Unequal probability inverse sampling Section 5. Unequal probability sampling with replacement

Unequal probability sampling is not really more difficult to process when the draw is with replacement. Now let p i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaam4Aaaqabaaaaa@3726@ denote the probability of an occupation being drawn in each draw with

k L p i k = 1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale aacaWGRbGaeyicI4Saamitaaqab0GaeyyeIuoakiaaykW7caWGWbWa aSbaaSqaaiaadMgacaWGRbaabeaakiaai2dacaaIXaGaaGOlaaaa@4067@

Let P i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbaabeaaaaa@3616@ be the sum of p i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaam4Aaaqabaaaaa@3726@ limited to the occupations in enterprise i : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaacQ daaaa@35D3@

P i = k F i p i k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbaabeaakiaai2dadaaeqbqabSqaaiaadUgacqGHiiIZ caWGgbWaaSbaaWqaaiaadMgaaeqaaaWcbeqdcqGHris5aOGaaGPaVl aadchadaWgaaWcbaGaamyAaiaadUgaaeqaaOGaaGOlaaaa@42C5@

In this case, X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaWGPbaabeaaaaa@361E@ has a negative binomial distribution with parameters r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@351E@ and P i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbaabeaakiaac6caaaa@36D2@ Therefore,

E ( X i ) = r ( 1 P i ) P i and var ( X i ) = r ( 1 P i ) P i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyramaabm aabaGaamiwamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaa i2dadaWcaaqaaiaadkhadaqadaqaaiaaigdacqGHsislcaWGqbWaaS baaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGaamiuamaaBaaa leaacaWGPbaabeaaaaGccaaMe8UaaGjbVlaabggacaqGUbGaaeizai aaysW7caaMe8UaaeODaiaabggacaqGYbWaaeWaaeaacaWGybWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaGypamaalaaabaGaam OCamaabmaabaGaaGymaiabgkHiTiaadcfadaWgaaWcbaGaamyAaaqa baaakiaawIcacaGLPaaaaeaacaWGqbWaaSbaaSqaaiaadMgaaeqaaa aakiaai6caaaa@5A5E@

Let A i k , k L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbGaam4AaaqabaGccaaISaGaam4AaiabgIGiolaadYea aaa@3AFC@ be the number of times that unit k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@3517@ is selected in the sample. In an unequal probability design with replacement of size n , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaacY caaaa@35CA@ the values of A i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbGaam4Aaaqabaaaaa@36F7@ have a multinomial distribution. Therefore,

Pr ( A i k = a i k , k L ) = n ! k L p i k a i k a i k ! , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiuaiaack hadaqadaqaaiaadgeadaWgaaWcbaGaamyAaiaadUgaaeqaaOGaaGyp aiaadggadaWgaaWcbaGaamyAaiaadUgaaeqaaOGaaGilaiaadUgacq GHiiIZcaWGmbaacaGLOaGaayzkaaGaaGypaiaad6gacaaIHaWaaebu aeqaleaacaWGRbGaeyicI4Saamitaaqab0Gaey4dIunakmaalaaaba GaamiCamaaDaaaleaacaWGPbGaam4AaaqaaiaadggadaWgaaadbaGa amyAaiaadUgaaeqaaaaaaOqaaiaadggadaWgaaWcbaGaamyAaiaadU gaaeqaaOGaaGyiaaaacaaISaaaaa@543E@

where A i k = 0, , n , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbGaam4AaaqabaGccaaI9aGaaGimaiaaiYcacqWIMaYs caaISaGaamOBaiaaiYcaaaa@3CB9@ and

k L a i k = n . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale aacaWGRbGaeyicI4Saamitaaqab0GaeyyeIuoakiaaykW7caWGHbWa aSbaaSqaaiaadMgacaWGRbaabeaakiaai2dacaWGUbGaaGOlaaaa@4090@

If this multinomial vector is conditioned on a fixed size in one part of the population, then

Pr( A ik = a ik ,k F i | k F i A ik =r ) = Pr( A ik = a ik ,k F i and k F i A ik =r ) Pr( k F i A ik =r ) = n! ( 1 P i ) ( nr ) ( nr )! k F i p ik a ik a ik ! n! P i r ( 1 P i ) nr r!( nr )! =r! k F i ( p ik P i ) a ik 1 a ik ! , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiGaccfacaGGYbWaaeWabeaacaWGbbWaaSbaaSqaaiaadMgacaWG Rbaabeaakiaai2dacaWGHbWaaSbaaSqaaiaadMgacaWGRbaabeaaki aaiYcacaWGRbGaeyicI4SaamOramaaBaaaleaacaWGPbaabeaakmaa eeqabaGaaGPaVpaaqafabeWcbaGaam4AaiabgIGiolaadAeadaWgaa adbaGaamyAaaqabaaaleqaniabggHiLdGccaWGbbWaaSbaaSqaaiaa dMgacaWGRbaabeaakiaai2dacaWGYbaacaGLhWoaaiaawIcacaGLPa aaaeaacaaI9aWaaSaaaeaaciGGqbGaaiOCamaabmqabaGaamyqamaa BaaaleaacaWGPbGaam4AaaqabaGccaaI9aGaamyyamaaBaaaleaaca WGPbGaam4AaaqabaGccaaISaGaam4AaiabgIGiolaadAeadaWgaaWc baGaamyAaaqabaGccaaMe8UaaGjbVlaabggacaqGUbGaaeizaiaays W7caaMe8+aaabuaeqaleaacaWGRbGaeyicI4SaamOramaaBaaameaa caWGPbaabeaaaSqab0GaeyyeIuoakiaaykW7caWGbbWaaSbaaSqaai aadMgacaWGRbaabeaakiaai2dacaWGYbaacaGLOaGaayzkaaaabaGa ciiuaiaackhadaqadeqaamaaqafabeWcbaGaam4AaiabgIGiolaadA eadaWgaaadbaGaamyAaaqabaaaleqaniabggHiLdGccaaMc8Uaamyq amaaBaaaleaacaWGPbGaam4AaaqabaGccaaI9aGaamOCaaGaayjkai aawMcaaaaaaeaaaeaacaaI9aWaaSaaaeaadaWcaaqaaiaad6gacaaI HaWaaeWaaeaacaaIXaGaeyOeI0IaamiuamaaBaaaleaacaWGPbaabe aaaOGaayjkaiaawMcaamaaCaaaleqabaWaaeWaaeaacaWGUbGaeyOe I0IaamOCaaGaayjkaiaawMcaaaaaaOqaamaabmaabaGaamOBaiabgk HiTiaadkhaaiaawIcacaGLPaaacaaIHaaaamaarafabeWcbaGaam4A aiabgIGiolaadAeadaWgaaadbaGaamyAaaqabaaaleqaniabg+Givd GcdaWcaaqaaiaadchadaqhaaWcbaGaamyAaiaadUgaaeaacaWGHbWa aSbaaeaacaWGPbGaam4AaaqabaaaaaGcbaGaamyyamaaBaaaleaaca WGPbGaam4AaaqabaGccaaIHaaaaaqaamaalaaabaGaamOBaiaaigca caWGqbWaa0baaSqaaiaadMgaaeaacaWGYbaaaOWaaeWaaeaacaaIXa GaeyOeI0IaamiuamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMca amaaCaaaleqabaGaamOBaiabgkHiTiaadkhaaaaakeaacaWGYbGaaG yiamaabmaabaGaamOBaiabgkHiTiaadkhaaiaawIcacaGLPaaacaaI HaaaaaaaaeaaaeaacaaI9aGaamOCaiaaigcadaqeqbqabSqaaiaadU gacqGHiiIZcaWGgbWaaSbaaWqaaiaadMgaaeqaaaWcbeqdcqGHpis1 aOWaaeWaaeaadaWcaaqaaiaadchadaWgaaWcbaGaamyAaiaadUgaae qaaaGcbaGaamiuamaaBaaaleaacaWGPbaabeaaaaaakiaawIcacaGL PaaadaahaaWcbeqaaiaadggadaWgaaadbaGaamyAaiaadUgaaeqaaa aakmaalaaabaGaaGymaaqaaiaadggadaWgaaWcbaGaamyAaiaadUga aeqaaOGaaGyiaaaacaaISaaaaaaa@D3EF@

with

k F i a i k = r . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale aacaWGRbGaeyicI4SaamOramaaBaaameaacaWGPbaabeaaaSqab0Ga eyyeIuoakiaaykW7caWGHbWaaSbaaSqaaiaadMgacaWGRbaabeaaki aai2dacaWGYbGaaGOlaaaa@41B4@

This shows that, if the sum of A i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbGaam4Aaaqabaaaaa@36F7@ is conditioned on one part of the population, the distribution remains multinomial and conditionally there is still an unequal probability design with replacement.

With the procedure in which we draw with replacement until we obtain r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@351E@ occupations in enterprise i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaacY caaaa@35C5@ we have

E ( A i k | X i ) = { r p i k P i if k F i X i p i k 1 P i if k D i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqr=ipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyramaabm aabaWaaqGaaeaacaWGbbWaaSbaaSqaaiaadMgacaWGRbaabeaakiaa ykW7aiaawIa7aiaaykW7caWGybWaaSbaaSqaaiaadMgaaeqaaaGcca GLOaGaayzkaaGaaGypamaaceaabaqbaeaabiGaaaqaamaalaaabaGa amOCaiaadchadaWgaaWcbaGaamyAaiaadUgaaeqaaaGcbaGaamiuam aaBaaaleaacaWGPbaabeaaaaaakeaacaqGPbGaaeOzaiaaysW7caaM e8Uaam4AaiabgIGiolaadAeadaWgaaWcbaGaamyAaaqabaaakeaada WcaaqaaiaadIfadaWgaaWcbaGaamyAaaqabaGccaWGWbWaaSbaaSqa aiaadMgacaWGRbaabeaaaOqaaiaaigdacqGHsislcaWGqbWaaSbaaS qaaiaadMgaaeqaaaaaaOqaaiaabMgacaqGMbGaaGjbVlaaysW7caWG RbGaeyicI4SaamiramaaBaaaleaacaWGPbaabeaakiaai6caaaaaca GL7baaaaa@640F@

The expected value of A i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbGaam4Aaaqabaaaaa@36F7@ is

π k | i = EE ( A i k | X i ) = r p i k P i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa beaakiaai2dacaqGfbGaaeyramaabmaabaWaaqGaaeaacaWGbbWaaS baaSqaaiaadMgacaWGRbaabeaakiaaykW7aiaawIa7aiaaykW7caWG ybWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaGypamaala aabaGaamOCaiaadchadaWgaaWcbaGaamyAaiaadUgaaeqaaaGcbaGa amiuamaaBaaaleaacaWGPbaabeaaaaGccaaISaaaaa@5190@

k L . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaadYeacaaIUaaaaa@3824@ The problem is that we know p i k , r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaam4AaaqabaGccaaISaGaamOCaaaa@38DD@ and X i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaWGPbaabeaakiaacYcaaaa@36D8@ but not P i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbaabeaakiaac6caaaa@36D2@ We can estimate P i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbaabeaaaaa@3616@ using the method of moments by solving E ( X i ) = X i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyramaabm aabaGaamiwamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaa i2dacaWGybWaaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@3BF1@ which gives

X i = r ( 1 P ^ i ) P ^ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaWGPbaabeaakiaai2dadaWcaaqaaiaadkhadaqadaqaaiaa igdacqGHsislceWGqbGbaKaadaWgaaWcbaGaamyAaaqabaaakiaawI cacaGLPaaaaeaaceWGqbGbaKaadaWgaaWcbaGaamyAaaqabaaaaaaa @3F2E@

and therefore

P ^ i 1 = r X i + r . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiuayaaja WaaSbaaSqaaiaadMgacaaIXaaabeaakiaai2dadaWcaaqaaiaadkha aeaacaWGybWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamOCaaaaca aIUaaaaa@3D4A@

The maximum likelihood method provides the same estimator as the method of moments, but this estimator is biased (Mikulski and Smith 1976; Johnson et al. 2005, page 222). In fact, the unbiased minimum variance estimator is

P ^ i 2 = r 1 X i + r 1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiuayaaja WaaSbaaSqaaiaadMgacaaIYaaabeaakiaai2dadaWcaaqaaiaadkha cqGHsislcaaIXaaabaGaamiwamaaBaaaleaacaWGPbaabeaakiabgU caRiaadkhacqGHsislcaaIXaaaaiaai6caaaa@409B@

However, 1 / P ^ i 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca aIXaaabaGabmiuayaajaWaaSbaaSqaaiaadMgacaaIXaaabeaaaaaa aa@37B2@ is unbiased for P i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbaabeaakiaac6caaaa@36D2@

Again, since we are using weights that are inverses of π k | i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa beaakiaac6caaaa@3D56@ The inverses of π k | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa beaaaaa@3C9A@ are thus estimated as follows:

1 / π k | i ^ = { P ^ i 2 r p i k = r 1 ( X i + r 1 ) r p i k if k F i 1 P ^ i 2 X i p i k = 1 ( X i + r 1 ) p i k if k D i . ( 5.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrViFE0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaada WcgaqaaiaaigdaaeaacqaHapaCdaWgaaWcbaWaaqGaaeaacaWGRbGa aGPaVdGaayjcSdGaaGPaVlaadMgaaeqaaaaaaOGaayPadaGaaGypam aaceaabaqbaeaabiWaaaqaamaalaaabaGabmiuayaajaWaaSbaaSqa aiaadMgacaaIYaaabeaaaOqaaiaadkhacaWGWbWaaSbaaSqaaiaadM gacaWGRbaabeaaaaaakeaacaaI9aWaaSaaaeaacaWGYbGaeyOeI0Ia aGymaaqaamaabmaabaGaamiwamaaBaaaleaacaWGPbaabeaakiabgU caRiaadkhacqGHsislcaaIXaaacaGLOaGaayzkaaGaamOCaiaadcha daWgaaWcbaGaamyAaiaadUgaaeqaaaaaaOqaaiaabMgacaqGMbGaaG jbVlaaysW7caWGRbGaeyicI4SaamOramaaBaaaleaacaWGPbaabeaa aOqaamaalaaabaGaaGymaiabgkHiTiqadcfagaqcamaaBaaaleaaca WGPbGaaGOmaaqabaaakeaacaWGybWaaSbaaSqaaiaadMgaaeqaaOGa amiCamaaBaaaleaacaWGPbGaam4AaaqabaaaaaGcbaGaaGypamaala aabaGaaGymaaqaamaabmaabaGaamiwamaaBaaaleaacaWGPbaabeaa kiabgUcaRiaadkhacqGHsislcaaIXaaacaGLOaGaayzkaaGaamiCam aaBaaaleaacaWGPbGaam4AaaqabaaaaaGcbaGaaeyAaiaabAgacaaM e8UaaGjbVlaadUgacqGHiiIZcaWGebWaaSbaaSqaaiaadMgaaeqaaO GaaGOlaaaaaiaawUhaaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Ua aiikaiaaiwdacaGGUaGaaGymaiaacMcaaaa@89E3@

Date modified: