Unequal probability inverse sampling Section 4. Simple random sampling without replacement

For the case without replacement, the notation used is the same as for the draw with replacement. The number of failures X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaWGPbaabeaaaaa@361E@ therefore has a negative hypergeometric distribution. This probability distribution is little known, to the point that it has been presented as a “forgotten” distribution by Miller and Fridell (2007). This distribution is the counterpart to the negative binomial for the draw without replacement. The general framework is as follows: We consider a population of size M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@34F9@ in which there are M p i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaadc hadaWgaaWcbaGaamyAaaqabaaaaa@3708@ favourable units, namely the occupations in the list that exist in the enterprise. If the draws are equal probability without replacement until r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@351E@ favorable units appear, then the negative hypergeometric variable, X i N H ( M , r , M p i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaWGPbaabeaakiablYJi6iaad6eacaWGibWaaeWaaeaacaWG nbGaaGilaiaadkhacaaISaGaamytaiaadchadaWgaaWcbaGaamyAaa qabaaakiaawIcacaGLPaaacaaISaaaaa@4150@ counts the number of failures before r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@351E@ favourable events occur.

The probability distribution is

Pr ( X i = x ) = p ( x ; M , r , M p i ) = ( x + r 1 x ) ( M x r M p i r ) ( M M p i ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiuaiaack hadaqadaqaaiaadIfadaWgaaWcbaGaamyAaaqabaGccaaI9aGaamiE aaGaayjkaiaawMcaaiaai2dacaWGWbWaaeWaaeaacaWG4bGaaG4oai aad2eacaaISaGaamOCaiaaiYcacaWGnbGaamiCamaaBaaaleaacaWG PbaabeaaaOGaayjkaiaawMcaaiaai2dadaWcaaqaamaabmaabaqbae qabiqaaaqaaiaadIhacqGHRaWkcaWGYbGaeyOeI0IaaGymaaqaaiaa dIhaaaaacaGLOaGaayzkaaWaaeWaaeaafaqabeGabaaabaGaamytai abgkHiTiaadIhacqGHsislcaWGYbaabaGaamytaiaadchadaWgaaWc baGaamyAaaqabaGccqGHsislcaWGYbaaaaGaayjkaiaawMcaaaqaam aabmaabaqbaeqabiqaaaqaaiaad2eaaeaacaWGnbGaamiCamaaBaaa leaacaWGPbaabeaaaaaakiaawIcacaGLPaaaaaGaaGilaaaa@5F5D@

where x { 0, , M ( 1 p i ) } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiopaacmaabaGaaGimaiaaiYcacqWIMaYscaaISaGaamytamaabmaa baGaaGymaiabgkHiTiaadchadaWgaaWcbaGaamyAaaqabaaakiaawI cacaGLPaaaaiaawUhacaGL9baacaGGSaaaaa@42ED@ M { 1,2, } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgI GiopaacmaabaGaaGymaiaaiYcacaaIYaGaaGilaiablAcilbGaay5E aiaaw2haaiaacYcaaaa@3D63@ M p i { 1,2, , M } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaadc hadaWgaaWcbaGaamyAaaqabaGccqGHiiIZdaGadaqaaiaaigdacaaI SaGaaGOmaiaaiYcacqWIMaYscaaISaGaamytaaGaay5Eaiaaw2haai aacYcaaaa@4104@ and r { 1,2, , M p i } . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgI GiopaacmaabaGaaGymaiaaiYcacaaIYaGaaGilaiablAciljaaiYca caWGnbGaamiCamaaBaaaleaacaWGPbaabeaaaOGaay5Eaiaaw2haai aac6caaaa@412B@

E ( X i ) = M r ( 1 p i ) M p i + 1 , var ( X i ) = r M ( 1 p i ) ( M + 1 ) ( M p i r + 1 ) ( M p i + 1 ) 2 ( M p i + 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyramaabm aabaGaamiwamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaa i2dadaWcaaqaaiaad2eacaWGYbWaaeWaaeaacaaIXaGaeyOeI0Iaam iCamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiaad2ea caWGWbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaaGymaaaacaaISa GaaeODaiaabggacaqGYbWaaeWaaeaacaWGybWaaSbaaSqaaiaadMga aeqaaaGccaGLOaGaayzkaaGaaGypamaalaaabaGaamOCaiaad2eada qadaqaaiaaigdacqGHsislcaWGWbWaaSbaaSqaaiaadMgaaeqaaaGc caGLOaGaayzkaaWaaeWaaeaacaWGnbGaey4kaSIaaGymaaGaayjkai aawMcaamaabmaabaGaamytaiaadchadaWgaaWcbaGaamyAaaqabaGc cqGHsislcaWGYbGaey4kaSIaaGymaaGaayjkaiaawMcaaaqaamaabm aabaGaamytaiaadchadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaaI XaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaaca WGnbGaamiCamaaBaaaleaacaWGPbaabeaakiabgUcaRiaaikdaaiaa wIcacaGLPaaaaaGaaGOlaaaa@6DA1@

Again, A i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbGaam4Aaaqabaaaaa@36F7@ denotes the number of times that unit k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@3517@ is selected in the sample. Now, the value of A i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbGaam4Aaaqabaaaaa@36F7@ can be only 0 or 1. If n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@351A@ units are selected using a simple design without replacement in L , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacY caaaa@35A8@ the sample design is defined as

Pr ( A i k = a i k , k L ) = ( M n ) 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiuaiaack hadaqadaqaaiaadgeadaWgaaWcbaGaamyAaiaadUgaaeqaaOGaaGyp aiaadggadaWgaaWcbaGaamyAaiaadUgaaeqaaOGaaGilaiaadUgacq GHiiIZcaWGmbaacaGLOaGaayzkaaGaaGypamaabmaabaqbaeqabiqa aaqaaiaad2eaaeaacaWGUbaaaaGaayjkaiaawMcaamaaCaaaleqaba GaeyOeI0IaaGymaaaakiaaiYcaaaa@48C8@

where a i k { 0,1 } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGPbGaam4AaaqabaGccqGHiiIZdaGadaqaaiaaicdacaaI SaGaaGymaaGaay5Eaiaaw2haaiaaiYcaaaa@3DB7@ and

k L a i k = n . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale aacaWGRbGaeyicI4Saamitaaqab0GaeyyeIuoakiaaykW7caWGHbWa aSbaaSqaaiaadMgacaWGRbaabeaakiaai2dacaWGUbGaaGOlaaaa@4090@

If the vector of A i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbGaam4Aaaqabaaaaa@36F7@ is conditioned on a fixed size in one part of the population, we have

Pr ( A i k = a i k , k F i | k F i A i k = r ) = Pr ( A i k = a i k , k F i and k F i A i k = r ) Pr ( k F i A i k = r ) = [ ( M p i r ) ( M M p i n r ) ( M n ) ] 1 k D i k F i A i k = n r A i k { 0 , 1 } 1 ( M n ) = [ ( M p i r ) ( M M p i n r ) ( M n ) ] 1 ( M M p i n r ) ( M n ) = ( M p i r ) 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaa aabaGaciiuaiaackhadaqadeqaaiaadgeadaWgaaWcbaGaamyAaiaa dUgaaeqaaOGaaGypaiaadggadaWgaaWcbaGaamyAaiaadUgaaeqaaO GaaGilaiaadUgacqGHiiIZcaWGgbWaaSbaaSqaaiaadMgaaeqaaOWa aqqabeaacaaMc8+aaabuaeqaleaacaWGRbGaeyicI4SaamOramaaBa aameaacaWGPbaabeaaaSqab0GaeyyeIuoakiaadgeadaWgaaWcbaGa amyAaiaadUgaaeqaaOGaaGypaiaadkhaaiaawEa7aaGaayjkaiaawM caaaqaaiaai2dadaWcaaqaaiGaccfacaGGYbWaaeWabeaacaWGbbWa aSbaaSqaaiaadMgacaWGRbaabeaakiaai2dacaWGHbWaaSbaaSqaai aadMgacaWGRbaabeaakiaaiYcacaWGRbGaeyicI4SaamOramaaBaaa leaacaWGPbaabeaakiaaykW7caaMe8Uaaeyyaiaab6gacaqGKbGaaG jbVlaaykW7daaeqbqabSqaaiaadUgacqGHiiIZcaWGgbWaaSbaaWqa aiaadMgaaeqaaaWcbeqdcqGHris5aOGaaGPaVlaadgeadaWgaaWcba GaamyAaiaadUgaaeqaaOGaaGypaiaadkhaaiaawIcacaGLPaaaaeaa ciGGqbGaaiOCamaabmqabaWaaabuaeqaleaacaWGRbGaeyicI4Saam OramaaBaaameaacaWGPbaabeaaaSqab0GaeyyeIuoakiaaykW7caWG bbWaaSbaaSqaaiaadMgacaWGRbaabeaakiaai2dacaWGYbaacaGLOa Gaayzkaaaaaaqaaaqaaiaai2dadaWadaqaamaalaaabaWaaeWaaeaa faqabeGabaaabaGaamytaiaadchadaWgaaWcbaGaamyAaaqabaaake aacaWGYbaaaaGaayjkaiaawMcaamaabmaabaqbaeqabiqaaaqaaiaa d2eacqGHsislcaWGnbGaamiCamaaBaaaleaacaWGPbaabeaaaOqaai aad6gacqGHsislcaWGYbaaaaGaayjkaiaawMcaaaqaamaabmaabaqb aeqabiqaaaqaaiaad2eaaeaacaWGUbaaaaGaayjkaiaawMcaaaaaai aawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaaeqbqa amaalaaabaGaaGymaaqaamaabmaabaqbaeaabiqaaaqaaiaad2eaae aacaWGUbaaaaGaayjkaiaawMcaaaaaaSqaauaabeqadeaaaeaacaWG RbGaeyicI4SaamiramaaBaaameaacaWGPbaabeaaaSqaamaaqababa GaamyqamaaBaaameaacaWGPbGaam4AaaqabaWccqGH9aqpcaWGUbGa eyOeI0IaamOCaaadbaGaam4AaiabgIGiolaaysW7caWGgbWaaSbaae aacaWGPbaabeaaaeqaoiabggHiLdaaleaacaWGbbWaaSbaaWqaaiaa dMgacaWGRbaabeaaliabgIGiopaacmaabaGaaGimaiaacYcacaaIXa aacaGL7bGaayzFaaaaaaqab0GaeyyeIuoaaOqaaaqaaiaai2dadaWa daqaamaalaaabaWaaeWaaeaafaqabeGabaaabaGaamytaiaadchada WgaaWcbaGaamyAaaqabaaakeaacaWGYbaaaaGaayjkaiaawMcaamaa bmaabaqbaeqabiqaaaqaaiaad2eacqGHsislcaWGnbGaamiCamaaBa aaleaacaWGPbaabeaaaOqaaiaad6gacqGHsislcaWGYbaaaaGaayjk aiaawMcaaaqaamaabmaabaqbaeqabiqaaaqaaiaad2eaaeaacaWGUb aaaaGaayjkaiaawMcaaaaaaiaawUfacaGLDbaadaahaaWcbeqaaiab gkHiTiaaigdaaaGcdaWcaaqaamaabmaabaqbaeqabiqaaaqaaiaad2 eacqGHsislcaWGnbGaamiCamaaBaaaleaacaWGPbaabeaaaOqaaiaa d6gacqGHsislcaWGYbaaaaGaayjkaiaawMcaaaqaamaabmaabaqbae qabiqaaaqaaiaad2eaaeaacaWGUbaaaaGaayjkaiaawMcaaaaaaeaa aeaacaaI9aWaaeWaaeaafaqabeGabaaabaGaamytaiaadchadaWgaa WcbaGaamyAaaqabaaakeaacaWGYbaaaaGaayjkaiaawMcaamaaCaaa leqabaGaeyOeI0IaaGymaaaakiaaiYcaaaaaaa@EB97@

with

k F i a i k = r . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale aacaWGRbGaeyicI4SaamOramaaBaaameaacaWGPbaabeaaaSqab0Ga eyyeIuoakiaaykW7caWGHbWaaSbaaSqaaiaadMgacaWGRbaabeaaki aai2dacaWGYbGaaGOlaaaa@41B4@

This shows that, if the sum of A i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbGaam4Aaaqabaaaaa@36F7@ is conditioned on one part of the population, we still have a simple design without replacement. In the procedure in which we draw without replacement until we obtain r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@351E@ occupations in enterprise i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaacY caaaa@35C5@ we therefore have

E ( A i k | X i ) = { r M p i if k F i X i M M p i if k D i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyramaabm aabaWaaqGaaeaacaWGbbWaaSbaaSqaaiaadMgacaWGRbaabeaakiaa ykW7aiaawIa7aiaaykW7caWGybWaaSbaaSqaaiaadMgaaeqaaaGcca GLOaGaayzkaaGaaGypamaaceaabaqbaeaabiGaaaqaamaalaaabaGa amOCaaqaaiaad2eacaWGWbWaaSbaaSqaaiaadMgaaeqaaaaaaOqaai aabMgacaqGMbGaaGjbVlaaysW7caWGRbGaeyicI4SaamOramaaBaaa leaacaWGPbaabeaaaOqaamaalaaabaGaamiwamaaBaaaleaacaWGPb aabeaaaOqaaiaad2eacqGHsislcaWGnbGaamiCamaaBaaaleaacaWG PbaabeaaaaaakeaacaqGPbGaaeOzaiaaysW7caaMe8Uaam4AaiabgI GiolaadseadaWgaaWcbaGaamyAaaqabaGccaaIUaaaaaGaay5Eaaaa aa@5FF5@

The inclusion probability is therefore

π k | i = EE ( A i k | X i ) = { r M p i if k F i E ( X i ) M M p i = r M p i + 1 if k D i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa beaakiaai2dacaqGfbGaaeyramaabmaabaWaaqGaaeaacaWGbbWaaS baaSqaaiaadMgacaWGRbaabeaakiaaykW7aiaawIa7aiaaykW7caWG ybWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaGypamaace aabaqbaeaabiGaaaqaamaalaaabaGaamOCaaqaaiaad2eacaWGWbWa aSbaaSqaaiaadMgaaeqaaaaaaOqaaiaabMgacaqGMbGaaGjbVlaays W7caWGRbGaeyicI4SaamOramaaBaaaleaacaWGPbaabeaaaOqaamaa laaabaGaaeyramaabmaabaGaamiwamaaBaaaleaacaWGPbaabeaaaO GaayjkaiaawMcaaaqaaiaad2eacqGHsislcaWGnbGaamiCamaaBaaa leaacaWGPbaabeaaaaGccaaI9aWaaSaaaeaacaWGYbaabaGaamytai aadchadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaaIXaaaaaqaaiaa bMgacaqGMbGaaGjbVlaaysW7caWGRbGaeyicI4SaamiramaaBaaale aacaWGPbaabeaakiaaiYcaaaaacaGL7baaaaa@72A6@

for all k L . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaadYeacaaIUaaaaa@3824@ Again, the problem is that we know M , r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaaiY cacaWGYbaaaa@36A6@ and X i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaWGPbaabeaakiaacYcaaaa@36D8@ but not p i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbaabeaakiaac6caaaa@36F2@ We can estimate p i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbaabeaaaaa@3636@ using the maximum likelihood method, through a numerical method.

Using the method of moments, an estimate can be obtained by solving for p i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbaabeaaaaa@3636@ in the equation X i = E ( X i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaWGPbaabeaakiaai2dacaqGfbWaaeWaaeaacaWGybWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaa@3B41@ , that is,

X i = M r ( 1 p ^ i ) M p ^ i + 1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaWGPbaabeaakiaai2dadaWcaaqaaiaad2eacaWGYbWaaeWa aeaacaaIXaGaeyOeI0IabmiCayaajaWaaSbaaSqaaiaadMgaaeqaaa GccaGLOaGaayzkaaaabaGaamytaiqadchagaqcamaaBaaaleaacaWG PbaabeaakiabgUcaRiaaigdaaaGaaGOlaaaa@4371@

Hence

p ^ i 1 = M r X i M ( r + X i ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiCayaaja WaaSbaaSqaaiaadMgacaaIXaaabeaakiaai2dadaWcaaqaaiaad2ea caWGYbGaeyOeI0IaamiwamaaBaaaleaacaWGPbaabeaaaOqaaiaad2 eadaqadaqaaiaadkhacqGHRaWkcaWGybWaaSbaaSqaaiaadMgaaeqa aaGccaGLOaGaayzkaaaaaiaai6caaaa@4385@

However, in a few lines it is verified that, if r 2, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgw MiZkaaikdacaaISaaaaa@3856@

p ^ i 2 = r 1 r + X i 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiCayaaja WaaSbaaSqaaiaadMgacaaIYaaabeaakiaai2dadaWcaaqaaiaadkha cqGHsislcaaIXaaabaGaamOCaiabgUcaRiaadIfadaWgaaWcbaGaam yAaaqabaGccqGHsislcaaIXaaaaaaa@4003@

is unbiased for p i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbaabeaakiaai6caaaa@36F8@

Again, since we are using weights that are inverses of π k | i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa beaakiaac6caaaa@3D56@ The inverses of the inclusion probabilities are thus estimated as follows:

1 / π k | i ^ = { M p ^ i 2 r = M ( r 1 ) r ( X i + r 1 ) if k F i M ( 1 p ^ i 2 ) X i = M X i + r 1 if k D i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaada WcgaqaaiaaigdaaeaacqaHapaCdaWgaaWcbaWaaqGaaeaacaWGRbGa aGPaVdGaayjcSdGaaGPaVlaadMgaaeqaaaaaaOGaayPadaGaaGypam aaceaabaqbaeaabiWaaaqaamaalaaabaGaamytaiqadchagaqcamaa BaaaleaacaWGPbGaaGOmaaqabaaakeaacaWGYbaaaaqaaiaai2dada Wcaaqaaiaad2eadaqadaqaaiaadkhacqGHsislcaaIXaaacaGLOaGa ayzkaaaabaGaamOCamaabmaabaGaamiwamaaBaaaleaacaWGPbaabe aakiabgUcaRiaadkhacqGHsislcaaIXaaacaGLOaGaayzkaaaaaaqa aiaabMgacaqGMbGaaGjbVlaaysW7caWGRbGaeyicI4SaamOramaaBa aaleaacaWGPbaabeaaaOqaamaalaaabaGaamytamaabmaabaGaaGym aiabgkHiTiqadchagaqcamaaBaaaleaacaWGPbGaaGOmaaqabaaaki aawIcacaGLPaaaaeaacaWGybWaaSbaaSqaaiaadMgaaeqaaaaaaOqa aiaai2dadaWcaaqaaiaad2eaaeaacaWGybWaaSbaaSqaaiaadMgaae qaaOGaey4kaSIaamOCaiabgkHiTiaaigdaaaaabaGaaeyAaiaabAga caaMe8UaaGjbVlaadUgacqGHiiIZcaWGebWaaSbaaSqaaiaadMgaae qaaOGaaGOlaaaaaiaawUhaaaaa@7638@

These weights are also used in the estimator by Murthy (1957), which is unbiased (see also Salehi and Seber 2001). If M p i < r , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaadc hadaWgaaWcbaGaamyAaaqabaGccaaI8aGaamOCaiaaiYcaaaa@3985@ all occupations will be selected in enterprise i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@3515@ and the estimated inclusion probabilities are then equal to 1.

Date modified: