Unequal probability inverse sampling
Section 3. Simple random sampling with replacementUnequal probability inverse sampling
Section 3. Simple random sampling with replacement
Assume that enterprise
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@3515@
has
proportion
p
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa
aaleaacaWGPbaabeaaaaa@3636@
of the
occupations in the list in the enterprise. If the sample of occupations is
drawn with replacement in enterprise
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@3515@
until
r
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@351E@
occupations in the enterprise have been
identified, then
X
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa
aaleaacaWGPbaabeaaaaa@361E@
has a
negative binomial distribution denoted by
X
i
∼
N
B
(
r
,
p
i
)
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa
aaleaacaWGPbaabeaakiablYJi6iaad6eacaWGcbWaaeWaaeaacaWG
YbGaaGilaiaadchadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPa
aacaGGUaaaaa@3EEC@
In that
case,
Pr
(
X
i
=
x
i
)
=
(
r
+
x
i
−
1
x
i
)
p
i
r
(
1
−
p
i
)
x
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiuaiaack
hadaqadaqaaiaadIfadaWgaaWcbaGaamyAaaqabaGccaaI9aGaamiE
amaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaai2dadaqada
qaauaabeqaceaaaeaacaWGYbGaey4kaSIaamiEamaaBaaaleaacaWG
PbaabeaakiabgkHiTiaaigdaaeaacaWG4bWaaSbaaSqaaiaadMgaae
qaaaaaaOGaayjkaiaawMcaaiaadchadaqhaaWcbaGaamyAaaqaaiaa
dkhaaaGcdaqadaqaaiaaigdacqGHsislcaWGWbWaaSbaaSqaaiaadM
gaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWG4bWaaSbaaWqa
aiaadMgaaeqaaaaakiaaiYcaaaa@51E4@
with
x
i
∈
ℕ
=
{
0,1,2,3,
…
}
,
p
i
∈
[
0,1
]
,
r
∈
ℕ
*
=
{
1,2,3,
…
}
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa
aaleaacaWGPbaabeaakiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwA
KbstHrhAGq1DVbacfaGae8xfH4KaaGypamaacmaabaGaaGimaiaaiY
cacaaIXaGaaGilaiaaikdacaaISaGaaG4maiaaiYcacqWIMaYsaiaa
wUhacaGL9baacaaISaGaamiCamaaBaaaleaacaWGPbaabeaakiabgI
GiopaadmaabaGaaGimaiaaiYcacaaIXaaacaGLBbGaayzxaaGaaGil
aiaadkhacqGHiiIZcqWFveItdaahaaWcbeqaaiaaiQcaaaGccaaI9a
WaaiWaaeaacaaIXaGaaGilaiaaikdacaaISaGaaG4maiaaiYcacqWI
MaYsaiaawUhacaGL9baacaGGUaaaaa@630F@
Furthermore,
E
(
X
i
)
=
r
(
1
−
p
i
)
p
i
and
var
(
X
i
)
=
r
(
1
−
p
i
)
p
i
2
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyramaabm
aabaGaamiwamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaa
i2dadaWcaaqaaiaadkhadaqadaqaaiaaigdacqGHsislcaWGWbWaaS
baaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGaamiCamaaBaaa
leaacaWGPbaabeaaaaGccaaMe8Uaaeyyaiaab6gacaqGKbGaaGjbVl
aabAhacaqGHbGaaeOCamaabmaabaGaamiwamaaBaaaleaacaWGPbaa
beaaaOGaayjkaiaawMcaaiaai2dadaWcaaqaaiaadkhadaqadaqaai
aaigdacqGHsislcaWGWbWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGa
ayzkaaaabaGaamiCamaaDaaaleaacaWGPbaabaGaaGOmaaaaaaGcca
aIUaaaaa@5881@
Let
A
i
k
,
k
∈
L
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa
aaleaacaWGPbGaam4AaaqabaGccaaISaGaam4AaiabgIGiolaadYea
caaISaaaaa@3BB2@
be the number of times that unit
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@3517@
is selected in the sample taken from
enterprise
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaac6
caaaa@35C7@
In a simple design with replacement of size
n
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaacY
caaaa@35CA@
the values of
A
i
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa
aaleaacaWGPbGaam4Aaaqabaaaaa@36F7@
have a multinomial distribution. Therefore,
Pr
(
A
i
k
=
a
i
k
,
k
∈
L
)
=
n
!
M
n
∏
k
∈
L
1
a
i
k
!
,
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiuaiaack
hadaqadaqaaiaadgeadaWgaaWcbaGaamyAaiaadUgaaeqaaOGaaGyp
aiaadggadaWgaaWcbaGaamyAaiaadUgaaeqaaOGaaGilaiaadUgacq
GHiiIZcaWGmbaacaGLOaGaayzkaaGaaGypamaalaaabaGaamOBaiaa
igcaaeaacaWGnbWaaWbaaSqabeaacaWGUbaaaaaakmaarafabeWcba
Gaam4AaiabgIGiolaadYeaaeqaniabg+GivdGcdaWcaaqaaiaaigda
aeaacaWGHbWaaSbaaSqaaiaadMgacaWGRbaabeaakiaaigcaaaGaaG
ilaaaa@510A@
where
A
i
k
=
0,
…
,
n
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa
aaleaacaWGPbGaam4AaaqabaGccaaI9aGaaGimaiaaiYcacqWIMaYs
caaISaGaamOBaiaaiYcaaaa@3CB9@
and
∑
k
∈
L
a
i
k
=
n
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale
aacaWGRbGaeyicI4Saamitaaqab0GaeyyeIuoakiaaykW7caWGHbWa
aSbaaSqaaiaadMgacaWGRbaabeaakiaai2dacaWGUbGaaGOlaaaa@4090@
If this multinomial vector is conditioned on a
fixed size in a given part of the population, then
Pr
(
A
i
k
=
a
i
k
,
k
∈
F
i
|
∑
k
∈
F
i
A
i
k
=
r
)
=
Pr
(
A
i
k
=
a
i
k
,
k
∈
F
i
et
∑
k
∈
F
i
A
i
k
=
r
)
Pr
(
∑
k
∈
F
i
A
i
k
=
r
)
=
n
!
(
1
−
p
i
)
(
n
−
r
)
(
n
−
r
)
!
M
r
∏
k
∈
F
i
1
a
i
k
!
n
!
p
i
r
(
1
−
p
i
)
n
−
r
r
!
(
n
−
r
)
!
=
r
!
(
1
M
p
i
)
r
∏
k
∈
F
i
1
a
i
k
!
,
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuj0lXxdrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaaeWaca
aabaGaciiuaiaackhadaqadeqaaiaadgeadaWgaaWcbaGaamyAaiaa
dUgaaeqaaOGaaGypaiaadggadaWgaaWcbaGaamyAaiaadUgaaeqaaO
GaaGilaiaadUgacqGHiiIZcaWGgbWaaSbaaSqaaiaadMgaaeqaaOWa
aqqabeaacaaMc8+aaabuaeqaleaacaWGRbGaeyicI4SaamOramaaBa
aameaacaWGPbaabeaaaSqab0GaeyyeIuoakiaadgeadaWgaaWcbaGa
amyAaiaadUgaaeqaaOGaaGypaiaadkhaaiaawEa7aaGaayjkaiaawM
caaaqaaiaai2dadaWcaaqaaiGaccfacaGGYbWaaeWaaeaacaWGbbWa
aSbaaSqaaiaadMgacaWGRbaabeaakiaai2dacaWGHbWaaSbaaSqaai
aadMgacaWGRbaabeaakiaaiYcacaWGRbGaeyicI4SaamOramaaBaaa
leaacaWGPbaabeaakiaaysW7caaMc8UaaeyzaiaabshacaaMc8UaaG
jbVpaaqafabeWcbaGaam4AaiabgIGiolaadAeadaWgaaadbaGaamyA
aaqabaaaleqaniabggHiLdGccaWGbbWaaSbaaSqaaiaadMgacaWGRb
aabeaakiaai2dacaWGYbaacaGLOaGaayzkaaaabaGaciiuaiaackha
daqadaqaamaaqafabeWcbaGaam4AaiabgIGiolaadAeadaWgaaadba
GaamyAaaqabaaaleqaniabggHiLdGccaWGbbWaaSbaaSqaaiaadMga
caWGRbaabeaakiaai2dacaWGYbaacaGLOaGaayzkaaaaaaqaaaqaai
aai2dadaWcaaqaamaalaaabaGaamOBaiaaigcadaqadaqaaiaaigda
cqGHsislcaWGWbWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa
WaaWbaaSqabeaadaqadaqaaiaad6gacqGHsislcaWGYbaacaGLOaGa
ayzkaaaaaaGcbaWaaeWaaeaacaWGUbGaeyOeI0IaamOCaaGaayjkai
aawMcaaiaaigcacaWGnbWaaWbaaSqabeaacaWGYbaaaaaakmaarafa
beWcbaGaam4AaiabgIGiolaadAeadaWgaaadbaGaamyAaaqabaaale
qaniabg+GivdGcdaWcaaqaaiaaigdaaeaacaaMe8UaamyyamaaBaaa
leaacaWGPbGaam4AaaqabaGccaaIHaaaaaqaamaalaaabaGaamOBai
aaigcacaWGWbWaa0baaSqaaiaadMgaaeaacaWGYbaaaOWaaeWaaeaa
caaIXaGaeyOeI0IaamiCamaaBaaaleaacaWGPbaabeaaaOGaayjkai
aawMcaamaaCaaaleqabaGaamOBaiabgkHiTiaadkhaaaaakeaacaWG
YbGaaGyiamaabmaabaGaamOBaiabgkHiTiaadkhaaiaawIcacaGLPa
aacaaIHaaaaaaaaeaaaeaacaaI9aGaamOCaiaaigcadaqadaqaamaa
laaabaGaaGymaaqaaiaad2eacaWGWbWaaSbaaSqaaiaadMgaaeqaaa
aaaOGaayjkaiaawMcaamaaCaaaleqabaGaamOCaaaakmaarafabeWc
baGaam4AaiabgIGiolaadAeadaWgaaadbaGaamyAaaqabaaaleqani
abg+GivdGcdaWcaaqaaiaaigdaaeaacaWGHbWaaSbaaSqaaiaadMga
caWGRbaabeaakiaaigcaaaGaaGilaaaaaaa@CF91@
with
∑
k
∈
F
i
a
i
k
=
r
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale
aacaWGRbGaeyicI4SaamOramaaBaaameaacaWGPbaabeaaaSqab0Ga
eyyeIuoakiaaykW7caWGHbWaaSbaaSqaaiaadMgacaWGRbaabeaaki
aai2dacaWGYbGaaGOlaaaa@41B4@
This shows
that, if the sum of
A
i
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa
aaleaacaWGPbGaam4Aaaqabaaaaa@36F7@
is conditioned on one part of the population,
the distribution remains multinomial and conditionally there is still a simple
design with replacement.
With the procedure in which we draw with
replacement until we obtain
r
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@351E@
occupations in enterprise
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaacY
caaaa@35C5@
we have
E
(
A
i
k
|
X
i
)
=
{
r
M
p
i
if
k
∈
F
i
X
i
M
−
M
p
i
if
k
∈
D
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyramaabm
aabaWaaqGaaeaacaWGbbWaaSbaaSqaaiaadMgacaWGRbaabeaakiaa
ykW7aiaawIa7aiaaykW7caWGybWaaSbaaSqaaiaadMgaaeqaaaGcca
GLOaGaayzkaaGaaGypamaaceaabaqbaeaabiGaaaqaamaalaaabaGa
amOCaaqaaiaad2eacaWGWbWaaSbaaSqaaiaadMgaaeqaaaaaaOqaai
aabMgacaqGMbGaaGjbVlaaykW7caWGRbGaeyicI4SaamOramaaBaaa
leaacaWGPbaabeaaaOqaamaalaaabaGaamiwamaaBaaaleaacaWGPb
aabeaaaOqaaiaad2eacqGHsislcaWGnbGaamiCamaaBaaaleaacaWG
PbaabeaaaaaakeaacaqGPbGaaeOzaiaaysW7caaMc8Uaam4AaiabgI
GiolaadseadaWgaaWcbaGaamyAaaqabaGccaaIUaaaaaGaay5Eaaaa
aa@5FF1@
In fact,
conditionally on
X
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa
aaleaacaWGPbaabeaakiaacYcaaaa@36D8@
in
F
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa
aaleaacaWGPbaabeaaaaa@360C@
of size
M
p
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaadc
hadaWgaaWcbaGaamyAaaqabaGccaaISaaaaa@37C8@
r
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@351E@
occupations are selected and, in
D
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa
aaleaacaWGPbaabeaaaaa@360A@
of size
M
(
1
−
p
i
)
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaabm
aabaGaaGymaiabgkHiTiaadchadaWgaaWcbaGaamyAaaqabaaakiaa
wIcacaGLPaaacaGGSaaaaa@3AF3@
X
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa
aaleaacaWGPbaabeaaaaa@361E@
occupations are selected.
In the case with replacement, what is
calculated is not really an inclusion probability, but rather the expected
value of
A
i
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa
aaleaacaWGPbGaam4Aaaqabaaaaa@36F7@
which is
denoted as
π
k
|
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa
beaakiaacYcaaaa@3D54@
π
k
|
i
=
EE
(
A
i
k
|
X
i
)
=
r
M
p
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa
beaakiaai2dacaqGfbGaaeyramaabmaabaWaaqGaaeaacaWGbbWaaS
baaSqaaiaadMgacaWGRbaabeaakiaaykW7aiaawIa7aiaaykW7caWG
ybWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaGypamaala
aabaGaamOCaaqaaiaad2eacaWGWbWaaSbaaSqaaiaadMgaaeqaaaaa
kiaaiYcaaaa@4F79@
k
∈
L
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI
GiolaadYeacaaIUaaaaa@3824@
The problem is that we know
M
,
r
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaaiY
cacaWGYbaaaa@36A6@
and
X
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa
aaleaacaWGPbaabeaakiaacYcaaaa@36D8@
but not
p
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa
aaleaacaWGPbaabeaakiaac6caaaa@36F2@
We can estimate
p
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa
aaleaacaWGPbaabeaaaaa@3636@
using the method of moments by solving
E
(
X
i
)
=
X
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyramaabm
aabaGaamiwamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaa
i2dacaWGybWaaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@3BF1@
which yields
X
i
=
r
(
1
−
p
^
i
)
p
^
i
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa
aaleaacaWGPbaabeaakiaai2dadaWcaaqaaiaadkhadaqadaqaaiaa
igdacqGHsislceWGWbGbaKaadaWgaaWcbaGaamyAaaqabaaakiaawI
cacaGLPaaaaeaaceWGWbGbaKaadaWgaaWcbaGaamyAaaqabaaaaaaa
@3F6E@
and therefore
p
^
i
1
=
r
X
i
+
r
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiCayaaja
WaaSbaaSqaaiaadMgacaaIXaaabeaakiaai2dadaWcaaqaaiaadkha
aeaacaWGybWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamOCaaaaca
aIUaaaaa@3D6A@
The maximum
likelihood method provides the same estimator as the method of moments, but
this estimator is biased (Mikulski and Smith 1976; Johnson, Kemp and Kotz 2005,
page 222). If
r
≥
2,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgw
MiZkaaikdacaaISaaaaa@3856@
the unbiased minimum variance estimator of
p
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa
aaleaacaWGPbaabeaaaaa@3636@
is
p
^
i
2
=
r
−
1
X
i
+
r
−
1
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiCayaaja
WaaSbaaSqaaiaadMgacaaIYaaabeaakiaai2dadaWcaaqaaiaadkha
cqGHsislcaaIXaaabaGaamiwamaaBaaaleaacaWGPbaabeaakiabgU
caRiaadkhacqGHsislcaaIXaaaaiaai6caaaa@40BB@
However,
1
/
p
^
i
1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca
aIXaaabaGabmiCayaajaWaaSbaaSqaaiaadMgacaaIXaaabeaaaaaa
aa@37D2@
is unbiased for
1
/
p
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca
aIXaaabaGaamiCamaaBaaaleaacaWGPbaabeaaaaGccaGGUaaaaa@37C3@
Since we are using weights that are inverses of
π
k
|
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa
beaakiaacYcaaaa@3D54@
the
inverses of
π
k
|
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa
beaaaaa@3C9A@
are thus
estimated as follows:
1
/
π
k
|
i
^
=
{
M
p
^
i
2
r
=
M
(
r
−
1
)
r
(
X
i
+
r
−
1
)
if
k
∈
F
i
M
(
1
−
p
^
i
2
)
X
i
=
M
X
i
+
r
−
1
if
k
∈
D
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaada
WcgaqaaiaaigdaaeaacqaHapaCdaWgaaWcbaWaaqGaaeaacaWGRbGa
aGPaVdGaayjcSdGaaGPaVlaadMgaaeqaaaaaaOGaayPadaGaaGypam
aaceaabaqbaeaabiWaaaqaamaalaaabaGaamytaiqadchagaqcamaa
BaaaleaacaWGPbGaaGOmaaqabaaakeaacaWGYbaaaaqaaiaai2dada
Wcaaqaaiaad2eadaqadaqaaiaadkhacqGHsislcaaIXaaacaGLOaGa
ayzkaaaabaGaamOCamaabmaabaGaamiwamaaBaaaleaacaWGPbaabe
aakiabgUcaRiaadkhacqGHsislcaaIXaaacaGLOaGaayzkaaaaaaqa
aiaabMgacaqGMbGaaGjbVlaaykW7caWGRbGaeyicI4SaamOramaaBa
aaleaacaWGPbaabeaaaOqaamaalaaabaGaamytamaabmaabaGaaGym
aiabgkHiTiqadchagaqcamaaBaaaleaacaWGPbGaaGOmaaqabaaaki
aawIcacaGLPaaaaeaacaWGybWaaSbaaSqaaiaadMgaaeqaaaaaaOqa
aiaai2dadaWcaaqaaiaad2eaaeaacaWGybWaaSbaaSqaaiaadMgaae
qaaOGaey4kaSIaamOCaiabgkHiTiaaigdaaaaabaGaaeyAaiaabAga
caaMe8UaaGPaVlaadUgacqGHiiIZcaWGebWaaSbaaSqaaiaadMgaae
qaaOGaaGOlaaaaaiaawUhaaaaa@7634@
However, the case with replacement is not very
satisfactory, because selecting
r
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@351E@
occupations with replacement does not
necessarily result in
r
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@351E@
distinct
occupations, since the same occupation may be selected more than once.
Furthermore, sampling may be especially long if
M
p
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9
qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr
0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaadc
hadaWgaaWcbaGaamyAaaqabaaaaa@3708@
is
small. Therefore, sampling without replacement is preferred.
ISSN : 1492-0921
Editorial policy
Survey Methodology publishes articles dealing with various aspects of statistical development relevant to a statistical agency, such as design issues in the context of practical constraints, use of different data sources and collection techniques, total survey error, survey evaluation, research in survey methodology, time series analysis, seasonal adjustment, demographic studies, data integration, estimation and data analysis methods, and general survey systems development. The emphasis is placed on the development and evaluation of specific methodologies as applied to data collection or the data themselves. All papers will be refereed. However, the authors retain full responsibility for the contents of their papers and opinions expressed are not necessarily those of the Editorial Board or of Statistics Canada.
Submission of Manuscripts
Survey Methodology is published twice a year in electronic format. Authors are invited to submit their articles in English or French in electronic form, preferably in Word to the Editor, (statcan.smj-rte.statcan@canada.ca , Statistics Canada, 150 Tunney’s Pasture Driveway, Ottawa, Ontario, Canada, K1A 0T6). For formatting instructions, please see the guidelines provided in the journal and on the web site (www.statcan.gc.ca/SurveyMethodology).
Note of appreciation
Canada owes the success of its statistical system to a long-standing partnership between Statistics Canada, the citizens of Canada, its businesses, governments and other institutions. Accurate and timely statistical information could not be produced without their continued co-operation and goodwill.
Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt, reliable and courteous manner. To this end, the Agency has developed standards of service which its employees observe in serving its clients.
Copyright
Published by authority of the Minister responsible for Statistics Canada.
© Minister of Industry, 2016
Use of this publication is governed by the Statistics Canada Open Licence Agreement .
Catalogue No. 12-001-X
Frequency: semi-annual
Ottawa
Date modified:
2016-12-20