores the random effect of the domains, so we expect it to be less effective than linear mixed models due to its construction. Finally, the two non-parametric methods allow for better modelling of the non-linear relationships between the explanatory variables and the interest variable, but on the other hand, does not make it possible to capture the differences between domains that are not reflected in the auxiliary information. They also require the availability of auxiliary information X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHybWaaSbaaSqaaiaadMgaaeqaaa aa@3367@ for each individual in the population when, in the past, we only needed mean values X ¯ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqdaaqaaiaahIfaaaWaaSbaaSqaai aadsgaaeqaaaaa@3373@ for each domain in the population and X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHybWaaSbaaSqaaiaadMgaaeqaaa aa@3367@ for the sample. The choice between a parametric and non-parametric approach will therefore depend on the nature of the problem, the diversity of domains and the explanatory variables available. Be believe that neither of the two approaches is systematically preferable over the other.

A process for choosing between the two approaches could be to estimate the respective variances in the random effects and the residuals in the linear mixed models and, depending on the relative scope of those effects, moving more toward one or the other type of model. Conversely, cross-validation can be used to quantify the respective performance of the linear mixed models and the non-parametric models for predicting the aggregates of individual curves in order to direct our choice.

Among the non-parametric methods, the choice between regression trees and random forests will depend on the predictive performance of those methods on data, for the mean curves of domains. Generally, we can assume that random forests will give better results than regression trees for individual data (see Breiman et al., 1984); however, it is entirely possible that the best of the two methods for predicting each curve may not be the one that gives the best results to all domains or, at the very least, that the two methods are reduced when we consider the prediction of mean curves of individual aggregates. As well, due to their construction, random forests require a lot more calculation time than regression trees and that aspect cannot be ignored when the data sets being processed are large in size.


Date modified: