Sample-based estimation of mean electricity consumption curves for small domains
Section 4. Model-based estimation methods

In this section, we use the model from Valliant, Dorfman and Royall (2000), in which curves Y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaa aa@3364@ are considered to be random and we propose four innovative approaches for responding to our problem estimating curves with a mean demand for small domains. Assuming that Y i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaaaaa@35F0@ and the auxiliary information vector X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHybWaaSbaaSqaaiaadMgaaeqaaa aa@3367@ are available for each individual i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbaaaa@325A@ in the domain d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbaaaa@3255@ and that the mean X ¯ d = i U d X i / N d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqdaaqaaiaahIfaaaWaaSbaaSqaai aadsgaaeqaaOGaaGypamaalyaabaWaaabeaeqaleaacaWGPbGaeyic I4SaamyvamaaBaaameaacaWGKbaabeaaaSqab0GaeyyeIuoakiaayk W7caWHybWaaSbaaSqaaiaadMgaaeqaaaGcbaGaamOtamaaBaaaleaa caWGKbaabeaaaaaaaa@402D@ is also known.

We assume that the auxiliary variables are related to the demand curves according to a functional model of superpopulation on all of the population that is generally expressed as:

ξ : Y i ( t ) = f d ( X i , t ) + ϵ i ( t ) , i U d , t [ 0, T ] , ( 4.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH+oaEcaaMc8UaaGOoaiaaywW7ca WGzbWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaaGypaiaadAgadaWgaaWcbaGaamizaaqabaGcdaqadaqaai aahIfadaWgaaWcbaGaamyAaaqabaGccaaISaGaaGjbVlaadshaaiaa wIcacaGLPaaacqGHRaWktuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGabaiab=v=aYpaaBaaaleaacaWGPbaabeaakmaabmaabaGa amiDaaGaayjkaiaawMcaaiaaiYcacaaMf8UaamyAaiabgIGiolaadw fadaWgaaWcbaGaamizaaqabaGccaaISaGaaGzbVlaadshacqGHiiIZ daWadaqaaiaaicdacaaISaGaaGjbVlaadsfaaiaawUfacaGLDbaaca aISaGaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI0aGaaiOlaiaa igdacaGGPaaaaa@7154@

with f d , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGMbWaaSbaaSqaaiaadsgaaeqaaO Gaaiilaaaa@3426@ an unknown regression function to be estimated, which can vary from one domain to another, and ϵ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=v=aYpaaBaaaleaacaWGPbaabeaaaaa@3E7E@ a process of zero expectation noise, zero covariance for different individuals and non-null regarding time.

If the size of domain N d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGobWaaSbaaSqaaiaadsgaaeqaaa aa@3354@ is large, then the mean μ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH8oqBdaWgaaWcbaGaamizaaqaba aaaa@3437@ will be estimated by

μ ^ d ( t ) = 1 N d i U d Y ^ i ( t ) , t [ 0, T ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaBaaaleaacaWGKb aabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiaai2dadaWcaaqa aiaaigdaaeaacaWGobWaaSbaaSqaaiaadsgaaeqaaaaakmaaqafabe WcbaGaamyAaiabgIGiolaadwfadaWgaaadbaGaamizaaqabaaaleqa niabggHiLdGccaaMc8UabmywayaajaWaaSbaaSqaaiaadMgaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGilaiaaywW7caWG0bGa eyicI48aamWaaeaacaaIWaGaaGilaiaaysW7caWGubaacaGLBbGaay zxaaGaaGilaaaa@524F@

where Y ^ i ( t ) = f ^ d ( X i , t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGzbGbaKaadaWgaaWcbaGaamyAaa qabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacaaI9aGabmOzayaa jaWaaSbaaSqaaiaadsgaaeqaaOWaaeWaaeaacaWHybWaaSbaaSqaai aadMgaaeqaaOGaaGilaiaaysW7caWG0baacaGLOaGaayzkaaaaaa@3FAB@ is the prediction of Y i ( t ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaiOlaaaa@36A2@ Otherwise, the mean μ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH8oqBdaWgaaWcbaGaamizaaqaba aaaa@3437@ is estimated by (see Valliant et al., 2000):

μ ^ d ( t ) = 1 N d ( i s d Y i ( t ) + i U d s d Y ^ i ( t ) ) , t [ 0, T ] . ( 4.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaBaaaleaacaWGKb aabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiaai2dadaWcaaqa aiaaigdaaeaacaWGobWaaSbaaSqaaiaadsgaaeqaaaaakmaabmaaba WaaabuaeqaleaacaWGPbGaeyicI4Saam4CamaaBaaameaacaWGKbaa beaaaSqab0GaeyyeIuoakiaaykW7caWGzbWaaSbaaSqaaiaadMgaae qaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaey4kaSYaaabuaeqa leaacaWGPbGaaGPaVlabgIGiolaaykW7caWGvbWaaSbaaWqaaiaads gaaeqaaSGaaGPaVlabgkHiTiaaykW7caWGZbWaaSbaaWqaaiaadsga aeqaaaWcbeqdcqGHris5aOGaaGPaVlqadMfagaqcamaaBaaaleaaca WGPbaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaaGaayjkaiaa wMcaaiaaiYcacaaMf8UaamiDaiabgIGiopaadmaabaGaaGimaiaaiY cacaaMe8UaamivaaGaay5waiaaw2faaiaai6cacaaMf8UaaGzbVlaa ywW7caaMf8UaaiikaiaaisdacaGGUaGaaGOmaiaacMcaaaa@7473@

The quality of our estimates thus depends on the quality of our model: if the model is false, that may lead to biases in the estimates.

4.1  Functional linear model

The simplest model of form (4.1) is the functional linear regression model from Faraway (1997):

Y i ( t ) = X i β ( t ) + ε i ( t ) , t [ 0, T ] , i U d . ( 4.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGypaiaahIfadaqhaaWc baGaamyAaaqaaKqzGfGamai2gkdiIcaakiaahk7adaqadaqaaiaads haaiaawIcacaGLPaaacqGHRaWkcqaH1oqzdaWgaaWcbaGaamyAaaqa baGcdaqadaqaaiaadshaaiaawIcacaGLPaaacaaISaGaaGzbVlaads hacqGHiiIZdaWadaqaaiaaicdacaaISaGaaGjbVlaadsfaaiaawUfa caGLDbaacaaISaGaaGzbVlaadMgacqGHiiIZcaWGvbWaaSbaaSqaai aadsgaaeqaaOGaaGOlaiaaywW7caaMf8UaaGzbVlaaywW7caGGOaGa aGinaiaac6cacaaIZaGaaiykaaaa@6208@

where the residuals ε i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH1oqzdaWgaaWcbaGaamyAaaqaba GcdaqadaqaaiaadshaaiaawIcacaGLPaaaaaa@36B9@ are independent for i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaeyiyIKRaamOAaiaacYcaaa a@35C0@ distributed based on a law of means of 0 and of variance of σ i 2 ( t ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHdpWCdaqhaaWcbaGaamyAaaqaai aaikdaaaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacaaIUaaaaa@384A@ If the size of domain N d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGobWaaSbaaSqaaiaadsgaaeqaaa aa@3354@ is large, then the mean of Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbaaaa@324A@ in domain d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbaaaa@3255@ is estimated by

μ ^ d blu ( t ) = X ¯ d β ^ BLU ( t ) , t [ 0, T ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaaeOyaiaabYgacaqG1baaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaaGypamaanaaabaGaaCiwaaaadaqhaaWcbaGaamizaaqaaK qzGfGamai2gkdiIcaakiqahk7agaqcamaaBaaaleaacaqGcbGaaeit aiaabwfaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGilai aaywW7caWG0bGaeyicI48aamWaaeaacaaIWaGaaGilaiaaysW7caWG ubaacaGLBbGaayzxaaGaaGilaaaa@51D8@

where β ^ BLU ( t ) = ( i s X i X i / σ i 2 ( t ) ) 1 i s X i Y i ( t ) / σ i 2 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWHYoGbaKaadaWgaaWcbaGaaeOqai aabYeacaqGvbaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiaa i2dadaqadaqaamaalyaabaWaaabeaeqaleaacaWGPbGaeyicI4Saam 4Caaqab0GaeyyeIuoakiaahIfadaWgaaWcbaGaamyAaaqabaGccaWH ybWaa0baaSqaaiaadMgaaeaajugybiadaITHYaIOaaaakeaacqaHdp WCdaqhaaWcbaGaamyAaaqaaiaaikdaaaGcdaqadaqaaiaadshaaiaa wIcacaGLPaaaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislca aIXaaaaOWaaSGbaeaadaaeqaqabSqaaiaadMgacqGHiiIZcaWGZbaa beqdcqGHris5aOGaaGPaVlaahIfadaWgaaWcbaGaamyAaaqabaGcca WGzbWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaaabaGaeq4Wdm3aa0baaSqaaiaadMgaaeaacaaIYaaaaOWaae WaaeaacaWG0baacaGLOaGaayzkaaaaaaaa@6303@ is the best linear unbiased (BLU) estimator of β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHYoaaaa@32AA@ that does not depend on domain d . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbGaaGOlaaaa@330D@ Estimator μ ^ d blu ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaaeOyaiaabYgacaqG1baaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaaaaa@39A0@ can be expressed as a weighted sum of Y i ( t ) : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGjbVlaaiQdaaaa@3841@

μ ^ d blu ( t ) = 1 N d i s w i d blu ( t ) Y i ( t ) , t [ 0, T ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaaeOyaiaabYgacaqG1baaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaaGypamaalaaabaGaaGymaaqaaiaad6eadaWgaaWcbaGaam izaaqabaaaaOWaaabuaeqaleaacaWGPbGaeyicI4Saam4Caaqab0Ga eyyeIuoakiaaykW7caWG3bWaa0baaSqaaiaadMgacaWGKbaabaGaae OyaiaabYgacaqG1baaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGa amywamaaBaaaleaacaWGPbaabeaakmaabmaabaGaamiDaaGaayjkai aawMcaaiaaiYcacaaMf8UaamiDaiabgIGiopaadmaabaGaaGimaiaa iYcacaaMe8UaamivaaGaay5waiaaw2faaiaaiYcaaaa@5C61@

where the weight w i d blu ( t ) = ( j U d X j ) ( j s X j X j / σ j 2 ( t ) ) 1 X i / σ i 2 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG3bWaa0baaSqaaiaadMgacaWGKb aabaGaaeOyaiaabYgacaqG1baaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaaGypamaabmaabaWaaabeaeqaleaacaWGQbGaeyicI4Saam yvamaaBaaameaacaWGKbaabeaaaSqab0GaeyyeIuoakiaaykW7caWH ybWaa0baaSqaaiaadQgaaeaajugybiadaITHYaIOaaaakiaawIcaca GLPaaadaqadaqaamaalyaabaWaaabeaeqaleaacaWGQbGaeyicI4Sa am4Caaqab0GaeyyeIuoakiaaykW7caWHybWaaSbaaSqaaiaadQgaae qaaOGaaCiwamaaDaaaleaacaWGQbaabaqcLbwacWaGyBOmGikaaaGc baGaeq4Wdm3aa0baaSqaaiaadQgaaeaacaaIYaaaaOWaaeWaaeaaca WG0baacaGLOaGaayzkaaaaaaGaayjkaiaawMcaamaaCaaaleqabaGa eyOeI0IaaGymaaaakmaalyaabaGaaCiwamaaBaaaleaacaWGPbaabe aaaOqaaiabeo8aZnaaDaaaleaacaWGPbaabaGaaGOmaaaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaaaaaa@6A37@ now dependant on time t . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bGaaGOlaaaa@331D@ If n d / N d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaad6gadaWgaaWcbaGaam izaaqabaaakeaacaWGobWaaSbaaSqaaiaadsgaaeqaaaaaaaa@357C@ is not insignificant, then the mean μ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH8oqBdaWgaaWcbaGaamizaaqaba aaaa@3437@ is estimated using (4.2) by:

μ ^ d blu ( t ) = 1 N d i s d ( Y i ( t ) X i T β ^ BLU ( t ) ) + X ¯ d β ^ BLU ( t ) , t [ 0, T ] . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaaeOyaiaabYgacaqG1baaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaaGypamaalaaabaGaaGymaaqaaiaad6eadaWgaaWcbaGaam izaaqabaaaaOWaaabuaeqaleaacaWGPbGaeyicI4Saam4CamaaBaaa meaacaWGKbaabeaaaSqab0GaeyyeIuoakmaabmaabaGaamywamaaBa aaleaacaWGPbaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiab gkHiTiaahIfadaqhaaWcbaGaamyAaaqaaiaadsfaaaGcceWHYoGbaK aadaWgaaWcbaGaaeOqaiaabYeacaqGvbaabeaakmaabmaabaGaamiD aaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgUcaRmaanaaabaGaaC iwaaaadaqhaaWcbaGaamizaaqaaKqzGfGamai2gkdiIcaakiqahk7a gaqcamaaBaaaleaacaqGcbGaaeitaiaabwfaaeqaaOWaaeWaaeaaca WG0baacaGLOaGaayzkaaGaaGilaiaaywW7caWG0bGaeyicI48aamWa aeaacaaIWaGaaGilaiaaysW7caWGubaacaGLBbGaayzxaaGaaGOlaa aa@6C7D@

This estimator can again be expressed as a weighted sum of Y i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaaaaa@35F0@ with weights that will still depend on time t . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bGaaGOlaaaa@331D@ The variance function (based on the model) of μ ^ d blu ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaaeOyaiaabYgacaqG1baaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaaaaa@39A0@ can be derived using Rao and Molina (2015), Chapter 7. The variance function σ i 2 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHdpWCdaqhaaWcbaGaamyAaaqaai aaikdaaaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaaaa@3792@ is unknown and can be estimated by following Rao and Molina (2015). By replacing σ i 2 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHdpWCdaqhaaWcbaGaamyAaaqaai aaikdaaaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaaaa@3792@ with σ ^ i 2 ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaHdpWCgaqcamaaDaaaleaacaWGPb aabaGaaGOmaaaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiaaiYca aaa@3858@ we will obtain the empirical best linear unbiased predictor (EBLUP) of μ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH8oqBdaWgaaWcbaGaamizaaqaba aaaa@3437@ and its variance can be obtained using the method set out by Rao and Molina (2015). This EBLUP estimator does not use the sample weight d i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbWaaSbaaSqaaiaadMgaaeqaaa aa@336F@ and therefore is not consistent in terms of the sampling plan (unless the sample weights are constant for units in the same domain d ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbGaaiykaiaac6caaaa@33B4@ A modified estimator, also referred to as a pseudo-EBLUP, can be constructed using the new approach described by Rao and Molina (2015, Chapter 7), equal in this case to the estimator set out in (3.4).

If Y i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaaaaa@35F0@ is unknown for the units in domain d , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbGaaGilaaaa@330B@ the following indirect estimator can be used:

μ ^ d ind ( t ) = X ¯ d β ^ ( t ) = 1 N d i s w ˜ i d ind Y i ( t ) , t [ 0, T ] , ( 4.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaaeyAaiaab6gacaqGKbaaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaaGypamaanaaabaGaaCiwaaaadaWgaaWcbaGaamizaaqaba GcceWHYoGbaKaadaqadaqaaiaadshaaiaawIcacaGLPaaacaaI9aWa aSaaaeaacaaIXaaabaGaamOtamaaBaaaleaacaWGKbaabeaaaaGcda aeqbqabSqaaiaadMgacqGHiiIZcaWGZbaabeqdcqGHris5aOGaaGPa VlqadEhagaacamaaDaaaleaacaWGPbGaamizaaqaaiaabMgacaqGUb GaaeizaaaakiaadMfadaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiaa dshaaiaawIcacaGLPaaacaaISaGaaGzbVlaadshacqGHiiIZdaWada qaaiaaicdacaaISaGaaGjbVlaadsfaaiaawUfacaGLDbaacaaISaGa aGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI0aGaaiOlaiaaisdaca GGPaaaaa@6A45@

with β ^ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWHYoGbaKaadaqadaqaaiaadshaai aawIcacaGLPaaaaaa@353C@ given in (3.5) and the weights w ˜ i d ind = ( j U d X j ) ( i s d i X i X i ) 1 i s d i X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG3bGbaGaadaqhaaWcbaGaamyAai aadsgaaeaacaqGPbGaaeOBaiaabsgaaaGccaaI9aWaaeWaaeaadaae qaqabSqaaiaadQgacqGHiiIZcaWGvbWaaSbaaWqaaiaadsgaaeqaaa WcbeqdcqGHris5aOGaaGPaVlaahIfadaqhaaWcbaGaamOAaaqaaKqz GfGamai2gkdiIcaaaOGaayjkaiaawMcaamaabmaabaWaaabeaeqale aacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoakiaaykW7caWGKbWa aSbaaSqaaiaadMgaaeqaaOGaaCiwamaaBaaaleaacaWGPbaabeaaki aahIfadaqhaaWcbaGaamyAaaqaaKqzGfGamai2gkdiIcaaaOGaayjk aiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaaqababeWcba GaamyAaiabgIGiolaadohaaeqaniabggHiLdGccaaMc8Uaamizamaa BaaaleaacaWGPbaabeaakiaahIfadaWgaaWcbaGaamyAaaqabaaaaa@6633@ are not dependant on time t , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bGaaiilaaaa@3315@ unlike w i d blu . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG3bWaa0baaSqaaiaadMgacaWGKb aabaGaaeOyaiaabYgacaqG1baaaOGaaGzaVlaai6caaaa@3984@ Thus, the estimators proposed in this section have the benefit of being able to be used for unsampled domains.

4.2  Unit-level linear mixed models for functional data

The unit-level linear mixed models proposed by Battese, Harter and Fuller (1988) are very useful in estimating total actual variables for domains. As we will see later in more detail, they can translate both the effect of auxiliary information on the interest variable (by fixed effects), and the specifics of the domains (by random effects).

In this section, we thus attempt to adapt those models to the context of functional data. To that end, we will project curves in a space of defined dimensions and in that way, transform our functional problem into several problems in estimating total or mean real uncorrelated variables for small domains, which we will then resolve using the usual methods. The use of projection bases thus makes it possible to preserve the temporal correlation structure of our data while arriving at several unrelated subproblems in estimating real variables, which we treat independently using the usual methods.

4.2.1  Estimation of curves using unit-level linear mixed models applied to PCA scores

Like PCA in finite dimensions, functional PCA is a dimension-reduction method that makes it possible to summarize information contained in a data set. It was proposed by Deville (1974), its theoretical properties were studied in Dauxois, Pousse and Romain (1982) or Hall, Mülller and Wang (2006) and, finally, it was adapted to surveys by Cardot et al. (2010).

More formally, the curves Y i = ( Y i ( t ) ) t [ 0, T ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaabmaabaGaamywamaaBaaaleaacaWGPbaabeaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaamaaBaaaleaaca WG0bGaaGPaVlabgIGiolaaykW7daWadaqaaiaaicdacaaISaGaaGjb VlaadsfaaiaawUfacaGLDbaaaeqaaaaa@45C9@ are functions of time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0baaaa@3265@ and we assume that they belong to L 2 [ 0, T ] , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGmbWaaWbaaSqabeaacaaIYaaaaO WaamWaaeaacaaIWaGaaGilaiaaysW7caWGubaacaGLBbGaayzxaaGa aGilaaaa@39AE@ the space of square-integrable functions in the interval [ 0, T ] . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWadaqaaiaaicdacaaISaGaaGjbVl aadsfaaiaawUfacaGLDbaacaaIUaaaaa@37EC@ That space is equipped with the usual scalar product < f , g > = 0 T f ( t ) g ( t ) d t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaaI8aGaamOzaiaaiYcacaaMe8Uaam 4zaiaai6dacaaI9aWaa8qmaeqaleaacaaIWaaabaGaamivaaqdcqGH RiI8aOGaamOzamaabmaabaGaamiDaaGaayjkaiaawMcaaiaadEgada qadaqaaiaadshaaiaawIcacaGLPaaacaWGKbGaamiDaaaa@445F@ and the standard f = ( 0 T f 2 ( t ) d t ) 1 / 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqbdaqaaiaaykW7caWGMbGaaGPaVd GaayzcSlaawQa7aiaai2dadaqadaqaamaapedabeWcbaGaaGimaaqa aiaadsfaa0Gaey4kIipakiaadAgadaahaaWcbeqaaiaaikdaaaGcca GGOaGaamiDaiaacMcacaWGKbGaamiDaaGaayjkaiaawMcaamaaCaaa leqabaWaaSGbaeaacaaIXaaabaGaaGOmaaaaaaGccaaMb8UaaGOlaa aa@48C2@ The variance covariance function v ( s , t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaaeWaaeaacaWGZbGaaGilai aaysW7caWG0baacaGLOaGaayzkaaaaaa@3824@ defined by:

v ( s , t ) = 1 N i = 1 N ( Y i ( s ) μ ( s ) ) ( Y i ( t ) μ ( t ) ) , s , t [ 0, T ] , ( 4.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaaeWaaeaacaWGZbGaaGilai aaysW7caWG0baacaGLOaGaayzkaaGaaGypamaalaaabaGaaGymaaqa aiaad6eaaaWaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGob aaniabggHiLdGccaaMc8+aaeWaaeaacaWGzbWaaSbaaSqaaiaadMga aeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyOeI0IaeqiVd0 2aaeWaaeaacaWGZbaacaGLOaGaayzkaaaacaGLOaGaayzkaaWaaeWa aeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacaWG0baaca GLOaGaayzkaaGaeyOeI0IaeqiVd02aaeWaaeaacaWG0baacaGLOaGa ayzkaaaacaGLOaGaayzkaaGaaGilaiaaywW7caWGZbGaaGilaiaays W7caWG0bGaeyicI48aamWaaeaacaaIWaGaaGilaiaaysW7caWGubaa caGLBbGaayzxaaGaaGilaiaaywW7caaMf8UaaGzbVlaaywW7caGGOa GaaGinaiaac6cacaaI1aGaaiykaaaa@703F@

with μ = i = 1 N Y i / N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH8oqBcaaI9aWaaSGbaeaadaaeWa qabSqaaiaadMgacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakiaa ykW7caWGzbWaaSbaaSqaaiaadMgaaeqaaaGcbaGaamOtaaaaaaa@3DAF@ the mean curve of Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbaaaa@324A@ on the population U . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbGaaGOlaaaa@32FE@

Let ( λ k ) k = 1 N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiabeU7aSnaaBaaaleaaca WGRbaabeaaaOGaayjkaiaawMcaamaaDaaaleaacaWGRbGaaGPaVlaa i2dacaaMc8UaaGymaaqaaiaad6eaaaaaaa@3C57@ the eigen values of v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2baaaa@3267@ with λ 1 λ 2 λ N 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH7oaBdaWgaaWcbaGaaGymaaqaba GccqGHLjYScqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqWIMaYscqGH LjYScqaH7oaBdaWgaaWcbaGaamOtaaqabaGccqGHLjYScaaIWaaaaa@40A2@ and ( ξ k ) k = 1 N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiabe67a4naaBaaaleaaca WGRbaabeaaaOGaayjkaiaawMcaamaaDaaaleaacaWGRbGaaGPaVlaa i2dacaaMc8UaaGymaaqaaiaad6eaaaaaaa@3C66@ the related orthonormal eigen vectors, v ( s , t ) = k = 1 N λ k ξ k ( s ) ξ k ( t ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaaeWaaeaacaWGZbGaaGilai aaysW7caWG0baacaGLOaGaayzkaaGaaGypamaaqadabeWcbaGaam4A aiaai2dacaaIXaaabaGaamOtaaqdcqGHris5aOGaaGPaVlabeU7aSn aaBaaaleaacaWGRbaabeaakiabe67a4naaBaaaleaacaWGRbaabeaa kmaabmaabaGaam4CaaGaayjkaiaawMcaaiabe67a4naaBaaaleaaca WGRbaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiaai6caaaa@4E2F@

The best approximation of Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbaaaa@324A@ in a dimensional space K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGlbaaaa@323C@ smaller than N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGobaaaa@323F@ is given by the projection of Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbaaaa@324A@ in the space created by the first eigen vectors ξ k , k = 1, , q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH+oaEdaWgaaWcbaGaam4Aaaqaba GccaaISaGaaGjbVlaadUgacaaI9aGaaGymaiaaiYcacaaMe8UaeSOj GSKaaGilaiaaysW7caWGXbaaaa@3FA8@ (Ramsay and Silverman, 2005):

Y i ( t ) = μ ( t ) + k = 1 K f i k ξ k ( t ) + R i ( t ) , i U , t [ 0, T ] , ( 4.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGypaiabeY7aTnaabmaa baGaamiDaaGaayjkaiaawMcaaiabgUcaRmaaqahabeWcbaGaam4Aai aai2dacaaIXaaabaGaam4saaqdcqGHris5aOGaaGPaVlaadAgadaWg aaWcbaGaamyAaiaadUgaaeqaaOGaeqOVdG3aaSbaaSqaaiaadUgaae qaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaey4kaSIaamOuamaa BaaaleaacaWGPbaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaai aaiYcacaaMf8UaamyAaiabgIGiolaadwfacaaISaGaaGzbVlaadsha cqGHiiIZdaWadaqaaiaaicdacaaISaGaaGjbVlaadsfaaiaawUfaca GLDbaacaaISaGaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI0aGa aiOlaiaaiAdacaGGPaaaaa@6B43@

where f i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGMbWaaSbaaSqaaiaadMgacaWGRb aabeaaaaa@3461@ is the projection (or score) of Y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaa aa@3364@ on the component ξ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH+oaEdaWgaaWcbaGaam4Aaaqaba aaaa@344B@ and R i ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGsbWaaSbaaSqaaiaadMgaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaiilaaaa@3699@ the rest representing the difference between curve i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbaaaa@325A@ and its projection. The score f i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGMbWaaSbaaSqaaiaadMgacaWGRb aabeaaaaa@3461@ is independent of the domain and can be calculated as the scalar product between ξ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH+oaEdaWgaaWcbaGaam4Aaaqaba aaaa@344B@ and Y i μ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaO GaeyOeI0IaeqiVd0MaaGilaaaa@36C7@ f i k = < Y i μ , ξ k > = 0 T ( Y i μ ) ( t ) ξ k ( t ) d t . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGMbWaaSbaaSqaaiaadMgacaWGRb aabeaakiaai2dacaaI8aGaamywamaaBaaaleaacaWGPbaabeaakiab gkHiTiabeY7aTjaaiYcacaaMe8UaeqOVdG3aaSbaaSqaaiaadUgaae qaaOGaaGOpaiaai2dadaWdXaqabSqaaiaaicdaaeaacaWGubaaniab gUIiYdGcdaqadaqaaiaadMfadaWgaaWcbaGaamyAaaqabaGccqGHsi slcqaH8oqBaiaawIcacaGLPaaadaqadaqaaiaadshaaiaawIcacaGL PaaacqaH+oaEdaWgaaWcbaGaam4AaaqabaGcdaqadaqaaiaadshaai aawIcacaGLPaaacaWGKbGaamiDaiaai6caaaa@55D4@ The decomposition given in (4.6) is also known as Karhunen-Loève.

Using (4.6), the mean μ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH8oqBdaWgaaWcbaGaamizaaqaba aaaa@3437@ on the domain d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbaaaa@3255@ can be approximated by

μ d ( t ) μ ( t ) + k = 1 K ( 1 N d i U d f i k ) ξ k ( t ) , d = 1, , D , t [ 0, T ] . ( 4.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH8oqBdaWgaaWcbaGaamizaaqaba GcdaqadaqaaiaadshaaiaawIcacaGLPaaarqqr1ngBPrgifHhDYfga iqaacqWFdjYocqaH8oqBdaqadaqaaiaadshaaiaawIcacaGLPaaacq GHRaWkdaaeWbqabSqaaiaadUgacaaI9aGaaGymaaqaaiaadUeaa0Ga eyyeIuoakmaabmaabaWaaSaaaeaacaaIXaaabaGaamOtamaaBaaale aacaWGKbaabeaaaaGcdaaeqbqabSqaaiaadMgacqGHiiIZcaWGvbWa aSbaaWqaaiaadsgaaeqaaaWcbeqdcqGHris5aOGaaGPaVlaadAgada WgaaWcbaGaamyAaiaadUgaaeqaaaGccaGLOaGaayzkaaGaeqOVdG3a aSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaa GaaGilaiaaywW7caWGKbGaaGypaiaaigdacaaISaGaaGjbVlablAci ljaaiYcacaaMe8UaamiraiaaiYcacaaMf8UaamiDaiabgIGiopaadm aabaGaaGimaiaaiYcacaaMe8UaamivaaGaay5waiaaw2faaiaai6ca caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaisdacaGGUaGaaG4nai aacMcaaaa@7C24@

The unknown mean μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH8oqBaaa@3322@ is estimated using the Horvitz-Thompson estimator

μ ^ ( t ) = 1 N i s d i Y i ( t ) , t [ 0, T ] ( 4.8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaabmaabaGaamiDaa GaayjkaiaawMcaaiaai2dadaWcaaqaaiaaigdaaeaacaWGobaaamaa qafabeWcbaGaamyAaiabgIGiolaadohaaeqaniabggHiLdGccaaMc8 UaamizamaaBaaaleaacaWGPbaabeaakiaadMfadaWgaaWcbaGaamyA aaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacaaISaGaaGzbVl aadshacqGHiiIZdaWadaqaaiaaicdacaaISaGaaGjbVlaadsfaaiaa wUfacaGLDbaacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcaca aI0aGaaiOlaiaaiIdacaGGPaaaaa@5BA6@

and the ξ k , k = 1, , K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH+oaEdaWgaaWcbaGaam4Aaaqaba GccaaISaGaaGjbVlaadUgacaaI9aGaaGymaiaaiYcacaaMe8UaeSOj GSKaaGilaiaaysW7caWGlbaaaa@3F82@ are estimated by ξ ^ k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH+oaEgaqcamaaBaaaleaacaWGRb aabeaakiaaiYcaaaa@351B@ the eigen vectors in the estimated variance-covariance function v ^ ( s , t ) = i s d i ( Y i ( s ) μ ^ ( s ) ) ( Y i ( t ) μ ^ ( t ) ) / N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG2bGbaKaadaqadaqaaiaadohaca aISaGaaGjbVlaadshaaiaawIcacaGLPaaacaaI9aWaaSGbaeaadaae qaqabSqaaiaadMgacqGHiiIZcaWGZbaabeqdcqGHris5aOGaaGPaVl aadsgadaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiaadMfadaWgaaWc baGaamyAaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaacqGHsi slcuaH8oqBgaqcamaabmaabaGaam4CaaGaayjkaiaawMcaaaGaayjk aiaawMcaamaabmaabaGaamywamaaBaaaleaacaWGPbaabeaakmaabm aabaGaamiDaaGaayjkaiaawMcaaiabgkHiTiqbeY7aTzaajaWaaeWa aeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaamOtaa aaaaa@5956@ (Cardot et al., 2010).

Thus, to estimate μ d , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH8oqBdaWgaaWcbaGaamizaaqaba GccaaISaaaaa@34F7@ we must estimate the mean scores on the principal components for the domain d , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbGaaGilaaaa@330B@ i.e., f ¯ d k = i U d f i k / N d . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqdaaqaaiaadAgaaaWaaSbaaSqaai aadsgacaWGRbaabeaakiaai2dadaWcgaqaamaaqababeWcbaGaamyA aiabgIGiolaadwfadaWgaaadbaGaamizaaqabaaaleqaniabggHiLd GccaaMc8UaamOzamaaBaaaleaacaWGPbGaam4AaaqabaaakeaacaWG obWaaSbaaSqaaiaadsgaaeqaaaaakiaaygW7caaIUaaaaa@446D@ To that end, for each component f i k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGMbWaaSbaaSqaaiaadMgacaWGRb aabeaakiaaygW7caaISaaaaa@36AB@ k = 1, , K , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8Uaam4saiaacYcaaaa@3B06@ we consider a unit-level linear mixed model, also known as a nested error regression model (Battese et al., 1988):

f i k = β k X i + ν d k + ϵ i k , i U d , k = 1, , K , ( 4.9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGMbWaaSbaaSqaaiaadMgacaWGRb aabeaakiaai2dacaWHYoWaa0baaSqaaiaadUgaaeaajugybiadaITH YaIOaaGccaWHybWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaeqyVd4 2aaSbaaSqaaiaadsgacaWGRbaabeaakiabgUcaRmrr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbaceaGae8x9di=aaSbaaSqaaiaadM gacaWGRbaabeaakiaaiYcacaaMf8UaamyAaiabgIGiolaadwfadaWg aaWcbaGaamizaaqabaGccaaISaGaaGzbVlaadUgacaaI9aGaaGymai aaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGlbGaaGilaiaaywW7 caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaisdacaGGUaGaaGyoai aacMcaaaa@6EC6@

with β k X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHYoWaa0baaSqaaiaadUgaaeaaju gybiadaITHYaIOaaGccaWHybWaaSbaaSqaaiaadMgaaeqaaaaa@397B@ the fixed effect of auxiliary information, ν d k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH9oGBdaWgaaWcbaGaamizaiaadU gaaeqaaaaa@3529@ the random effect of the domain d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbaaaa@3255@ and ϵ i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=v=aYpaaBaaaleaacaWGPbGaam4Aaaqabaaa aa@3F6E@ the residual of unit i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaaiOlaaaa@330C@ We assume that the random effects of the domains are independent and follow a common law of means of 0 and of variance of σ ν k 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHdpWCdaqhaaWcbaGaeqyVd4Maam 4AaaqaaiaaikdaaaGccaGGUaaaaa@377C@ The residuals are also independent, distributed based on a law of means of 0 and of variance of σ ϵ k 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHdpWCdaqhaaWcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWF1pG8caWGRbaabaGa aGOmaaaakiaai6caaaa@41C2@ In addition, the random effects and residuals are also assumed to be independent. The parameter β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHYoaaaa@32AA@ in the model can be estimated by β ˜ k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWHYoGbaGaadaWgaaWcbaGaam4Aaa qabaGccaaMb8UaaGilaaaa@361F@ the best linear unbiased estimator (BLUP) (Rao and Molina, 2015, Chapter 4.7) and the BLUP estimator f ¯ d k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqdaaqaaiaadAgaaaWaaSbaaSqaai aadsgacaWGRbaabeaaaaa@346D@ is thus expressed as a composite estimator (see Rao and Molina, 2015):

f ¯ ˜ d k = γ k ( f ¯ d k , s ( X ¯ d , s X ¯ d ) β ˜ k ) + ( 1 γ k ) X ¯ d β ˜ k , k = 1, , K ( 4.10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaaiaaqaamaanaaabaGaamOzaaaaai aawoWaamaaBaaaleaacaWGKbGaam4AaaqabaGccaaI9aGaeq4SdC2a aSbaaSqaaiaadUgaaeqaaOWaaeWaaeaadaqdaaqaaiaadAgaaaWaaS baaSqaaiaadsgacaWGRbGaaGzaVlaaiYcacaaMc8Uaam4CaaqabaGc cqGHsisldaqadaqaamaanaaabaGaaCiwaaaadaWgaaWcbaGaamizai aaygW7caaISaGaaGPaVlaadohaaeqaaOGaeyOeI0Yaa0aaaeaacaWH ybaaamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaamaaCaaale qabaGccWaGyBOmGikaaiqahk7agaacamaaBaaaleaacaWGRbaabeaa aOGaayjkaiaawMcaaiabgUcaRmaabmaabaGaaGymaiabgkHiTiabeo 7aNnaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaamaanaaabaGa aCiwaaaadaqhaaWcbaGaamizaaqaaKqzGfGamai2gkdiIcaakiqahk 7agaacamaaBaaaleaacaWGRbaabeaakiaaiYcacaaMf8Uaam4Aaiaa i2dacaaIXaGaaGilaiaaysW7cqWIMaYscaGGSaGaaGjbVlaadUeaca aMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaisdacaGGUaGaaGymaiaa icdacaGGPaaaaa@78A7@

with γ k = σ ν k 2 / ( σ ν k 2 + σ ϵ k 2 / n d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHZoWzdaWgaaWcbaGaam4Aaaqaba GccaaI9aWaaSGbaeaacqaHdpWCdaqhaaWcbaGaeqyVd4Maam4Aaaqa aiaaikdaaaaakeaadaqadaqaaiabeo8aZnaaDaaaleaacqaH9oGBca WGRbaabaGaaGOmaaaakiabgUcaRmaalyaabaGaeq4Wdm3aa0baaSqa amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaGae8x9di Vaam4AaaqaaiaaikdaaaaakeaacaWGUbWaaSbaaSqaaiaadsgaaeqa aaaaaOGaayjkaiaawMcaaaaaaaa@5403@ and X ¯ d , s = i s d X i / n d , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqdaaqaaiaahIfaaaWaaSbaaSqaai aadsgacaaMb8UaaGilaiaaykW7caWGZbaabeaakiaai2dadaWcgaqa amaaqababeWcbaGaamyAaiabgIGiolaadohadaWgaaadbaGaamizaa qabaaaleqaniabggHiLdGccaaMc8UaaCiwamaaBaaaleaacaWGPbaa beaaaOqaaiaad6gadaWgaaWcbaGaamizaaqabaaaaOGaaGzaVlaaiY caaaa@4778@ f ¯ d k , s = i s d f i k / n d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqdaaqaaiaadAgaaaWaaSbaaSqaai aadsgacaWGRbGaaGzaVlaaiYcacaaMc8Uaam4CaaqabaGccaaI9aWa aSGbaeaadaaeqaqabSqaaiaadMgacqGHiiIZcaWGZbWaaSbaaWqaai aadsgaaeqaaaWcbeqdcqGHris5aOGaaGPaVlaadAgadaWgaaWcbaGa amyAaiaadUgaaeqaaaGcbaGaamOBamaaBaaaleaacaWGKbaabeaaaa aaaa@4722@ the respective means of the vectors X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHybWaaSbaaSqaaiaadMgaaeqaaa aa@3367@ and the scores f ^ i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGMbGbaKaadaWgaaWcbaGaamyAai aadUgaaeqaaaaa@3471@ on s d . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaadsgaaeqaaO GaaiOlaaaa@3435@ Finally, the mean μ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH8oqBdaWgaaWcbaGaamizaaqaba aaaa@3437@ is estimated by

μ ^ d BHF ( t ) = μ ^ ( t ) + k = 1 K f ¯ ^ d k ξ ^ k ( t ) , t [ 0, T ] , ( 4.11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaaeOqaiaabIeacaqGgbaaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaaGypaiqbeY7aTzaajaWaaeWaaeaacaWG0baacaGLOaGaay zkaaGaey4kaSYaaabCaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWG lbaaniabggHiLdGccaaMc8+aaecaaeaadaqdaaqaaiaadAgaaaaaca GLcmaadaWgaaWcbaGaamizaiaadUgaaeqaaOGafqOVdGNbaKaadaWg aaWcbaGaam4AaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaca aISaGaaGzbVlaadshacqGHiiIZdaWadaqaaiaaicdacaaISaGaaGjb VlaadsfaaiaawUfacaGLDbaacaaISaGaaGzbVlaaywW7caaMf8UaaG zbVlaaywW7caGGOaGaaGinaiaac6cacaaIXaGaaGymaiaacMcaaaa@66C3@

with μ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcaaaa@3332@ and ξ ^ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH+oaEgaqcamaaBaaaleaacaWGRb aabeaaaaa@345B@ the estimates of μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH8oqBaaa@3322@ and k th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbWaaWbaaSqabeaacaqGLbaaaa aa@3371@ principal component ξ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH+oaEdaWgaaWcbaGaam4Aaaqaba aaaa@344B@ given previously.

The variances σ ν k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHdpWCdaqhaaWcbaGaeqyVd4Maam 4Aaaqaaiaaikdaaaaaaa@36C0@ and σ ϵ k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHdpWCdaqhaaWcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWF1pG8caWGRbaabaGa aGOmaaaaaaa@4100@ for k = 1, , K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaacYcacaaMe8Uaam4saaaa@3A50@ are unknown and are estimated by σ ^ ν k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaHdpWCgaqcamaaDaaaleaacqaH9o GBcaWGRbaabaGaaGOmaaaaaaa@36D0@ and σ ^ ϵ k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaHdpWCgaqcamaaDaaaleaatuuDJX wAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=v=aYlaadUga aeaacaaIYaaaaaaa@4110@ obtained, for example, by restricted maximum likelihood (Rao and Molina, 2015). The estimator for f ¯ d k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqdaaqaaiaadAgaaaWaaSbaaSqaai aadsgacaWGRbaabeaaaaa@346D@ is obtained by replacing γ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHZoWzdaWgaaWcbaGaam4Aaaqaba aaaa@342F@ in (4.10) with γ ^ k = σ ^ ν k 2 / ( σ ^ ν k 2 + σ ^ ϵ k 2 / n d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaHZoWzgaqcamaaBaaaleaacaWGRb aabeaakiaai2dadaWcgaqaaiqbeo8aZzaajaWaa0baaSqaaiabe27a UjaadUgaaeaacaaIYaaaaaGcbaWaaeWaaeaacuaHdpWCgaqcamaaDa aaleaacqaH9oGBcaWGRbaabaGaaGOmaaaakiabgUcaRmaalyaabaGa fq4WdmNbaKaadaqhaaWcbaWefv3ySLgznfgDOfdaryqr1ngBPrginf gDObYtUvgaiqaacqWF1pG8caWGRbaabaGaaGOmaaaaaOqaaiaad6ga daWgaaWcbaGaamizaaqabaaaaaGccaGLOaGaayzkaaaaaaaa@5443@ and is known as empirical best linear unbiased prediction (EBLUP). Nonetheless, the calculation of the variance function (based on the model) of μ ^ d BHF ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaaeOqaiaabIeacaqGgbaaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaaaaa@392D@ is more complicated in this case because of the estimators ξ ^ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH+oaEgaqcamaaBaaaleaacaWGRb aabeaaaaa@345B@ of the principal components ξ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH+oaEdaWgaaWcbaGaam4Aaaqaba aaaa@344B@ and will be examined elsewhere.

We note that a simpler model, without the random effects, could have been considered for the scores  f i k : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGMbWaaSbaaSqaaiaadMgacaWGRb aabeaakiaaykW7caaI6aaaaa@36BA@

f i k = β k X i + ϵ i k , i U , k = 1, , K , ( 4.12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGMbWaaSbaaSqaaiaadMgacaWGRb aabeaakiaai2dacaWHYoWaa0baaSqaaiaadUgaaeaajugybiadaITH YaIOaaGccaWHybWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWF1pG8daWgaaWc baGaamyAaiaadUgaaeqaaOGaaGilaiaaywW7caWGPbGaeyicI4Saam yvaiaaiYcacaaMf8Uaam4Aaiaai2dacaaIXaGaaGilaiaaysW7cqWI MaYscaaISaGaaGjbVlaadUeacaaISaGaaGzbVlaaywW7caaMf8UaaG zbVlaaywW7caGGOaGaaGinaiaac6cacaaIXaGaaGOmaiaacMcaaaa@69B2@

with ϵ i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=v=aYpaaBaaaleaacaWGPbGaam4Aaaqabaaa aa@3F6E@ a null mean residual σ k 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHdpWCdaqhaaWcbaGaam4Aaaqaai aaikdaaaGccaGGUaaaaa@35C4@ In this case, the parameter β k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHYoWaaSbaaSqaaiaadUgaaeqaaa aa@33C6@ is estimated by β ^ k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWHYoGbaKaadaWgaaWcbaGaam4Aaa qabaGccaaISaaaaa@3496@ the BLUP estimator and the mean score on the domain d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbaaaa@3255@ by f ¯ ^ d k = β ^ k X ¯ d , k = 1, , K . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaamaanaaabaGaamOzaaaaai aawkWaamaaBaaaleaacaWGKbGaam4AaaqabaGccaaI9aGabCOSdyaa jaWaa0baaSqaaiaadUgaaeaajugybiadaITHYaIOaaGcdaqdaaqaai aahIfaaaWaaSbaaSqaaiaadsgaaeqaaOGaaGilaiaaysW7caWGRbGa aGypaiaaigdacaaISaGaaGjbVlablAciljaacYcacaaMe8Uaam4sai aai6caaaa@4A14@

If the rate of n d / N d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaad6gadaWgaaWcbaGaam izaaqabaaakeaacaWGobWaaSbaaSqaaiaadsgaaeqaaaaaaaa@357C@ is not insignificant, then μ ^ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaBaaaleaacaWGKb aabeaaaaa@3447@ is obtained using the procedure described in Section 4.1.

Note 1: Here, the PCA is not used as a dimension-reduction method, but to decompose our problem into several unrelated subproblems in the estimation of total real variables, which we know how to resolve. We thus keep a number K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGlbaaaa@323C@ of principle components as high as possible, i.e., equal to the minimum number of instants of discretization and the number of individuals in the sample.

Note 2: When certain explanatory variables in vector X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHybWaaSbaaSqaaiaadMgaaeqaaa aa@3367@ are categorical, our method, defined in the case of real variables, must be adapted: to that end, we propose transforming each categorical variable into a series of one hot encoding indicators 0 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaaIWaGaeyOeI0IaaGymaiaac6caaa a@3480@ As well, when the number of explanatory variables p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbaaaa@3261@ is large, it may also be relevant to introduce penalties, RIDGE-style for example, in the regression problem.

Note 3: Other projection bases can be considered, such as wavelets (see Mallat, 1999), as they are particularly suited to irregular curves. Finally, another solution would be to apply the functional linear mixed models for curve values to the instants of discretization; however, that method would not allow for consideration of temporal correlations in the problem, unlike the previous ones.

4.2.2  Estimating variance by parametric bootstrap

To estimate the accuracy (variance based on the model) of mean curve estimators, we propose declining the parametric bootstrap method proposed by González-Manteiga, Lombarda, Molina, Morales and Santamara (2008) and then reiterated by Molina and Rao (2010). This is a replicate method that consists of generating a large number B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGcbaaaa@3233@ of replicates s * ( b ) , b = 1, , B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaWbaaSqabeaacaGGQaWaae WaaeaacaWGIbaacaGLOaGaayzkaaaaaOGaaGzaVlaaiYcacaaMe8Ua amOyaiaai2dacaaIXaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVl aadkeaaaa@425E@ of size n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbaaaa@325F@ by simple random sampling with replacement in s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbaaaa@3264@ and randomly generating the random and fixed effects in the estimated superpopulation model. Note R ^ i ( t ) = Y i ( t ) μ ^ ( t ) + k = 1 K f k , i ξ ^ k ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGsbGbaKaadaWgaaWcbaGaamyAaa qabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacaaI9aGaamywamaa BaaaleaacaWGPbaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaai abgkHiTiqbeY7aTzaajaWaaeWaaeaacaWG0baacaGLOaGaayzkaaGa ey4kaSYaaabmaeqaleaacaWGRbGaaGPaVlaai2dacaaMc8UaaGymaa qaaiaadUeaa0GaeyyeIuoakiaaykW7caWGMbWaaSbaaSqaaiaadUga caaMb8UaaGilaiaaykW7caWGPbaabeaakiqbe67a4zaajaWaaSbaaS qaaiaadUgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaaaa@5790@ the estimated projection residual for the unit i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaeyicI4Saam4Caaaa@34D6@ (see also the formula in (4.6)). For b = 1, , B , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGIbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamOqaiaaiYcaaaa@3AFA@ we proceed as follows for each t [ 0, T ] : MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bGaeyicI48aamWaaeaacaaIWa GaaGilaiaaysW7caWGubaacaGLBbGaayzxaaGaaGPaVlaacQdaaaa@3BF9@

  1. Generate the random bootstrap effects of each domain, for each principal component:

ν k , d * ( b ) N ( 0, σ ^ k , ν 2 ) , d = 1, , D , k = 1, , K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH9oGBdaqhaaWcbaGaam4Aaiaayg W7caaISaGaaGPaVlaadsgaaeaacaGGQaWaaeWaaeaacaWGIbaacaGL OaGaayzkaaaaaebbfv3ySLgzGueE0jxyaGabaOGae8hpIOZefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqGFneVtdaqadaqa aiaaicdacaaISaGaaGjbVlqbeo8aZzaajaWaa0baaSqaaiaadUgaca aMb8UaaGilaiaaykW7cqaH9oGBaeaacaaIYaaaaaGccaGLOaGaayzk aaGaaGilaiaaywW7caWGKbGaaGypaiaaigdacaaISaGaaGjbVlablA ciljaacYcacaaMe8UaamiraiaaiYcacaaMf8Uaam4Aaiaai2dacaaI XaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaadUeaaaa@7135@

  1. and, independent of those random effects, generate the individual bootstrap errors for each unit i = 1, , n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamOBaaaa@3A77@ and for each principal component:

ϵ k , i * ( b ) N ( 0, σ ^ k , ϵ 2 ) , i = 1, , n , k = 1, , K . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=v=aYpaaDaaaleaacaWGRbGaaGzaVlaaiYca caaMc8UaamyAaaqaaiaacQcadaqadaqaaiaadkgaaiaawIcacaGLPa aaaaqeeuuDJXwAKbsr4rNCHbacfaGccqGF8iIocqWFneVtdaqadaqa aiaaicdacaaISaGaaGjbVlqbeo8aZzaajaWaa0baaSqaaiaadUgaca aMb8UaaGilaiaaykW7cqWF1pG8aeaacaaIYaaaaaGccaGLOaGaayzk aaGaaGilaiaaywW7caWGPbGaaGypaiaaigdacaaISaGaaGjbVlablA ciljaaiYcacaaMe8UaamOBaiaaiYcacaaMf8Uaam4Aaiaai2dacaaI XaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaadUeacaaIUaaaaa@7395@

  1. Calculate the n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbaaaa@325F@ bootstrap replicates of the projection residuals R ^ i * ( b ) ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGsbGbaKaadaqhaaWcbaGaamyAaa qaaiaacQcadaqadaqaaiaadkgaaiaawIcacaGLPaaaaaGcdaqadaqa aiaadshaaiaawIcacaGLPaaacaaISaaaaa@39CE@ for i s * ( b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaeyicI4Saam4CamaaCaaale qabaGaaiOkamaabmaabaGaamOyaaGaayjkaiaawMcaaaaaaaa@3821@ (this means selection with replacement of n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbaaaa@325F@ projection residuals among the n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbaaaa@325F@ residuals R ^ i ( t ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGsbGbaKaadaWgaaWcbaGaamyAaa qabaGccaGGOaGaamiDaiaacMcacaGGPaGaaiOlaaaa@3728@
  2. Calculate the bootstrap replicates Y i * ( b ) ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaa0baaSqaaiaadMgaaeaaca GGQaWaaeWaaeaacaWGIbaacaGLOaGaayzkaaaaaOWaaeWaaeaacaWG 0baacaGLOaGaayzkaaaaaa@390F@ conditional to the explanatory variables X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHybWaaSbaaSqaaiaadMgaaeqaaa aa@3367@ using the estimated model:

Y i * ( b ) ( t ) = μ ^ ( t ) + k = 1 K ( X i β ^ k + ν k , d * ( b ) + ϵ k , i * ( b ) ) f k , i * ( b ) ξ ^ k ( t ) + R ^ i * ( b ) ( t ) , i s d * ( b ) = s * ( b ) s d . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaa0baaSqaaiaadMgaaeaaca GGQaWaaeWaaeaacaWGIbaacaGLOaGaayzkaaaaaOWaaeWaaeaacaWG 0baacaGLOaGaayzkaaGaaGypaiqbeY7aTzaajaWaaeWaaeaacaWG0b aacaGLOaGaayzkaaGaey4kaSYaaabCaeqaleaacaWGRbGaaGypaiaa igdaaeaacaWGlbaaniabggHiLdGcdaagaaqaamaabmaabaGaaCiwam aaDaaaleaacaWGPbaabaqcLbwacWaGyBOmGikaaOGafqOSdiMbaKaa daWgaaWcbaGaam4AaaqabaGccqGHRaWkcqaH9oGBdaqhaaWcbaGaam 4AaiaaygW7caaISaGaaGPaVlaadsgaaeaacaGGQaWaaeWaaeaacaWG IbaacaGLOaGaayzkaaaaaOGaey4kaSYefv3ySLgznfgDOfdaryqr1n gBPrginfgDObYtUvgaiqaacqWF1pG8daqhaaWcbaGaam4AaiaaygW7 caaISaGaaGPaVlaadMgaaeaacaGGQaWaaeWaaeaacaWGIbaacaGLOa GaayzkaaaaaaGccaGLOaGaayzkaaaaleaacaWGMbWaa0baaeaacaWG RbGaaGzaVlaaiYcacaaMc8UaamyAaaqaaiaacQcadaqadaqaaiaadk gaaiaawIcacaGLPaaaaaaacaGL44pakiqbe67a4zaajaWaaSbaaSqa aiaadUgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaey4kaS IabmOuayaajaWaa0baaSqaaiaadMgaaeaacaGGQaWaaeWaaeaacaWG IbaacaGLOaGaayzkaaaaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaa GaaGilaiaaywW7cqGHaiIicaWGPbGaeyicI4Saam4CamaaDaaaleaa caWGKbaabaGaaiOkamaabmaabaGaamOyaaGaayjkaiaawMcaaaaaki aai2dacaWGZbWaaWbaaSqabeaacaGGQaWaaeWaaeaacaWGIbaacaGL OaGaayzkaaaaaOGaeyykICSaam4CamaaBaaaleaacaWGKbaabeaaki aai6caaaa@9E28@

  1. We see that f k , i * ( b ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGMbWaa0baaSqaaiaadUgacaaMb8 UaaGilaiaaykW7caWGPbaabaGaaiOkamaabmaabaGaamOyaaGaayjk aiaawMcaaaaakiaaygW7caGGSaaaaa@3D8F@ the simulated score for the unit i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaaiilaaaa@330A@ is obtained using the same
  1. For each domain d , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbGaaiilaaaa@3305@ calculate the bootstrap replicate μ ^ d * ( b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaaiOkamaabmaabaGaamOyaaGaayjkaiaawMcaaaaaaaa@3766@ on the replicate s * ( b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaWbaaSqabeaacaGGQaWaae WaaeaacaWGIbaacaGLOaGaayzkaaaaaaaa@35AF@ by declining the entire process: PCA and estimation of linear mixed models on principal components by means of EBLUP.
  2. Estimate the estimator’s variance μ ^ d ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaBaaaleaacaWGKb aabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaaaa@36D3@ by the empirical variance of the B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGcbaaaa@3232@ replicates μ ^ d * ( b ) : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaaiOkamaabmaabaGaamOyaaGaayjkaiaawMcaaaaakiaayIW7 caaI6aaaaa@39C5@

V ^ ( μ ^ d ( t ) ) = 1 B 1 b = 1 B ( μ ^ d * ( b ) ( t ) 1 B b = 1 B μ ^ d * ( b ) ( t ) ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGwbGbaKaadaqadaqaaiqbeY7aTz aajaWaaSbaaSqaaiaadsgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaaacaGLOaGaayzkaaGaaGypamaalaaabaGaaGymaaqaaiaadk eacqGHsislcaaIXaaaamaaqahabeWcbaGaamOyaiaai2dacaaIXaaa baGaamOqaaqdcqGHris5aOGaaGPaVpaabmaabaGafqiVd0MbaKaada qhaaWcbaGaamizaaqaaiaacQcadaqadaqaaiaadkgaaiaawIcacaGL PaaaaaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacqGHsisldaWcaa qaaiaaigdaaeaacaWGcbaaamaaqahabeWcbaGaamOyaiaai2dacaaI XaaabaGaamOqaaqdcqGHris5aOGaaGPaVlqbeY7aTzaajaWaa0baaS qaaiaadsgaaeaacaGGQaWaaeWaaeaacaWGIbaacaGLOaGaayzkaaaa aOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaOGaaGzaVlaai6caaaa@63A0@

This approach will also be the one used to approximate the variance of the functional linear regression (omitting step 1 of generating random effects ν k , d * ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH9oGBdaqhaaWcbaGaam4Aaiaayg W7caaISaGaaGPaVlaadsgaaeaacaGGQaaaaOGaaGzaVlaacMcacaGG Uaaaaa@3C96@

4.3  Non-parametric estimation using regression trees and random forests for small curve domains

In this section, to obtain individual predictions Y ^ i ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGzbGbaKaadaWgaaWcbaGaamyAaa qabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacaGGSaaaaa@36B0@ we use non-parametric models, regression trees adapted to functional data, and random forests, which no longer require a linear form in the relation between auxiliary information and interest variable and allow more flexibility in modelling. In fact, regression trees for functional data are frequently used at EDF and are known to give satisfactory results on electricity consumption curves. As well, in literature, regression trees have been adapted to surveys by Toth and Eltinge (2011), but not for estimating totals in small domains.

In this section and the next section, we are therefore seeking to estimate a specific case of the general model (4.1) in which the function f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGMbaaaa@3257@ does not depend on the domain of the unit i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaaiilaaaa@330A@

Y i ( t ) = f ( X i , t ) + ϵ i ( t ) i U , t [ 0, T ] . ( 4.13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGypaiaadAgadaqadaqa aiaadIfadaWgaaWcbaGaamyAaaqabaGccaaISaGaaGjbVlaadshaai aawIcacaGLPaaacqGHRaWktuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGabaiab=v=aYpaaBaaaleaacaWGPbaabeaakmaabmaaba GaamiDaaGaayjkaiaawMcaaiaaywW7cqGHaiIicaWGPbGaeyicI4Sa amyvaiaaiYcacaaMf8UaamiDaiabgIGiopaadmaabaGaaGimaiaaiY cacaaMe8UaamivaaGaay5waiaaw2faaiaai6cacaaMf8UaaGzbVlaa ywW7caaMf8UaaGzbVlaacIcacaaI0aGaaiOlaiaaigdacaaIZaGaai ykaaaa@6BD9@

4.3.1  Regression trees for functional data

The classification and regression tree (CART) proposed by Breiman, Friedman, Stone and Olshen (1984) is a very popular non-parametric statistical technique. Its goal is to predict the value of a real or categorical target variable Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbaaaa@324A@ based on a vector of real or categorical explanatory variables X = ( X 1 , , X j , , X p ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHybGaaGypamaabmaabaGaamiwam aaBaaaleaacaaIXaaabeaakiaaiYcacaaMe8UaeSOjGSKaaGilaiaa ysW7caWGybWaaSbaaSqaaiaadQgaaeqaaOGaaGilaiaaysW7cqWIMa YscaGGSaGaaGjbVlaadIfadaWgaaWcbaGaamiCaaqabaaakiaawIca caGLPaaacaGGUaaaaa@4671@ To that end, we determine a partitioning of the space of X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHybaaaa@324D@ by repeatedly splitting the data set in two, using the decision rule (split criteria) involving a single explanatory variable. Thus, our sample s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbaaaa@3264@ is the first node λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH7oaBaaa@3320@ in a tree (its “root”) that we seek to subdivide into two separate nodes λ l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH7oaBdaWgaaWcbaGaamiBaaqaba aaaa@343D@ and λ r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH7oaBdaWgaaWcbaGaamOCaaqaba aaaa@3443@ such that the values of the real target variable Y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaa aa@3364@ are as homogenous as possible in each node. The inertia criterion κ ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH6oWAdaqadaqaaiabeU7aSbGaay jkaiaawMcaaaaa@365B@ used to quantify the homogeneity of a node is frequently the sum of the squares of residuals between the values of Y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaa aa@3364@ for units i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbaaaa@325A@ in node λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH7oaBaaa@3320@ and the mean of those values in the node: κ ( λ ) = i λ ( Y i Y ¯ λ ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH6oWAdaqadaqaaiabeU7aSbGaay jkaiaawMcaaiaai2dadaaeqaqabSqaaiaadMgacqGHiiIZcqaH7oaB aeqaniabggHiLdGcdaqadaqaaiaadMfadaWgaaWcbaGaamyAaaqaba GccqGHsisldaqdaaqaaiaadMfaaaWaaSbaaSqaaiabeU7aSbqabaaa kiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaa@4570@ where Y ¯ λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqdaaqaaiaadMfaaaWaaSbaaSqaai abeU7aSbqabaaaaa@343B@ is the mean of Y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaa aa@3364@ in node λ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH7oaBcaGGUaaaaa@33D2@

For the variables X j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGybWaaSbaaSqaaiaadQgaaeqaaa aa@3364@ which are quantitative, the decision rules are expressed as

{ i λ l if X j i < c i λ r otherwise , ( 4.14 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaGabaqaauaabaqacmaaaeaacaWGPb GaeyicI4Saeq4UdW2aaSbaaSqaaiaadYgaaeqaaaGcbaGaaeyAaiaa bAgaaeaacaWGybWaaSbaaSqaaiaadQgacaWGPbaabeaakiaaiYdaca WGJbaabaGaamyAaiabgIGiolabeU7aSnaaBaaaleaacaWGYbaabeaa aOqaaiaab+gacaqG0bGaaeiAaiaabwgacaqGYbGaae4DaiaabMgaca qGZbGaaeyzaiaaiYcaaeaaaaaacaGL7baacaaMf8UaaGzbVlaaywW7 caaMf8UaaGzbVlaacIcacaaI0aGaaiOlaiaaigdacaaI0aGaaiykaa aa@58DD@

with c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGJbaaaa@3254@ a cut-off point to be optimized among all possible values of X j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGybWaaSbaaSqaaiaadQgaaeqaaO GaaiOlaaaa@3420@ For qualitative variables, they consist of dividing into two separate subsets of modalities. The search for the optimal split criterion is a matter of resolving the optimization problem

arg max λ l , λ r ( κ ( λ ) κ ( λ l ) κ ( λ r ) ) . ( 4.15 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWfqaqaaiaabggacaqGYbGaae4zai aaysW7caqGTbGaaeyyaiaabIhaaSqaaiabeU7aSnaaBaaameaacaWG SbaabeaaliaaygW7caaISaGaaGPaVlabeU7aSnaaBaaameaacaWGYb aabeaaaSqabaGccaaMe8+aaeWaaeaacqaH6oWAdaqadaqaaiabeU7a SbGaayjkaiaawMcaaiabgkHiTiabeQ7aRnaabmaabaGaeq4UdW2aaS baaSqaaiaadYgaaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaeqOUdS2a aeWaaeaacqaH7oaBdaWgaaWcbaGaamOCaaqabaaakiaawIcacaGLPa aaaiaawIcacaGLPaaacaaIUaGaaGzbVlaaywW7caaMf8UaaGzbVlaa ywW7caGGOaGaaGinaiaac6cacaaIXaGaaGynaiaacMcaaaa@652A@

Each of these nodes will then be subdivided in turn into two child nodes and the partitioning process continues until a minimal node size is obtained, until the value of the target variable is the same for all units of the node, or until a given maximum depth is attained. The final partition of the space is then made up of the final nodes in the tree, also called leaves. A summary of each of those leaves (often the mean for a quantitative target variable) then becomes the predicted variable for all units assigned to the leaf. The various parameters (minimum node size and depth) can be selected by cross-validation.

When the variable Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbaaaa@324A@ to be predicted is not a real variable, but a dimension vector m > 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGTbGaaGOpaiaaigdacaGGSaaaaa@3491@ the regression tree principle extends very naturally: the tree construction algorithm and the choice of cross-validation parameters remain unchanged, but the inertia criterion is modified. Thus, the minimization problem is still in the form of (4.15), but this time the criterion is in the form of κ ( λ ) = i λ Y i Y ¯ λ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH6oWAdaqadaqaaiabeU7aSbGaay jkaiaawMcaaiaai2dadaaeqaqabSqaaiaadMgacqGHiiIZcqaH7oaB aeqaniabggHiLdGcdaqbdaqaaiaaykW7caWGzbWaaSbaaSqaaiaadM gaaeqaaOGaeyOeI0Yaa0aaaeaacaWGzbaaamaaBaaaleaacqaH7oaB aeqaaOGaaGPaVdGaayzcSlaawQa7amaaCaaaleqabaGaaGOmaaaaaa a@4A24@ where MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqbdaqaaiaaykW7cqGHflY1caaMc8 oacaGLjWUaayPcSdaaaa@39F3@ is, for example, the Euclidean norm or the Mahalanobis distance norm. Multivariate regression trees were used, for example, by De’Ath (2002) in an ecological application.

Finally, when the variable to be predicted Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbaaaa@324A@ is a curve, the algorithm for construction of the tree and for choosing the parameters is the same, but this time a functional inertia criterion κ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH6oWAaaa@331E@ must be used. There are many possible choices. We chose to follow the “Courbotree” approach described in Stéphan and Cogordan (2009) and frequently used at EDF for building segmentations of data sets of electricity consumption curves based on explanatory variables. In that approach, we apply the method presented in the previous paragraph for multivariate Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbaaaa@324A@ on vectors Y i = ( Y i ( t 1 ) , , Y i ( t L ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHzbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaabmaabaGaamywamaaBaaaleaacaWGPbaabeaakmaabmaa baGaamiDamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaaiY cacaaMe8UaeSOjGSKaaGilaiaaysW7caWGzbWaaSbaaSqaaiaadMga aeqaaOWaaeWaaeaacaWG0bWaaSbaaSqaaiaadYeaaeqaaaGccaGLOa GaayzkaaaacaGLOaGaayzkaaaaaa@466A@ of curve values at the instants of discretization, with the Euclidian distance. The Euclidian distance on instants of discretization can thus be seen as an approximation of the norm L 2 [ 0, T ] . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGmbWaaWbaaSqabeaacaaIYaaaaO WaamWaaeaacaaIWaGaaGilaiaaysW7caWGubaacaGLBbGaayzxaaGa aiOlaaaa@39AA@ More formally, the functional criterion is thus expressed as

κ ( λ ) = i λ l = 1 L ( Y i ( t l ) Y ¯ λ ( t l ) ) 2 , ( 4.16 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH6oWAdaqadaqaaiabeU7aSbGaay jkaiaawMcaaiaai2dadaaeqbqabSqaaiaadMgacqGHiiIZcqaH7oaB aeqaniabggHiLdGcdaaeWbqabSqaaiaadYgacaaI9aGaaGymaaqaai aadYeaa0GaeyyeIuoakmaabmaabaGaamywamaaBaaaleaacaWGPbaa beaakmaabmaabaGaamiDamaaBaaaleaacaWGSbaabeaaaOGaayjkai aawMcaaiabgkHiTmaanaaabaGaamywaaaadaWgaaWcbaGaeq4UdWga beaakmaabmaabaGaamiDamaaBaaaleaacaWGSbaabeaaaOGaayjkai aawMcaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaaiYca caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI0aGaaiOlai aaigdacaaI2aGaaiykaaaa@5F5C@

with Y ¯ λ ( t l ) = i λ Y i ( t l ) / n λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqdaaqaaiaadMfaaaWaaSbaaSqaai abeU7aSbqabaGcdaqadaqaaiaadshadaWgaaWcbaGaamiBaaqabaaa kiaawIcacaGLPaaacaaI9aWaaSGbaeaadaaeqaqabSqaaiaadMgacq GHiiIZcqaH7oaBaeqaniabggHiLdGccaaMc8UaamywamaaBaaaleaa caWGPbaabeaakmaabmaabaGaamiDamaaBaaaleaacaWGSbaabeaaaO GaayjkaiaawMcaaaqaaiaad6gadaWgaaWcbaGaeq4UdWgabeaaaaaa aa@48E8@ where n λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiabeU7aSbqaba aaaa@343F@ is the number of units in the sample that belong to the node λ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH7oaBcaGGUaaaaa@33D2@

In practice, when working on electricity consumption data, the curves considered are at extremely similar levels, and the Courbotree algorithm based on the Euclidian distance may not work well when applied to raw data. Often, the Courbotree algorithm is therefore only used on the curve forms, i.e., the normalized curves Y ˜ i ( t ) = Y i ( t ) / Y ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGzbGbaGaadaWgaaWcbaGaamyAaa qabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacaaI9aWaaSGbaeaa caWGzbWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacaWG0baacaGLOa GaayzkaaaabaWaa0aaaeaacaWGzbaaamaaBaaaleaacaWGPbaabeaa aaaaaa@3D69@ where Y ¯ i = l = 1 L Y i ( t l ) / L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqdaaqaaiaadMfaaaWaaSbaaSqaai aadMgaaeqaaOGaaGypamaalyaabaWaaabmaeqaleaacqWItecBcaaI 9aGaaGymaaqaaiaadYeaa0GaeyyeIuoakiaaykW7caWGzbWaaSbaaS qaaiaadMgaaeqaaOWaaeWaaeaacaWG0bWaaSbaaSqaaiabloriSbqa baaakiaawIcacaGLPaaaaeaacaWGmbaaaaaa@4234@ is the mean of Y i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaaaaa@35F0@ (or the level) on all measurement instants t 1 , , t L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaadshadaWgaaWcbaGa amitaaqabaaaaa@3AF4@ (method also known as normalized Courbotree). We then calculate the prediction Y ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqdaaqaaiaadMfaaaWaaSbaaSqaai aadMgaaeqaaaaa@3375@ using a linear regression and finally obtain the prediction of Y i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaaaaa@35F0@ by obtaining the product between the prediction of Y ˜ i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGzbGbaGaadaWgaaWcbaGaamyAaa qabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaaaa@35FF@ and that of Y ¯ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqdaaqaaiaadMfaaaWaaSbaaSqaai aadMgaaeqaaOGaaGOlaaaa@3437@

4.3.2  Variance estimation

To estimate the variance under the model of our estimators for mean curves by domain, we will follow a bootstrap approach very similar to the one proposed for parametric models. Here, our superpopulation model is expressed as

Y i ( t ) = f ( X i , t ) + ϵ i ( t ) , i U . ( 4.17 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGypaiaadAgadaqadaqa aiaahIfadaWgaaWcbaGaamyAaaqabaGccaaISaGaaGjbVlaadshaai aawIcacaGLPaaacqGHRaWktuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGabaiab=v=aYpaaBaaaleaacaWGPbaabeaakmaabmaaba GaamiDaaGaayjkaiaawMcaaiaaiYcacaaMf8UaeyiaIiIaamyAaiab gIGiolaadwfacaaIUaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7ca GGOaGaaGinaiaac6cacaaIXaGaaG4naiaacMcaaaa@620E@

Let f ^ ( X i , t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGMbGbaKaadaqadaqaaiaahIfada WgaaWcbaGaamyAaaqabaGccaaISaGaaGjbVlaadshaaiaawIcacaGL PaaacaaISaaaaa@39E7@ for all i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaeyicI4Saam4Caaaa@34D6@ the predicted value for the unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbaaaa@325A@ by regression tree, and ϵ ^ i ( t ) = Y i ( t ) f ^ ( X i , t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiqb=v=aYBaajaWaaSbaaSqaaiaadMgaaeqaaOWa aeWaaeaacaWG0baacaGLOaGaayzkaaGaaGypaiaadMfadaWgaaWcba GaamyAaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacqGHsisl ceWGMbGbaKaadaqadaqaaiaahIfadaWgaaWcbaGaamyAaaqabaGcca aISaGaaGjbVlaadshaaiaawIcacaGLPaaacaaISaaaaa@4FCD@ for all i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaeyicI4Saam4Caaaa@34D6@ the estimated residual for that unit. The idea of our accuracy approximation method is, as with linear mixed models, to generate a large number B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGcbaaaa@3233@ of replicates s * ( b ) , b = 1, , B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaWbaaSqabeaacaGGQaWaae WaaeaacaWGIbaacaGLOaGaayzkaaaaaOGaaGzaVlaaiYcacaaMe8Ua amOyaiaai2dacaaIXaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVl aadkeaaaa@425E@ of size n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbaaaa@325F@ by simple random sampling with replacement in s , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbGaaiilaaaa@3314@ and calculate the estimator of the mean curve by domain on each replicate and, finally, deduct the variance from the estimator by the variability between replicates. The bootstrap method used here is also known as residual bootstrap in linear model cases.

More specifically, for b = 1, , B , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGIbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamOqaiaaiYcaaaa@3AFA@ we proceed as follows for each t [ 0, T ] : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bGaeyicI48aamWaaeaacaaIWa GaaGilaiaaysW7caWGubaacaGLBbGaayzxaaGaaGPaVlaacQdaaaa@3BFA@

  1. Calculate the bootstrap replications of the estimated residuals ϵ ^ i * ( b ) ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiqb=v=aYBaajaWaa0baaSqaaiaadMgaaeaacaGG QaWaaeWaaeaacaWGIbaacaGLOaGaayzkaaaaaOWaaeWaaeaacaWG0b aacaGLOaGaayzkaaaaaa@4439@ for i s * ( b ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaeyicI4Saam4CamaaCaaale qabaGaaiOkamaabmaabaGaamOyaaGaayjkaiaawMcaaaaakiaaygW7 caGGUaaaaa@3A67@
  2. Calculate the bootstrap replications for Y i ( t ) : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaaSbaaSqaaiaadMgaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGPaVlaacQdaaaa@3839@

Y i * ( b ) ( t ) = f ^ ( X i , t ) + ϵ ^ i * ( b ) ( t ) , i s * ( b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGzbWaa0baaSqaaiaadMgaaeaaca GGQaWaaeWaaeaacaWGIbaacaGLOaGaayzkaaaaaOWaaeWaaeaacaWG 0baacaGLOaGaayzkaaGaaGypaiqadAgagaqcamaabmaabaGaaCiwam aaBaaaleaacaWGPbaabeaakiaaiYcacaaMe8UaamiDaaGaayjkaiaa wMcaaiabgUcaRmrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLb aceaGaf8x9diVbaKaadaqhaaWcbaGaamyAaaqaaiaacQcadaqadaqa aiaadkgaaiaawIcacaGLPaaaaaGcdaqadaqaaiaadshaaiaawIcaca GLPaaacaaISaGaaGzbVlabgcGiIiaadMgacqGHiiIZcaWGZbWaaWba aSqabeaacaGGQaWaaeWaaeaacaWGIbaacaGLOaGaayzkaaaaaaaa@5F12@

  1. and recalculate, for each domain d , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbGaaiilaaaa@3305@ the mean estimator μ ^ d * ( b ) ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaaiOkamaabmaabaGaamOyaaGaayjkaiaawMcaaaaakmaabmaa baGaamiDaaGaayjkaiaawMcaaaaa@39F2@ on this replicate.
  1. Estimate the variance by the empirical variance of the B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGcbaaaa@3233@ bootstrap replicates μ ^ d * ( b ) ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH8oqBgaqcamaaDaaaleaacaWGKb aabaGaaiOkamaabmaabaGaamOyaaGaayjkaiaawMcaaaaakmaabmaa baGaamiDaaGaayjkaiaawMcaaiaaiYcaaaa@3AA8@ V ^ ( μ ^ d ( t ) ) = 1 B 1 b = 1 B ( μ ^ d * ( b ) ( t ) 1 B b = 1 B μ ^ d * ( b ) ( t ) ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGwbGbaKaadaqadaqaaiqbeY7aTz aajaWaaSbaaSqaaiaadsgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaaacaGLOaGaayzkaaGaaGypamaaleaaleaacaaIXaaabaGaam OqaiabgkHiTiaaigdaaaGcdaaeWaqabSqaaiaadkgacaaI9aGaaGym aaqaaiaadkeaa0GaeyyeIuoakmaabmaabaGafqiVd0MbaKaadaqhaa WcbaGaamizaaqaaiaacQcadaqadaqaaiaadkgaaiaawIcacaGLPaaa aaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacqGHsisldaWcbaWcba GaaGymaaqaaiaadkeaaaGcdaaeWaqabSqaaiaadkgacaaI9aGaaGym aaqaaiaadkeaa0GaeyyeIuoakiaaykW7cuaH8oqBgaqcamaaDaaale aacaWGKbaabaGaaiOkamaabmaabaGaamOyaaGaayjkaiaawMcaaaaa kmaabmaabaGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaamaaCa aaleqabaGaaGOmaaaakiaaygW7caaIUaaaaa@61C2@

The process is identical if we estimate the function f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGMbaaaa@3257@ by random forests rather than regression trees.

4.4  Aggregation of predictions by random forests for curves

The literature often highlights the mediocre predictive performances of regression trees compared to other techniques such as SVMs (see, for example, Cristianini and Shawe-Taylor, 2000). Regression trees can be unstable and highly dependant on the sample on which they were built. To resolve that default, Breiman (2001) proposed the random forest algorithm. This is a set technique that, as its name suggests, consists of aggregating predictions resulting from different regression trees. The fact that the aggregation of unstable predictors leads to a reduction in variance was particularly shown by Breiman (1998). For a quantitative target variable, the aggregation of predictions is performed by taking the mean predictions for each of the trees.

To reduce the variance of the aggregate prediction, the objective is to build trees that are very different from each other. The Breiman algorithm introduces variability in the construction of the trees on the one hand by means of replication (simple random sampling with replacement) of units and, on the other hand, by means of random selection, for each “split” in the tree, of a subset of candidate explanatory variables. For a regression tree, there are therefore two additional parameters to be adjusted for a random forest: the number of trees and the number of candidate explanatory variables in each split.

When the interest variable is multivariate (or functional), the algorithm proposed by Breiman adapts easily, by aggregating the multivariate (or functional) regression trees presented in the previous paragraph. Multivariate random forests have, for example, been studied by Segal and Xiao (2011).

The algorithm that we are proposing here, called “Courboforest,” simply consists of aggregating the functional regression trees constructed using the “Courbotree” approach, i.e., the multivariate regression trees applied to the vectors ( Y i = Y i ( t 1 ) , , Y i ( t L ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xb9peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaadMfadaWgaaWcbaGaam yAaaqabaGccaaI9aGaamywamaaBaaaleaacaWGPbaabeaakmaabmaa baGaamiDamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaaiY cacaaMe8UaeSOjGSKaaGilaiaaysW7caWGzbWaaSbaaSqaaiaadMga aeqaaOWaaeWaaeaacaWG0bWaaSbaaSqaaiaadYeaaeqaaaGccaGLOa GaayzkaaaacaGLOaGaayzkaaaaaa@4666@ of the values of the curves at the instants of discretization, with the split criterion being the inertia based on the Euclidean distance defined by equation (4.16).


Date modified: