Unequal probability inverse sampling
Section 5. Unequal probability sampling with replacementUnequal probability inverse sampling
Section 5. Unequal probability sampling with replacement
Unequal probability sampling is not really more
difficult to process when the draw is with replacement. Now let
p
i
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa
aaleaacaWGPbGaam4Aaaqabaaaaa@3726@
denote
the probability of an occupation being drawn in each draw with
∑
k
∈
L
p
i
k
=
1.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale
aacaWGRbGaeyicI4Saamitaaqab0GaeyyeIuoakiaaykW7caWGWbWa
aSbaaSqaaiaadMgacaWGRbaabeaakiaai2dacaaIXaGaaGOlaaaa@4067@
Let
P
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWGPbaabeaaaaa@3616@
be the sum of
p
i
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa
aaleaacaWGPbGaam4Aaaqabaaaaa@3726@
limited to the occupations in enterprise
i
:
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaacQ
daaaa@35D3@
P
i
=
∑
k
∈
F
i
p
i
k
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWGPbaabeaakiaai2dadaaeqbqabSqaaiaadUgacqGHiiIZ
caWGgbWaaSbaaWqaaiaadMgaaeqaaaWcbeqdcqGHris5aOGaaGPaVl
aadchadaWgaaWcbaGaamyAaiaadUgaaeqaaOGaaGOlaaaa@42C5@
In this case,
X
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa
aaleaacaWGPbaabeaaaaa@361E@
has a negative binomial distribution with
parameters
r
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@351E@
and
P
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWGPbaabeaakiaac6caaaa@36D2@
Therefore,
E
(
X
i
)
=
r
(
1
−
P
i
)
P
i
and
var
(
X
i
)
=
r
(
1
−
P
i
)
P
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyramaabm
aabaGaamiwamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaa
i2dadaWcaaqaaiaadkhadaqadaqaaiaaigdacqGHsislcaWGqbWaaS
baaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGaamiuamaaBaaa
leaacaWGPbaabeaaaaGccaaMe8UaaGjbVlaabggacaqGUbGaaeizai
aaysW7caaMe8UaaeODaiaabggacaqGYbWaaeWaaeaacaWGybWaaSba
aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaGypamaalaaabaGaam
OCamaabmaabaGaaGymaiabgkHiTiaadcfadaWgaaWcbaGaamyAaaqa
baaakiaawIcacaGLPaaaaeaacaWGqbWaaSbaaSqaaiaadMgaaeqaaa
aakiaai6caaaa@5A5E@
Let
A
i
k
,
k
∈
L
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa
aaleaacaWGPbGaam4AaaqabaGccaaISaGaam4AaiabgIGiolaadYea
aaa@3AFC@
be the
number of times that unit
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@3517@
is
selected in the sample. In an unequal probability design with replacement of
size
n
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaacY
caaaa@35CA@
the
values of
A
i
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa
aaleaacaWGPbGaam4Aaaqabaaaaa@36F7@
have a
multinomial distribution. Therefore,
Pr
(
A
i
k
=
a
i
k
,
k
∈
L
)
=
n
!
∏
k
∈
L
p
i
k
a
i
k
a
i
k
!
,
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiuaiaack
hadaqadaqaaiaadgeadaWgaaWcbaGaamyAaiaadUgaaeqaaOGaaGyp
aiaadggadaWgaaWcbaGaamyAaiaadUgaaeqaaOGaaGilaiaadUgacq
GHiiIZcaWGmbaacaGLOaGaayzkaaGaaGypaiaad6gacaaIHaWaaebu
aeqaleaacaWGRbGaeyicI4Saamitaaqab0Gaey4dIunakmaalaaaba
GaamiCamaaDaaaleaacaWGPbGaam4AaaqaaiaadggadaWgaaadbaGa
amyAaiaadUgaaeqaaaaaaOqaaiaadggadaWgaaWcbaGaamyAaiaadU
gaaeqaaOGaaGyiaaaacaaISaaaaa@543E@
where
A
i
k
=
0,
…
,
n
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa
aaleaacaWGPbGaam4AaaqabaGccaaI9aGaaGimaiaaiYcacqWIMaYs
caaISaGaamOBaiaaiYcaaaa@3CB9@
and
∑
k
∈
L
a
i
k
=
n
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale
aacaWGRbGaeyicI4Saamitaaqab0GaeyyeIuoakiaaykW7caWGHbWa
aSbaaSqaaiaadMgacaWGRbaabeaakiaai2dacaWGUbGaaGOlaaaa@4090@
If this multinomial vector is conditioned on a
fixed size in one part of the population, then
Pr (
A
i k
=
a
i k
, k ∈
F
i
|
∑
k ∈
F
i
A
i k
= r
)
=
Pr (
A
i k
=
a
i k
, k ∈
F
i
and
∑
k ∈
F
i
A
i k
= r
)
Pr (
∑
k ∈
F
i
A
i k
= r
)
=
n !
(
1 −
P
i
)
(
n − r
)
(
n − r
) !
∏
k ∈
F
i
p
i k
a
i k
a
i k
!
n !
P
i
r
(
1 −
P
i
)
n − r
r ! (
n − r
) !
= r !
∏
k ∈
F
i
(
p
i k
P
i
)
a
i k
1
a
i k
!
,
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa
qaaiGaccfacaGGYbWaaeWabeaacaWGbbWaaSbaaSqaaiaadMgacaWG
Rbaabeaakiaai2dacaWGHbWaaSbaaSqaaiaadMgacaWGRbaabeaaki
aaiYcacaWGRbGaeyicI4SaamOramaaBaaaleaacaWGPbaabeaakmaa
eeqabaGaaGPaVpaaqafabeWcbaGaam4AaiabgIGiolaadAeadaWgaa
adbaGaamyAaaqabaaaleqaniabggHiLdGccaWGbbWaaSbaaSqaaiaa
dMgacaWGRbaabeaakiaai2dacaWGYbaacaGLhWoaaiaawIcacaGLPa
aaaeaacaaI9aWaaSaaaeaaciGGqbGaaiOCamaabmqabaGaamyqamaa
BaaaleaacaWGPbGaam4AaaqabaGccaaI9aGaamyyamaaBaaaleaaca
WGPbGaam4AaaqabaGccaaISaGaam4AaiabgIGiolaadAeadaWgaaWc
baGaamyAaaqabaGccaaMe8UaaGjbVlaabggacaqGUbGaaeizaiaays
W7caaMe8+aaabuaeqaleaacaWGRbGaeyicI4SaamOramaaBaaameaa
caWGPbaabeaaaSqab0GaeyyeIuoakiaaykW7caWGbbWaaSbaaSqaai
aadMgacaWGRbaabeaakiaai2dacaWGYbaacaGLOaGaayzkaaaabaGa
ciiuaiaackhadaqadeqaamaaqafabeWcbaGaam4AaiabgIGiolaadA
eadaWgaaadbaGaamyAaaqabaaaleqaniabggHiLdGccaaMc8Uaamyq
amaaBaaaleaacaWGPbGaam4AaaqabaGccaaI9aGaamOCaaGaayjkai
aawMcaaaaaaeaaaeaacaaI9aWaaSaaaeaadaWcaaqaaiaad6gacaaI
HaWaaeWaaeaacaaIXaGaeyOeI0IaamiuamaaBaaaleaacaWGPbaabe
aaaOGaayjkaiaawMcaamaaCaaaleqabaWaaeWaaeaacaWGUbGaeyOe
I0IaamOCaaGaayjkaiaawMcaaaaaaOqaamaabmaabaGaamOBaiabgk
HiTiaadkhaaiaawIcacaGLPaaacaaIHaaaamaarafabeWcbaGaam4A
aiabgIGiolaadAeadaWgaaadbaGaamyAaaqabaaaleqaniabg+Givd
GcdaWcaaqaaiaadchadaqhaaWcbaGaamyAaiaadUgaaeaacaWGHbWa
aSbaaeaacaWGPbGaam4AaaqabaaaaaGcbaGaamyyamaaBaaaleaaca
WGPbGaam4AaaqabaGccaaIHaaaaaqaamaalaaabaGaamOBaiaaigca
caWGqbWaa0baaSqaaiaadMgaaeaacaWGYbaaaOWaaeWaaeaacaaIXa
GaeyOeI0IaamiuamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMca
amaaCaaaleqabaGaamOBaiabgkHiTiaadkhaaaaakeaacaWGYbGaaG
yiamaabmaabaGaamOBaiabgkHiTiaadkhaaiaawIcacaGLPaaacaaI
HaaaaaaaaeaaaeaacaaI9aGaamOCaiaaigcadaqeqbqabSqaaiaadU
gacqGHiiIZcaWGgbWaaSbaaWqaaiaadMgaaeqaaaWcbeqdcqGHpis1
aOWaaeWaaeaadaWcaaqaaiaadchadaWgaaWcbaGaamyAaiaadUgaae
qaaaGcbaGaamiuamaaBaaaleaacaWGPbaabeaaaaaakiaawIcacaGL
PaaadaahaaWcbeqaaiaadggadaWgaaadbaGaamyAaiaadUgaaeqaaa
aakmaalaaabaGaaGymaaqaaiaadggadaWgaaWcbaGaamyAaiaadUga
aeqaaOGaaGyiaaaacaaISaaaaaaa@D3EF@
with
∑
k
∈
F
i
a
i
k
=
r
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale
aacaWGRbGaeyicI4SaamOramaaBaaameaacaWGPbaabeaaaSqab0Ga
eyyeIuoakiaaykW7caWGHbWaaSbaaSqaaiaadMgacaWGRbaabeaaki
aai2dacaWGYbGaaGOlaaaa@41B4@
This shows
that, if the sum of
A
i
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa
aaleaacaWGPbGaam4Aaaqabaaaaa@36F7@
is conditioned on one part of the population,
the distribution remains multinomial and conditionally there is still an
unequal probability design with replacement.
With the procedure in which we draw with
replacement until we obtain
r
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@351E@
occupations in enterprise
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaacY
caaaa@35C5@
we have
E
(
A
i
k
|
X
i
)
=
{
r
p
i
k
P
i
if
k
∈
F
i
X
i
p
i
k
1
−
P
i
if
k
∈
D
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqr=ipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyramaabm
aabaWaaqGaaeaacaWGbbWaaSbaaSqaaiaadMgacaWGRbaabeaakiaa
ykW7aiaawIa7aiaaykW7caWGybWaaSbaaSqaaiaadMgaaeqaaaGcca
GLOaGaayzkaaGaaGypamaaceaabaqbaeaabiGaaaqaamaalaaabaGa
amOCaiaadchadaWgaaWcbaGaamyAaiaadUgaaeqaaaGcbaGaamiuam
aaBaaaleaacaWGPbaabeaaaaaakeaacaqGPbGaaeOzaiaaysW7caaM
e8Uaam4AaiabgIGiolaadAeadaWgaaWcbaGaamyAaaqabaaakeaada
WcaaqaaiaadIfadaWgaaWcbaGaamyAaaqabaGccaWGWbWaaSbaaSqa
aiaadMgacaWGRbaabeaaaOqaaiaaigdacqGHsislcaWGqbWaaSbaaS
qaaiaadMgaaeqaaaaaaOqaaiaabMgacaqGMbGaaGjbVlaaysW7caWG
RbGaeyicI4SaamiramaaBaaaleaacaWGPbaabeaakiaai6caaaaaca
GL7baaaaa@640F@
The expected value
of
A
i
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa
aaleaacaWGPbGaam4Aaaqabaaaaa@36F7@
is
π
k
|
i
=
EE
(
A
i
k
|
X
i
)
=
r
p
i
k
P
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa
beaakiaai2dacaqGfbGaaeyramaabmaabaWaaqGaaeaacaWGbbWaaS
baaSqaaiaadMgacaWGRbaabeaakiaaykW7aiaawIa7aiaaykW7caWG
ybWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaGypamaala
aabaGaamOCaiaadchadaWgaaWcbaGaamyAaiaadUgaaeqaaaGcbaGa
amiuamaaBaaaleaacaWGPbaabeaaaaGccaaISaaaaa@5190@
k
∈
L
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI
GiolaadYeacaaIUaaaaa@3824@
The problem is that we know
p
i
k
,
r
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa
aaleaacaWGPbGaam4AaaqabaGccaaISaGaamOCaaaa@38DD@
and
X
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa
aaleaacaWGPbaabeaakiaacYcaaaa@36D8@
but not
P
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWGPbaabeaakiaac6caaaa@36D2@
We can estimate
P
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWGPbaabeaaaaa@3616@
using the method of moments by solving
E
(
X
i
)
=
X
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyramaabm
aabaGaamiwamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaa
i2dacaWGybWaaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@3BF1@
which gives
X
i
=
r
(
1
−
P
^
i
)
P
^
i
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa
aaleaacaWGPbaabeaakiaai2dadaWcaaqaaiaadkhadaqadaqaaiaa
igdacqGHsislceWGqbGbaKaadaWgaaWcbaGaamyAaaqabaaakiaawI
cacaGLPaaaaeaaceWGqbGbaKaadaWgaaWcbaGaamyAaaqabaaaaaaa
@3F2E@
and
therefore
P
^
i
1
=
r
X
i
+
r
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiuayaaja
WaaSbaaSqaaiaadMgacaaIXaaabeaakiaai2dadaWcaaqaaiaadkha
aeaacaWGybWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamOCaaaaca
aIUaaaaa@3D4A@
The maximum
likelihood method provides the same estimator as the method of moments, but
this estimator is biased (Mikulski and Smith 1976; Johnson et al. 2005,
page 222). In fact, the unbiased minimum variance estimator is
P
^
i
2
=
r
−
1
X
i
+
r
−
1
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiuayaaja
WaaSbaaSqaaiaadMgacaaIYaaabeaakiaai2dadaWcaaqaaiaadkha
cqGHsislcaaIXaaabaGaamiwamaaBaaaleaacaWGPbaabeaakiabgU
caRiaadkhacqGHsislcaaIXaaaaiaai6caaaa@409B@
However,
1
/
P
^
i
1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca
aIXaaabaGabmiuayaajaWaaSbaaSqaaiaadMgacaaIXaaabeaaaaaa
aa@37B2@
is unbiased for
P
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWGPbaabeaakiaac6caaaa@36D2@
Again, since we are using weights that are
inverses of
π
k
|
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa
beaakiaac6caaaa@3D56@
The
inverses of
π
k
|
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa
beaaaaa@3C9A@
are thus
estimated as follows:
1
/
π
k
|
i
^
=
{
P
^
i
2
r
p
i
k
=
r
−
1
(
X
i
+
r
−
1
)
r
p
i
k
if
k
∈
F
i
1
−
P
^
i
2
X
i
p
i
k
=
1
(
X
i
+
r
−
1
)
p
i
k
if
k
∈
D
i
.
(
5.1
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrViFE0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaada
WcgaqaaiaaigdaaeaacqaHapaCdaWgaaWcbaWaaqGaaeaacaWGRbGa
aGPaVdGaayjcSdGaaGPaVlaadMgaaeqaaaaaaOGaayPadaGaaGypam
aaceaabaqbaeaabiWaaaqaamaalaaabaGabmiuayaajaWaaSbaaSqa
aiaadMgacaaIYaaabeaaaOqaaiaadkhacaWGWbWaaSbaaSqaaiaadM
gacaWGRbaabeaaaaaakeaacaaI9aWaaSaaaeaacaWGYbGaeyOeI0Ia
aGymaaqaamaabmaabaGaamiwamaaBaaaleaacaWGPbaabeaakiabgU
caRiaadkhacqGHsislcaaIXaaacaGLOaGaayzkaaGaamOCaiaadcha
daWgaaWcbaGaamyAaiaadUgaaeqaaaaaaOqaaiaabMgacaqGMbGaaG
jbVlaaysW7caWGRbGaeyicI4SaamOramaaBaaaleaacaWGPbaabeaa
aOqaamaalaaabaGaaGymaiabgkHiTiqadcfagaqcamaaBaaaleaaca
WGPbGaaGOmaaqabaaakeaacaWGybWaaSbaaSqaaiaadMgaaeqaaOGa
amiCamaaBaaaleaacaWGPbGaam4AaaqabaaaaaGcbaGaaGypamaala
aabaGaaGymaaqaamaabmaabaGaamiwamaaBaaaleaacaWGPbaabeaa
kiabgUcaRiaadkhacqGHsislcaaIXaaacaGLOaGaayzkaaGaamiCam
aaBaaaleaacaWGPbGaam4AaaqabaaaaaGcbaGaaeyAaiaabAgacaaM
e8UaaGjbVlaadUgacqGHiiIZcaWGebWaaSbaaSqaaiaadMgaaeqaaO
GaaGOlaaaaaiaawUhaaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Ua
aiikaiaaiwdacaGGUaGaaGymaiaacMcaaaa@89E3@
ISSN : 1492-0921
Editorial policy
Survey Methodology publishes articles dealing with various aspects of statistical development relevant to a statistical agency, such as design issues in the context of practical constraints, use of different data sources and collection techniques, total survey error, survey evaluation, research in survey methodology, time series analysis, seasonal adjustment, demographic studies, data integration, estimation and data analysis methods, and general survey systems development. The emphasis is placed on the development and evaluation of specific methodologies as applied to data collection or the data themselves. All papers will be refereed. However, the authors retain full responsibility for the contents of their papers and opinions expressed are not necessarily those of the Editorial Board or of Statistics Canada.
Submission of Manuscripts
Survey Methodology is published twice a year in electronic format. Authors are invited to submit their articles in English or French in electronic form, preferably in Word to the Editor, (statcan.smj-rte.statcan@canada.ca , Statistics Canada, 150 Tunney’s Pasture Driveway, Ottawa, Ontario, Canada, K1A 0T6). For formatting instructions, please see the guidelines provided in the journal and on the web site (www.statcan.gc.ca/SurveyMethodology).
Note of appreciation
Canada owes the success of its statistical system to a long-standing partnership between Statistics Canada, the citizens of Canada, its businesses, governments and other institutions. Accurate and timely statistical information could not be produced without their continued co-operation and goodwill.
Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt, reliable and courteous manner. To this end, the Agency has developed standards of service which its employees observe in serving its clients.
Copyright
Published by authority of the Minister responsible for Statistics Canada.
© Minister of Industry, 2016
Use of this publication is governed by the Statistics Canada Open Licence Agreement .
Catalogue No. 12-001-X
Frequency: semi-annual
Ottawa
Date modified:
2016-12-20