Sample-based estimation of mean electricity consumption curves for small domains
Section 3. Direct estimation methods in the design-based approach

In this section, we adopt the sampling design approach. This means that the variable interest values Y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaa aa@3364@ for each population unit are considered to be deterministic and the only variable present is that of the construction of the sample. The statistical inference then only describes the randomness created by the sampling design.

We will present two classic estimators, the Horvitz-Thompson estimator and the calibration estimator, which will be the references to which we will compare our methods to evaluate performances. These are direct estimators, i.e., estimators constructed by using, for the estimation of the mean for each domain, only units and auxiliary information related to the domain in question.

The functional Horvitz-Thompson estimator (Horvitz and Thompson, 1952; Cardo, Chaouch, Goga and Labruère, 2010) of μ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH8oqBdaWgaaWcbaGaamizaaqaba aaaa@3437@ is given by:

μ ^ d HT ( t ) = 1 N d i s d d i Y i ( t ) , d = 1, , D , t [ 0, T ] , ( 3.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaaeisaiaabsfaaaGcdaqadaqaaiaadshaaiaawIcacaGLPaaa caaI9aWaaSaaaeaacaaIXaaabaGaamOtamaaBaaaleaacaWGKbaabe aaaaGcdaaeqbqabSqaaiaadMgacqGHiiIZcaWGZbWaaSbaaWqaaiaa dsgaaeqaaaWcbeqdcqGHris5aOGaaGPaVlaadsgadaWgaaWcbaGaam yAaaqabaGccaWGzbWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacaWG 0baacaGLOaGaayzkaaGaaGilaiaaywW7caWGKbGaaGypaiaaigdaca aISaGaaGjbVlablAciljaacYcacaaMe8UaamiraiaaiYcacaaMf8Ua amiDaiabgIGiopaadmaabaGaaGimaiaaiYcacaaMe8UaamivaaGaay 5waiaaw2faaiaaiYcacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaa cIcacaaIZaGaaiOlaiaaigdacaGGPaaaaa@6C70@

with d i = 1 / π i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaalyaabaGaaGymaaqaaiabec8aWnaaBaaaleaacaWGPbaa beaaaaaaaa@37E8@ the sampling weight of unit i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaaiilaaaa@330A@ also called the Horvitz-Thompson weight. It obviously cannot be calculated for the unsampled domains (i.e., domains d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbaaaa@3255@ such that s d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaadsgaaeqaaa aa@3379@ is empty) and it is extremely unstable for small domains. Moreover, it in no way uses the predictor variables available to us.

To take advantage of the auxiliary information, again in a sampling design approach, we can use the calibration estimator proposed by Deville and Särndal (1992).

The calibration estimator for the mean μ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH8oqBdaWgaaWcbaGaamizaaqaba aaaa@3437@ is given by:

μ ^ d cal ( t ) = 1 N d i s d w i d cal Y i ( t ) d = 1, , D , t [ 0, T ] , ( 3.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaae4yaiaabggacaqGSbaaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaaGypamaalaaabaGaaGymaaqaaiaad6eadaWgaaWcbaGaam izaaqabaaaaOWaaabuaeqaleaacaWGPbGaeyicI4Saam4CamaaBaaa meaacaWGKbaabeaaaSqab0GaeyyeIuoakiaaykW7caWG3bWaa0baaS qaaiaadMgacaWGKbaabaGaae4yaiaabggacaqGSbaaaOGaamywamaa BaaaleaacaWGPbaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaai aaywW7caWGKbGaaGypaiaaigdacaaISaGaaGjbVlablAciljaacYca caaMe8UaamiraiaaiYcacaaMf8UaamiDaiabgIGiopaadmaabaGaaG imaiaaiYcacaaMe8UaamivaaGaay5waiaaw2faaiaaiYcacaaMf8Ua aGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIZaGaaiOlaiaaikdaca GGPaaaaa@7088@

where the calibration weights w i d cal , i s d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG3bWaa0baaSqaaiaadMgacaWGKb aabaGaae4yaiaabggacaqGSbaaaOGaaGzaVlaaiYcacaaMe8UaamyA aiabgIGiolaadohadaWgaaWcbaGaamizaaqabaaaaa@3F7B@ are as close as possible to the sampling weights d i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbWaaSbaaSqaaiaadMgaaeqaaa aa@336F@ units of s d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaadsgaaeqaaa aa@3379@ within the meaning of a certain distance or pseudo-distance G ( w , d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGhbWaaeWaaeaacaWG3bGaaGilai aaysW7caWGKbaacaGLOaGaayzkaaaaaa@37E9@ defined by the statistician:

min w i d i s d d i G ( w i d , d i ) subject to i s d w i d X i = i U d X i . ( 3.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaGfqbqabSqaaiaadEhadaWgaaadba GaamyAaiaadsgaaeqaaaWcbeGcbaGaciyBaiaacMgacaGGUbaaamaa qafabeWcbaGaamyAaiabgIGiolaadohadaWgaaadbaGaamizaaqaba aaleqaniabggHiLdGccaaMc8UaamizamaaBaaaleaacaWGPbaabeaa kiaadEeadaqadaqaaiaadEhadaWgaaWcbaGaamyAaiaadsgaaeqaaO GaaGilaiaaysW7caWGKbWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGa ayzkaaGaaGzbVlaayIW7caqGZbGaaeyDaiaabkgacaqGQbGaaeyzai aabogacaqG0bGaaGjbVlaabshacaqGVbGaaGjcVlaaywW7daaeqbqa bSqaaiaadMgacqGHiiIZcaWGZbWaaSbaaWqaaiaadsgaaeqaaaWcbe qdcqGHris5aOGaaGPaVlaadEhadaWgaaWcbaGaamyAaiaadsgaaeqa aOGaaCiwamaaBaaaleaacaWGPbaabeaakiaai2dadaaeqbqabSqaai aadMgacqGHiiIZcaWGvbWaaSbaaWqaaiaadsgaaeqaaaWcbeqdcqGH ris5aOGaaGPaVlaahIfadaWgaaWcbaGaamyAaaqabaGccaaIUaGaaG zbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaI ZaGaaiykaaaa@804B@

For the distance of chi-square G ( w i d , d i ) = i s d ( w i d d i ) 2 / d i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGhbWaaeWaaeaacaWG3bWaaSbaaS qaaiaadMgacaWGKbaabeaakiaaiYcacaaMe8UaamizamaaBaaaleaa caWGPbaabeaaaOGaayjkaiaawMcaaiaai2dadaWcgaqaamaaqababe WcbaGaamyAaiabgIGiolaadohadaWgaaadbaGaamizaaqabaaaleqa niabggHiLdGcdaqadaqaaiaadEhadaWgaaWcbaGaamyAaiaadsgaae qaaOGaeyOeI0IaamizamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaaaOqaaiaadsgadaWgaaWcbaGaam yAaaqabaaaaOGaaiilaaaa@4DAC@ the weights are given by

w i d cal = d i + d i ( i U d X i i s d d i X i ) ( i s d d i X i X i ) 1 X i , i s d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG3bWaa0baaSqaaiaadMgacaWGKb aabaGaae4yaiaabggacaqGSbaaaOGaaGypaiaadsgadaWgaaWcbaGa amyAaaqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaadMgaaeqaaOWaae WaaeaadaaeqbqabSqaaiaadMgacqGHiiIZcaWGvbWaaSbaaWqaaiaa dsgaaeqaaaWcbeqdcqGHris5aOGaaGPaVlaahIfadaWgaaWcbaGaam yAaaqabaGccqGHsisldaaeqbqabSqaaiaadMgacqGHiiIZcaWGZbWa aSbaaWqaaiaadsgaaeqaaaWcbeqdcqGHris5aOGaaGPaVlaadsgada WgaaWcbaGaamyAaaqabaGccaWHybWaaSbaaSqaaiaadMgaaeqaaaGc caGLOaGaayzkaaWaaWbaaSqabeaakiadaITHYaIOaaWaaeWaaeaada aeqbqabSqaaiaadMgacqGHiiIZcaWGZbWaaSbaaWqaaiaadsgaaeqa aaWcbeqdcqGHris5aOGaaGPaVlaadsgadaWgaaWcbaGaamyAaaqaba GccaWHybWaaSbaaSqaaiaadMgaaeqaaOGaaCiwamaaDaaaleaacaWG PbaabaqcLbwacWaGyBOmGikaaaGccaGLOaGaayzkaaWaaWbaaSqabe aacqGHsislcaaIXaaaaOGaaCiwamaaBaaaleaacaWGPbaabeaakiaa iYcacaaMf8UaamyAaiabgIGiolaadohadaWgaaWcbaGaamizaaqaba aaaa@773A@

and the estimator becomes

μ ^ d cal ( t ) = 1 N d i s d d i y i 1 N d ( i s d d i X i i U d X i ) β ^ d ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaae4yaiaabggacaqGSbaaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaaGypamaalaaabaGaaGymaaqaaiaad6eadaWgaaWcbaGaam izaaqabaaaaOWaaabuaeqaleaacaWGPbGaeyicI4Saam4CamaaBaaa meaacaWGKbaabeaaaSqab0GaeyyeIuoakiaaykW7caWGKbWaaSbaaS qaaiaadMgaaeqaaOGaamyEamaaBaaaleaacaWGPbaabeaakiabgkHi TmaalaaabaGaaGymaaqaaiaad6eadaWgaaWcbaGaamizaaqabaaaaO WaaeWaaeaadaaeqbqabSqaaiaadMgacqGHiiIZcaWGZbWaaSbaaWqa aiaadsgaaeqaaaWcbeqdcqGHris5aOGaaGPaVlaadsgadaWgaaWcba GaamyAaaqabaGccaWHybWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0Ya aabuaeqaleaacaWGPbGaeyicI4SaamyvamaaBaaameaacaWGKbaabe aaaSqab0GaeyyeIuoakiaaykW7caWHybWaaSbaaSqaaiaadMgaaeqa aaGccaGLOaGaayzkaaWaaWbaaSqabeaakiadaITHYaIOaaGabCOSdy aajaWaaSbaaSqaaiaadsgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaaGilaaaa@6EE0@

where β ^ d ( t ) = ( i s d d i X i X i ) 1 i s d d i X i Y i ( t ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWHYoGbaKaadaWgaaWcbaGaamizaa qabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacaaI9aWaaeWaaeaa daaeqaqabSqaaiaadMgacqGHiiIZcaWGZbWaaSbaaWqaaiaadsgaae qaaaWcbeqdcqGHris5aOGaaGPaVlaadsgadaWgaaWcbaGaamyAaaqa baGccaWHybWaaSbaaSqaaiaadMgaaeqaaOGaaCiwamaaDaaaleaaca WGPbaabaqcLbwacWaGyBOmGikaaaGccaGLOaGaayzkaaWaaWbaaSqa beaacqGHsislcaaIXaaaaOWaaabeaeqaleaacaWGPbGaeyicI4Saam 4CamaaBaaameaacaWGKbaabeaaaSqab0GaeyyeIuoakiaaykW7caWG KbWaaSbaaSqaaiaadMgaaeqaaOGaaCiwamaaBaaaleaacaWGPbaabe aakiaadMfadaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiaadshaaiaa wIcacaGLPaaacaaIUaaaaa@5DA7@ The calibration weights are not dependent on time t , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bGaaiilaaaa@3315@ but they are dependent in this case on the domain d , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbGaaiilaaaa@3305@ therefore, the estimator μ ^ d cal ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaae4yaiaabggacaqGSbaaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaaaaa@398D@ does not satisfy the additivity property, i.e., d = 1 D μ ^ d cal ( t ) = μ ^ cal ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaaeWaqabSqaaiaadsgacaaI9aGaaG ymaaqaaiaadseaa0GaeyyeIuoakiaaykW7cuaH8oqBgaqcamaaDaaa leaacaWGKbaabaGaae4yaiaabggacaqGSbaaaOWaaeWaaeaacaWG0b aacaGLOaGaayzkaaGaaGypaiqbeY7aTzaajaWaaWbaaSqabeaacaqG JbGaaeyyaiaabYgaaaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaaa a@4858@ where μ ^ cal ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaCaaaleqabaGaae 4yaiaabggacaqGSbaaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaa aa@38A4@ is the calibration estimator of μ = i U Y i / N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH8oqBcaaI9aWaaSGbaeaadaaeqa qabSqaaiaadMgacqGHiiIZcaWGvbaabeqdcqGHris5aOGaaGPaVlaa dMfadaWgaaWcbaGaamyAaaqabaaakeaacaWGobaaaiaac6caaaa@3E4B@ Where the vector 1 = ( 1, 1, , 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHXaGaaGypamaabmaabaGaaGymai aaiYcacaaMe8UaaGymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7 caaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaakiadaITHYaIOaaaaaa@41A9@ is in the model, thus,

μ ^ d cal ( t ) = 1 N d i U d X i β ^ d ( t ) = X ¯ d β ^ d ( t ) , t [ 0, T ] . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaae4yaiaabggacaqGSbaaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaaGypamaalaaabaGaaGymaaqaaiaad6eadaWgaaWcbaGaam izaaqabaaaaOWaaabuaeqaleaacaWGPbGaeyicI4SaamyvamaaBaaa meaacaWGKbaabeaaaSqab0GaeyyeIuoakiaaykW7caWHybWaa0baaS qaaiaadMgaaeaajugybiadaITHYaIOaaGcceWHYoGbaKaadaWgaaWc baGaamizaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacaaI9a Waa0aaaeaacaWHybaaamaaBaaaleaacaWGKbaabeaakiqahk7agaqc amaaBaaaleaacaWGKbaabeaakmaabmaabaGaamiDaaGaayjkaiaawM caaiaaiYcacaaMf8UaamiDaiabgIGiopaadmaabaGaaGimaiaaiYca caaMe8UaamivaaGaay5waiaaw2faaiaai6caaaa@62E2@

If size n d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaadsgaaeqaaa aa@3374@ is large, this estimator is approximately bias-free regarding the sampling plan. We can consider the modified estimator:

μ ^ d mod ( t ) = 1 N d i s d d i Y i ( t ) 1 N d ( i s d d i X i i U d X i ) β ^ ( t ) , t [ 0, T ] , ( 3.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaaeyBaiaab+gacaqGKbaaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaaGypamaalaaabaGaaGymaaqaaiaad6eadaWgaaWcbaGaam izaaqabaaaaOWaaabuaeqaleaacaWGPbGaeyicI4Saam4CamaaBaaa meaacaWGKbaabeaaaSqab0GaeyyeIuoakiaaykW7caWGKbWaaSbaaS qaaiaadMgaaeqaaOGaamywamaaBaaaleaacaWGPbaabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaiabgkHiTmaalaaabaGaaGymaaqaai aad6eadaWgaaWcbaGaamizaaqabaaaaOWaaeWaaeaadaaeqbqabSqa aiaadMgacqGHiiIZcaWGZbWaaSbaaWqaaiaadsgaaeqaaaWcbeqdcq GHris5aOGaaGPaVlaadsgadaWgaaWcbaGaamyAaaqabaGccaWHybWa aSbaaSqaaiaadMgaaeqaaOGaeyOeI0YaaabuaeqaleaacaWGPbGaey icI4SaamyvamaaBaaameaacaWGKbaabeaaaSqab0GaeyyeIuoakiaa ykW7caWHybWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaW baaSqabeaakiadaITHYaIOaaGabCOSdyaajaWaaeWaaeaacaWG0baa caGLOaGaayzkaaGaaGilaiaaywW7caWG0bGaeyicI48aamWaaeaaca aIWaGaaGilaiaaysW7caWGubaacaGLBbGaayzxaaGaaGilaiaaywW7 caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaI0aGaaiykaa aa@847A@

where

β ^ ( t ) = ( i s d i X i X i ) 1 i s d i X i Y i ( t ) , t [ 0, T ] , ( 3.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWHYoGbaKaadaqadaqaaiaadshaai aawIcacaGLPaaacaaI9aWaaeWaaeaadaaeqbqabSqaaiaadMgacqGH iiIZcaWGZbaabeqdcqGHris5aOGaaGPaVlaadsgadaWgaaWcbaGaam yAaaqabaGccaWHybWaaSbaaSqaaiaadMgaaeqaaOGaaCiwamaaDaaa leaacaWGPbaabaqcLbwacWaGyBOmGikaaaGccaGLOaGaayzkaaWaaW baaSqabeaacqGHsislcaaIXaaaaOWaaabuaeqaleaacaWGPbGaeyic I4Saam4Caaqab0GaeyyeIuoakiaaykW7caWGKbWaaSbaaSqaaiaadM gaaeqaaOGaaCiwamaaBaaaleaacaWGPbaabeaakiaadMfadaWgaaWc baGaamyAaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacaaISa GaaGzbVlaadshacqGHiiIZdaWadaqaaiaaicdacaaISaGaaGjbVlaa dsfaaiaawUfacaGLDbaacaaISaGaaGzbVlaaywW7caaMf8UaaGzbVl aacIcacaaIZaGaaiOlaiaaiwdacaGGPaaaaa@6F0B@

does not depend on domain d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbaaaa@3255@ and, therefore, the estimator μ ^ d mod MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaaeyBaiaab+gacaqGKbaaaaaa@3711@ satisfies the additivity property, i.e., d = 1 D μ ^ d mod ( t ) = μ ^ cal ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaaeWaqabSqaaiaadsgacaaI9aGaaG ymaaqaaiaadseaa0GaeyyeIuoakiaaykW7cuaH8oqBgaqcamaaDaaa leaacaWGKbaabaGaaeyBaiaab+gacaqGKbaaaOWaaeWaaeaacaWG0b aacaGLOaGaayzkaaGaaGypaiqbeY7aTzaajaWaaWbaaSqabeaacaqG JbGaaeyyaiaabYgaaaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaaa a@4868@ where μ ^ cal ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaCaaaleqabaGaae 4yaiaabggacaqGSbaaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaa aa@38A4@ is the calibration estimator of μ = i U Y i / N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH8oqBcaaI9aWaaSGbaeaadaaeqa qabSqaaiaadMgacqGHiiIZcaWGvbaabeqdcqGHris5aOGaaGPaVlaa dMfadaWgaaWcbaGaamyAaaqabaaakeaacaWGobaaaiaai6caaaa@3E51@ As well, if n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbaaaa@325F@ is large, it has no asymptotic bias even if size n d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaadsgaaeqaaa aa@3374@ is not large. The asymptotic variance functions of μ ^ d cal ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaae4yaiaabggacaqGSbaaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaaaaa@398D@ and μ ^ d mod ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaaeyBaiaab+gacaqGKbaaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaaaaa@399D@ are equal to the Horvitz-Thompson variances of residuals Y i ( t ) X i β ^ d ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOeI0IaaCiwamaaDaaa leaacaWGPbaabaqcLbwacWaGyBOmGikaaOGabCOSdyaajaWaaSbaaS qaaiaadsgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaaaa@4181@ and Y i ( t ) X i β ^ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOeI0IaaCiwamaaDaaa leaacaWGPbaabaqcLbwacWaGyBOmGikaaOGabCOSdyaajaWaaeWaae aacaWG0baacaGLOaGaayzkaaaaaa@4062@ (see Rao and Molina, 2015).

Nonetheless, for each domain, these estimates are based only on data from the domain in question (curves and explanatory variables) without considering the rest of the sample. Like the Horvitz-Thompson estimator, they are therefore inaccurate for small domains and cannot be calculated for unsampled domains.

The methods that we present in the following section will allow us, by presenting a model common to all units of the population that describes the link between variables of interest and auxiliary information, to jointly use all data from the sample to perform the estimate for each domain, and thus increase the accuracy for each one. It will also make it possible to even provide estimates for unsampled domains.


Date modified: