Unequal probability inverse sampling
Section 4. Simple random sampling without replacementUnequal probability inverse sampling
Section 4. Simple random sampling without replacement
For the case without replacement, the notation
used is the same as for the draw with replacement. The number of failures
X
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa
aaleaacaWGPbaabeaaaaa@361E@
therefore has a negative hypergeometric
distribution. This probability distribution is little known, to the point that
it has been presented as a “forgotten” distribution by Miller and Fridell
(2007). This distribution is the counterpart to the negative binomial for the
draw without replacement. The general framework is as follows: We consider a
population of size
M
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@34F9@
in which
there are
M
p
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaadc
hadaWgaaWcbaGaamyAaaqabaaaaa@3708@
favourable units, namely the occupations in
the list that exist in the enterprise. If the draws are equal probability
without replacement until
r
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@351E@
favorable units appear, then the negative
hypergeometric variable,
X
i
∼
N
H
(
M
,
r
,
M
p
i
)
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa
aaleaacaWGPbaabeaakiablYJi6iaad6eacaWGibWaaeWaaeaacaWG
nbGaaGilaiaadkhacaaISaGaamytaiaadchadaWgaaWcbaGaamyAaa
qabaaakiaawIcacaGLPaaacaaISaaaaa@4150@
counts
the number of failures before
r
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@351E@
favourable events occur.
The probability distribution is
Pr
(
X
i
=
x
)
=
p
(
x
;
M
,
r
,
M
p
i
)
=
(
x
+
r
−
1
x
)
(
M
−
x
−
r
M
p
i
−
r
)
(
M
M
p
i
)
,
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiuaiaack
hadaqadaqaaiaadIfadaWgaaWcbaGaamyAaaqabaGccaaI9aGaamiE
aaGaayjkaiaawMcaaiaai2dacaWGWbWaaeWaaeaacaWG4bGaaG4oai
aad2eacaaISaGaamOCaiaaiYcacaWGnbGaamiCamaaBaaaleaacaWG
PbaabeaaaOGaayjkaiaawMcaaiaai2dadaWcaaqaamaabmaabaqbae
qabiqaaaqaaiaadIhacqGHRaWkcaWGYbGaeyOeI0IaaGymaaqaaiaa
dIhaaaaacaGLOaGaayzkaaWaaeWaaeaafaqabeGabaaabaGaamytai
abgkHiTiaadIhacqGHsislcaWGYbaabaGaamytaiaadchadaWgaaWc
baGaamyAaaqabaGccqGHsislcaWGYbaaaaGaayjkaiaawMcaaaqaam
aabmaabaqbaeqabiqaaaqaaiaad2eaaeaacaWGnbGaamiCamaaBaaa
leaacaWGPbaabeaaaaaakiaawIcacaGLPaaaaaGaaGilaaaa@5F5D@
where
x
∈
{
0,
…
,
M
(
1
−
p
i
)
}
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI
GiopaacmaabaGaaGimaiaaiYcacqWIMaYscaaISaGaamytamaabmaa
baGaaGymaiabgkHiTiaadchadaWgaaWcbaGaamyAaaqabaaakiaawI
cacaGLPaaaaiaawUhacaGL9baacaGGSaaaaa@42ED@
M
∈
{
1,2,
…
}
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgI
GiopaacmaabaGaaGymaiaaiYcacaaIYaGaaGilaiablAcilbGaay5E
aiaaw2haaiaacYcaaaa@3D63@
M
p
i
∈
{
1,2,
…
,
M
}
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaadc
hadaWgaaWcbaGaamyAaaqabaGccqGHiiIZdaGadaqaaiaaigdacaaI
SaGaaGOmaiaaiYcacqWIMaYscaaISaGaamytaaGaay5Eaiaaw2haai
aacYcaaaa@4104@
and
r
∈
{
1,2,
…
,
M
p
i
}
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgI
GiopaacmaabaGaaGymaiaaiYcacaaIYaGaaGilaiablAciljaaiYca
caWGnbGaamiCamaaBaaaleaacaWGPbaabeaaaOGaay5Eaiaaw2haai
aac6caaaa@412B@
E
(
X
i
)
=
M
r
(
1
−
p
i
)
M
p
i
+
1
,
var
(
X
i
)
=
r
M
(
1
−
p
i
)
(
M
+
1
)
(
M
p
i
−
r
+
1
)
(
M
p
i
+
1
)
2
(
M
p
i
+
2
)
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyramaabm
aabaGaamiwamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaa
i2dadaWcaaqaaiaad2eacaWGYbWaaeWaaeaacaaIXaGaeyOeI0Iaam
iCamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiaad2ea
caWGWbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaaGymaaaacaaISa
GaaeODaiaabggacaqGYbWaaeWaaeaacaWGybWaaSbaaSqaaiaadMga
aeqaaaGccaGLOaGaayzkaaGaaGypamaalaaabaGaamOCaiaad2eada
qadaqaaiaaigdacqGHsislcaWGWbWaaSbaaSqaaiaadMgaaeqaaaGc
caGLOaGaayzkaaWaaeWaaeaacaWGnbGaey4kaSIaaGymaaGaayjkai
aawMcaamaabmaabaGaamytaiaadchadaWgaaWcbaGaamyAaaqabaGc
cqGHsislcaWGYbGaey4kaSIaaGymaaGaayjkaiaawMcaaaqaamaabm
aabaGaamytaiaadchadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaaI
XaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaaca
WGnbGaamiCamaaBaaaleaacaWGPbaabeaakiabgUcaRiaaikdaaiaa
wIcacaGLPaaaaaGaaGOlaaaa@6DA1@
Again,
A
i
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa
aaleaacaWGPbGaam4Aaaqabaaaaa@36F7@
denotes
the number of times that unit
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@3517@
is
selected in the sample. Now, the value of
A
i
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa
aaleaacaWGPbGaam4Aaaqabaaaaa@36F7@
can be
only 0 or 1. If
n
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@351A@
units are selected using a simple design
without replacement in
L
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacY
caaaa@35A8@
the
sample design is defined as
Pr
(
A
i
k
=
a
i
k
,
k
∈
L
)
=
(
M
n
)
−
1
,
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiuaiaack
hadaqadaqaaiaadgeadaWgaaWcbaGaamyAaiaadUgaaeqaaOGaaGyp
aiaadggadaWgaaWcbaGaamyAaiaadUgaaeqaaOGaaGilaiaadUgacq
GHiiIZcaWGmbaacaGLOaGaayzkaaGaaGypamaabmaabaqbaeqabiqa
aaqaaiaad2eaaeaacaWGUbaaaaGaayjkaiaawMcaamaaCaaaleqaba
GaeyOeI0IaaGymaaaakiaaiYcaaaa@48C8@
where
a
i
k
∈
{
0,1
}
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa
aaleaacaWGPbGaam4AaaqabaGccqGHiiIZdaGadaqaaiaaicdacaaI
SaGaaGymaaGaay5Eaiaaw2haaiaaiYcaaaa@3DB7@
and
∑
k
∈
L
a
i
k
=
n
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale
aacaWGRbGaeyicI4Saamitaaqab0GaeyyeIuoakiaaykW7caWGHbWa
aSbaaSqaaiaadMgacaWGRbaabeaakiaai2dacaWGUbGaaGOlaaaa@4090@
If the vector of
A
i
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa
aaleaacaWGPbGaam4Aaaqabaaaaa@36F7@
is
conditioned on a fixed size in one part of the population, we have
Pr
(
A
i
k
=
a
i
k
,
k
∈
F
i
|
∑
k
∈
F
i
A
i
k
=
r
)
=
Pr
(
A
i
k
=
a
i
k
,
k
∈
F
i
and
∑
k
∈
F
i
A
i
k
=
r
)
Pr
(
∑
k
∈
F
i
A
i
k
=
r
)
=
[
(
M
p
i
r
)
(
M
−
M
p
i
n
−
r
)
(
M
n
)
]
−
1
∑
k
∈
D
i
∑
k
∈
F
i
A
i
k
=
n
−
r
A
i
k
∈
{
0
,
1
}
1
(
M
n
)
=
[
(
M
p
i
r
)
(
M
−
M
p
i
n
−
r
)
(
M
n
)
]
−
1
(
M
−
M
p
i
n
−
r
)
(
M
n
)
=
(
M
p
i
r
)
−
1
,
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaa
aabaGaciiuaiaackhadaqadeqaaiaadgeadaWgaaWcbaGaamyAaiaa
dUgaaeqaaOGaaGypaiaadggadaWgaaWcbaGaamyAaiaadUgaaeqaaO
GaaGilaiaadUgacqGHiiIZcaWGgbWaaSbaaSqaaiaadMgaaeqaaOWa
aqqabeaacaaMc8+aaabuaeqaleaacaWGRbGaeyicI4SaamOramaaBa
aameaacaWGPbaabeaaaSqab0GaeyyeIuoakiaadgeadaWgaaWcbaGa
amyAaiaadUgaaeqaaOGaaGypaiaadkhaaiaawEa7aaGaayjkaiaawM
caaaqaaiaai2dadaWcaaqaaiGaccfacaGGYbWaaeWabeaacaWGbbWa
aSbaaSqaaiaadMgacaWGRbaabeaakiaai2dacaWGHbWaaSbaaSqaai
aadMgacaWGRbaabeaakiaaiYcacaWGRbGaeyicI4SaamOramaaBaaa
leaacaWGPbaabeaakiaaykW7caaMe8Uaaeyyaiaab6gacaqGKbGaaG
jbVlaaykW7daaeqbqabSqaaiaadUgacqGHiiIZcaWGgbWaaSbaaWqa
aiaadMgaaeqaaaWcbeqdcqGHris5aOGaaGPaVlaadgeadaWgaaWcba
GaamyAaiaadUgaaeqaaOGaaGypaiaadkhaaiaawIcacaGLPaaaaeaa
ciGGqbGaaiOCamaabmqabaWaaabuaeqaleaacaWGRbGaeyicI4Saam
OramaaBaaameaacaWGPbaabeaaaSqab0GaeyyeIuoakiaaykW7caWG
bbWaaSbaaSqaaiaadMgacaWGRbaabeaakiaai2dacaWGYbaacaGLOa
Gaayzkaaaaaaqaaaqaaiaai2dadaWadaqaamaalaaabaWaaeWaaeaa
faqabeGabaaabaGaamytaiaadchadaWgaaWcbaGaamyAaaqabaaake
aacaWGYbaaaaGaayjkaiaawMcaamaabmaabaqbaeqabiqaaaqaaiaa
d2eacqGHsislcaWGnbGaamiCamaaBaaaleaacaWGPbaabeaaaOqaai
aad6gacqGHsislcaWGYbaaaaGaayjkaiaawMcaaaqaamaabmaabaqb
aeqabiqaaaqaaiaad2eaaeaacaWGUbaaaaGaayjkaiaawMcaaaaaai
aawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaaeqbqa
amaalaaabaGaaGymaaqaamaabmaabaqbaeaabiqaaaqaaiaad2eaae
aacaWGUbaaaaGaayjkaiaawMcaaaaaaSqaauaabeqadeaaaeaacaWG
RbGaeyicI4SaamiramaaBaaameaacaWGPbaabeaaaSqaamaaqababa
GaamyqamaaBaaameaacaWGPbGaam4AaaqabaWccqGH9aqpcaWGUbGa
eyOeI0IaamOCaaadbaGaam4AaiabgIGiolaaysW7caWGgbWaaSbaae
aacaWGPbaabeaaaeqaoiabggHiLdaaleaacaWGbbWaaSbaaWqaaiaa
dMgacaWGRbaabeaaliabgIGiopaacmaabaGaaGimaiaacYcacaaIXa
aacaGL7bGaayzFaaaaaaqab0GaeyyeIuoaaOqaaaqaaiaai2dadaWa
daqaamaalaaabaWaaeWaaeaafaqabeGabaaabaGaamytaiaadchada
WgaaWcbaGaamyAaaqabaaakeaacaWGYbaaaaGaayjkaiaawMcaamaa
bmaabaqbaeqabiqaaaqaaiaad2eacqGHsislcaWGnbGaamiCamaaBa
aaleaacaWGPbaabeaaaOqaaiaad6gacqGHsislcaWGYbaaaaGaayjk
aiaawMcaaaqaamaabmaabaqbaeqabiqaaaqaaiaad2eaaeaacaWGUb
aaaaGaayjkaiaawMcaaaaaaiaawUfacaGLDbaadaahaaWcbeqaaiab
gkHiTiaaigdaaaGcdaWcaaqaamaabmaabaqbaeqabiqaaaqaaiaad2
eacqGHsislcaWGnbGaamiCamaaBaaaleaacaWGPbaabeaaaOqaaiaa
d6gacqGHsislcaWGYbaaaaGaayjkaiaawMcaaaqaamaabmaabaqbae
qabiqaaaqaaiaad2eaaeaacaWGUbaaaaGaayjkaiaawMcaaaaaaeaa
aeaacaaI9aWaaeWaaeaafaqabeGabaaabaGaamytaiaadchadaWgaa
WcbaGaamyAaaqabaaakeaacaWGYbaaaaGaayjkaiaawMcaamaaCaaa
leqabaGaeyOeI0IaaGymaaaakiaaiYcaaaaaaa@EB97@
with
∑
k
∈
F
i
a
i
k
=
r
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale
aacaWGRbGaeyicI4SaamOramaaBaaameaacaWGPbaabeaaaSqab0Ga
eyyeIuoakiaaykW7caWGHbWaaSbaaSqaaiaadMgacaWGRbaabeaaki
aai2dacaWGYbGaaGOlaaaa@41B4@
This shows that, if the sum of
A
i
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa
aaleaacaWGPbGaam4Aaaqabaaaaa@36F7@
is
conditioned on one part of the population, we still have a simple design
without replacement. In the procedure in which we draw without replacement
until we obtain
r
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@351E@
occupations in enterprise
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaacY
caaaa@35C5@
we therefore
have
E
(
A
i
k
|
X
i
)
=
{
r
M
p
i
if
k
∈
F
i
X
i
M
−
M
p
i
if
k
∈
D
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyramaabm
aabaWaaqGaaeaacaWGbbWaaSbaaSqaaiaadMgacaWGRbaabeaakiaa
ykW7aiaawIa7aiaaykW7caWGybWaaSbaaSqaaiaadMgaaeqaaaGcca
GLOaGaayzkaaGaaGypamaaceaabaqbaeaabiGaaaqaamaalaaabaGa
amOCaaqaaiaad2eacaWGWbWaaSbaaSqaaiaadMgaaeqaaaaaaOqaai
aabMgacaqGMbGaaGjbVlaaysW7caWGRbGaeyicI4SaamOramaaBaaa
leaacaWGPbaabeaaaOqaamaalaaabaGaamiwamaaBaaaleaacaWGPb
aabeaaaOqaaiaad2eacqGHsislcaWGnbGaamiCamaaBaaaleaacaWG
PbaabeaaaaaakeaacaqGPbGaaeOzaiaaysW7caaMe8Uaam4AaiabgI
GiolaadseadaWgaaWcbaGaamyAaaqabaGccaaIUaaaaaGaay5Eaaaa
aa@5FF5@
The
inclusion probability is therefore
π
k
|
i
=
EE
(
A
i
k
|
X
i
)
=
{
r
M
p
i
if
k
∈
F
i
E
(
X
i
)
M
−
M
p
i
=
r
M
p
i
+
1
if
k
∈
D
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa
beaakiaai2dacaqGfbGaaeyramaabmaabaWaaqGaaeaacaWGbbWaaS
baaSqaaiaadMgacaWGRbaabeaakiaaykW7aiaawIa7aiaaykW7caWG
ybWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaGypamaace
aabaqbaeaabiGaaaqaamaalaaabaGaamOCaaqaaiaad2eacaWGWbWa
aSbaaSqaaiaadMgaaeqaaaaaaOqaaiaabMgacaqGMbGaaGjbVlaays
W7caWGRbGaeyicI4SaamOramaaBaaaleaacaWGPbaabeaaaOqaamaa
laaabaGaaeyramaabmaabaGaamiwamaaBaaaleaacaWGPbaabeaaaO
GaayjkaiaawMcaaaqaaiaad2eacqGHsislcaWGnbGaamiCamaaBaaa
leaacaWGPbaabeaaaaGccaaI9aWaaSaaaeaacaWGYbaabaGaamytai
aadchadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaaIXaaaaaqaaiaa
bMgacaqGMbGaaGjbVlaaysW7caWGRbGaeyicI4SaamiramaaBaaale
aacaWGPbaabeaakiaaiYcaaaaacaGL7baaaaa@72A6@
for all
k
∈
L
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI
GiolaadYeacaaIUaaaaa@3824@
Again, the problem is that we know
M
,
r
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaaiY
cacaWGYbaaaa@36A6@
and
X
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa
aaleaacaWGPbaabeaakiaacYcaaaa@36D8@
but not
p
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa
aaleaacaWGPbaabeaakiaac6caaaa@36F2@
We can estimate
p
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa
aaleaacaWGPbaabeaaaaa@3636@
using the maximum likelihood method, through a
numerical method.
Using the method of moments, an estimate can be
obtained by solving for
p
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa
aaleaacaWGPbaabeaaaaa@3636@
in the
equation
X
i
=
E
(
X
i
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa
aaleaacaWGPbaabeaakiaai2dacaqGfbWaaeWaaeaacaWGybWaaSba
aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaa@3B41@
, that is,
X
i
=
M
r
(
1
−
p
^
i
)
M
p
^
i
+
1
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa
aaleaacaWGPbaabeaakiaai2dadaWcaaqaaiaad2eacaWGYbWaaeWa
aeaacaaIXaGaeyOeI0IabmiCayaajaWaaSbaaSqaaiaadMgaaeqaaa
GccaGLOaGaayzkaaaabaGaamytaiqadchagaqcamaaBaaaleaacaWG
PbaabeaakiabgUcaRiaaigdaaaGaaGOlaaaa@4371@
Hence
p
^
i
1
=
M
r
−
X
i
M
(
r
+
X
i
)
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiCayaaja
WaaSbaaSqaaiaadMgacaaIXaaabeaakiaai2dadaWcaaqaaiaad2ea
caWGYbGaeyOeI0IaamiwamaaBaaaleaacaWGPbaabeaaaOqaaiaad2
eadaqadaqaaiaadkhacqGHRaWkcaWGybWaaSbaaSqaaiaadMgaaeqa
aaGccaGLOaGaayzkaaaaaiaai6caaaa@4385@
However, in a few lines it is verified that, if
r
≥
2,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgw
MiZkaaikdacaaISaaaaa@3856@
p
^
i
2
=
r
−
1
r
+
X
i
−
1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiCayaaja
WaaSbaaSqaaiaadMgacaaIYaaabeaakiaai2dadaWcaaqaaiaadkha
cqGHsislcaaIXaaabaGaamOCaiabgUcaRiaadIfadaWgaaWcbaGaam
yAaaqabaGccqGHsislcaaIXaaaaaaa@4003@
is unbiased for
p
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa
aaleaacaWGPbaabeaakiaai6caaaa@36F8@
Again, since we are using weights that are
inverses of
π
k
|
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa
beaakiaac6caaaa@3D56@
The
inverses of the inclusion probabilities are thus estimated as follows:
1
/
π
k
|
i
^
=
{
M
p
^
i
2
r
=
M
(
r
−
1
)
r
(
X
i
+
r
−
1
)
if
k
∈
F
i
M
(
1
−
p
^
i
2
)
X
i
=
M
X
i
+
r
−
1
if
k
∈
D
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaada
WcgaqaaiaaigdaaeaacqaHapaCdaWgaaWcbaWaaqGaaeaacaWGRbGa
aGPaVdGaayjcSdGaaGPaVlaadMgaaeqaaaaaaOGaayPadaGaaGypam
aaceaabaqbaeaabiWaaaqaamaalaaabaGaamytaiqadchagaqcamaa
BaaaleaacaWGPbGaaGOmaaqabaaakeaacaWGYbaaaaqaaiaai2dada
Wcaaqaaiaad2eadaqadaqaaiaadkhacqGHsislcaaIXaaacaGLOaGa
ayzkaaaabaGaamOCamaabmaabaGaamiwamaaBaaaleaacaWGPbaabe
aakiabgUcaRiaadkhacqGHsislcaaIXaaacaGLOaGaayzkaaaaaaqa
aiaabMgacaqGMbGaaGjbVlaaysW7caWGRbGaeyicI4SaamOramaaBa
aaleaacaWGPbaabeaaaOqaamaalaaabaGaamytamaabmaabaGaaGym
aiabgkHiTiqadchagaqcamaaBaaaleaacaWGPbGaaGOmaaqabaaaki
aawIcacaGLPaaaaeaacaWGybWaaSbaaSqaaiaadMgaaeqaaaaaaOqa
aiaai2dadaWcaaqaaiaad2eaaeaacaWGybWaaSbaaSqaaiaadMgaae
qaaOGaey4kaSIaamOCaiabgkHiTiaaigdaaaaabaGaaeyAaiaabAga
caaMe8UaaGjbVlaadUgacqGHiiIZcaWGebWaaSbaaSqaaiaadMgaae
qaaOGaaGOlaaaaaiaawUhaaaaa@7638@
These weights
are also used in the estimator by Murthy (1957), which is unbiased (see also
Salehi and Seber 2001). If
M
p
i
<
r
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaadc
hadaWgaaWcbaGaamyAaaqabaGccaaI8aGaamOCaiaaiYcaaaa@3985@
all occupations will be selected in enterprise
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@3515@
and the estimated inclusion probabilities are
then equal to 1.
ISSN : 1492-0921
Editorial policy
Survey Methodology publishes articles dealing with various aspects of statistical development relevant to a statistical agency, such as design issues in the context of practical constraints, use of different data sources and collection techniques, total survey error, survey evaluation, research in survey methodology, time series analysis, seasonal adjustment, demographic studies, data integration, estimation and data analysis methods, and general survey systems development. The emphasis is placed on the development and evaluation of specific methodologies as applied to data collection or the data themselves. All papers will be refereed. However, the authors retain full responsibility for the contents of their papers and opinions expressed are not necessarily those of the Editorial Board or of Statistics Canada.
Submission of Manuscripts
Survey Methodology is published twice a year in electronic format. Authors are invited to submit their articles in English or French in electronic form, preferably in Word to the Editor, (statcan.smj-rte.statcan@canada.ca , Statistics Canada, 150 Tunney’s Pasture Driveway, Ottawa, Ontario, Canada, K1A 0T6). For formatting instructions, please see the guidelines provided in the journal and on the web site (www.statcan.gc.ca/SurveyMethodology).
Note of appreciation
Canada owes the success of its statistical system to a long-standing partnership between Statistics Canada, the citizens of Canada, its businesses, governments and other institutions. Accurate and timely statistical information could not be produced without their continued co-operation and goodwill.
Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt, reliable and courteous manner. To this end, the Agency has developed standards of service which its employees observe in serving its clients.
Copyright
Published by authority of the Minister responsible for Statistics Canada.
© Minister of Industry, 2016
Use of this publication is governed by the Statistics Canada Open Licence Agreement .
Catalogue No. 12-001-X
Frequency: semi-annual
Ottawa
Date modified:
2016-12-20