Comparison of some positive variance estimators for the Fay-Herriot small area model 5. Simulation set up and performance measures

5.1 Simulation set-up

We conducted a model-based Monte Carlo simulation, following Rubin-Bleuer and You (2012), to examine the finite sample performance of the various methods. ‘Direct’ estimates ( y 1 , , y m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG5bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG 5bWaaSbaaSqaaiaad2gaaeqaaaGccaGLOaGaayzkaaaaaa@3F4C@ with m = 15 , m = 45 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 da9iaaigdacaaI1aGaaiilaiaad2gacqGH9aqpcaaI0aGaaGynaaaa @3EC3@ and m = 100 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 da9iaaigdacaaIWaGaaGimaiaacYcaaaa@3C03@ are generated from the Fay-Herriot model in (2.3) with β = ( 5 , 4 , 3 , 2 , 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabCOSdyaafa Gaeyypa0ZaaeWaaeaacaaI1aGaaiilaiaaisdacaGGSaGaaG4maiaa cYcacaaIYaGaaiilaiaaigdaaiaawIcacaGLPaaaaaa@4176@ and covariates z i  ′ = ( 1 , z i 2 , , z i p ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabCOEayaafa WaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaeWaaeaacaaIXaGaaiil aiaadQhadaWgaaWcbaGaamyAaiaaikdaaeqaaOGaaiilaiablAcilj aacYcacaWG6bWaaSbaaSqaaiaadMgacaWGWbaabeaaaOGaayjkaiaa wMcaaiaacYcaaaa@4682@ generated once from normal distributions z i k k + N ( 1 , 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaWGPbGaam4AaaqabaGccqWI8iIocaWGRbGaey4kaSIaamOt amaabmaabaGaaGymaiaacYcacaaIXaaacaGLOaGaayzkaaGaaiilaa aa@426C@ k = 2 , , 5 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2 da9iaaikdacaGGSaGaeSOjGSKaaiilaiaaiwdacaGGSaaaaa@3DCF@ i = 1 , , m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2 da9iaaigdacaGGSaGaeSOjGSKaaiilaiaad2gacaGGSaaaaa@3DFF@ and held fixed over the repeated populations. The independent normal random area effects v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGPbaabeaaaaa@3941@ are generated with variance σ v 2 = 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaeyypa0JaaGymaiaac6caaaa@3D50@ Independent sampling errors e i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbaabeaakiaacYcaaaa@39EA@ are generated with sampling variances ψ i 50 / n i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaOGaeSixIa0aaSGbaeaacaaI1aGaaGimaaqa aiaad6gadaWgaaWcbaGaamyAaaqabaaaaOGaaiilaaaa@3FC3@ where n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbaabeaaaaa@3939@ is the sample size for area i , i = 1 , , m . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyAaiaacY cacaWGPbGaeyypa0JaaGymaiaacYcacqWIMaYscaGGSaGaamyBaiaa c6caaaa@3F9F@ There are five sampling variance groups determined by n i = 3, 5, 7, 10 or 15, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiaab2dacaqGGaGaae4maiaabYcacaqGGaGa aeynaiaabYcacaqGGaGaae4naiaabYcacaqGGaGaaeymaiaabcdaca qGGaGaae4BaiaabkhacaqGGaGaaeymaiaabwdacaqGSaaaaa@4773@ with signal to noise ratios σ v 2 / ψ i = 0.06 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaOGaeyypa0JaaGimaiaac6cacaaIWaGaaG OnaiaacYcaaaa@4281@ 0.1 ,   0.14 ,   0.2  and  0.3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaGimaiaac6 cacaaIXaGaaiilaiaabccacaaIWaGaaiOlaiaaigdacaaI0aGaaiil aiaabccacaaIWaGaaiOlaiaaikdacaqGGaGaaeyyaiaab6gacaqGKb GaaeiiaiaaicdacaGGUaGaaG4maiaacYcaaaa@47E1@ respectively. Thus when m = 100 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 da9iaaigdacaaIWaGaaGimaaaa@3B53@ there are 20 areas per signal to noise ratio. We first generated 50,000 sets of direct estimators for each case and computed the EBLUP and the true Monte Carlo MSE of the EBLUP using the REML, AM.LL, MIX, AM.YL and AR.YL variance estimators. We did not study AR.LL due to its poor performance reported by Li and Lahiri (2011). Next we generated 10,000 sets of direct estimators independently of the first 50,000. For each generated set, we computed the five variance estimators. For the MIX variance estimator we looked at three of the four linearization type MSE estimators discussed in Section 4. Since the linearization MSE estimators often do not estimate bias accurately, we also considered the parametric bootstrap MSE (PB MSE) estimator adjusted for bias using Pfeffermann and Glickman’s (2004) method and the naïve PB MSE estimator with 500 repetitions each (see Appendix B for the construction of the bootstrap). The Monte Carlo performance measures are defined below.

  1. The MSE of the EBLUP, MSE ¯ ( θ ^ i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca qGnbGaae4uaiaabweaaaWaaSbaaSqaaiabloriSbqabaGcdaqadaqa aiqbeI7aXzaajaWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa Gaaiilaaaa@4035@ per sampling variance group:

MSE ( θ ^ i ) = 1 50,000 r = 1 50,000 ( θ ^ i ( r ) θ i ( r ) ) 2 ,   MSE ¯ ( θ ^ ) = 5 m i { j : ψ j = 50 / n } MSE ( θ ^ i ) , = 1 , ... , 5. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeytaiaabo facaqGfbWaaeWaaeaacuaH4oqCgaqcamaaBaaaleaacaWGPbaabeaa aOGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaabwdaca qGWaGaaeilaiaabcdacaqGWaGaaeimaaaadaaeWbqaamaabmaabaGa fqiUdeNbaKaadaqhaaWcbaGaamyAaaqaamaabmaabaGaamOCaaGaay jkaiaawMcaaaaakiabgkHiTiabeI7aXnaaDaaaleaacaWGPbaabaWa aeWaaeaacaWGYbaacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaaqaaiaadkhacqGH9aqpcaaIXaaabaGaaeyn aiaabcdacaqGSaGaaeimaiaabcdacaqGWaaaniabggHiLdGccaGGSa GaaeiiamaanaaabaGaaeytaiaabofacaqGfbaaamaaBaaaleaacqWI tecBaeqaaOWaaeWaaeaacuaH4oqCgaqcaaGaayjkaiaawMcaaiabg2 da9maalaaabaGaaGynaaqaaiaad2gaaaWaaabuaeaacaqGnbGaae4u aiaabweadaqadaqaaiqbeI7aXzaajaWaaSbaaSqaaiaadMgaaeqaaa GccaGLOaGaayzkaaaaleaacaWGPbGaeyicI48aaiWaaeaacaWGQbGa aiOoaiabeI8a5naaBaaameaacaWGQbaabeaaliabg2da9maalyaaba GaaGynaiaaicdaaeaacaWGUbWaaSbaaWqaaiabloriSbqabaaaaaWc caGL7bGaayzFaaaabeqdcqGHris5aOGaaiilaiaaysW7caaMe8UaeS 4eHWMaeyypa0JaaGymaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGa aGynaiaac6caaaa@8997@

  1. E ( σ ^ v 2 ) = r = 1 10,000 σ ^ v 2 ( r ) / 10,000 ,   V ( σ ^ v 2 ) = r = 1 10,000 ( σ ^ v 2 ( r ) E ( σ ^ v 2 ) ) 2 / 10,000 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyramaabm aabaGafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaaaakiaa wIcacaGLPaaacqGH9aqpdaWcgaqaamaaqadabaGafq4WdmNbaKaada qhaaWcbaGaamODaaqaaiaaikdadaqadaqaaiaadkhaaiaawIcacaGL PaaaaaaabaGaamOCaiabg2da9iaaigdaaeaacaqGXaGaaeimaiaabY cacaqGWaGaaeimaiaabcdaa0GaeyyeIuoaaOqaaiaabgdacaqGWaGa aeilaiaabcdacaqGWaGaaeimaaaacaqGSaGaaeiiaiaabccacaWGwb WaaeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWG2baabaGaaGOmaaaa aOGaayjkaiaawMcaaiabg2da9maalyaabaWaaabmaeaadaqadaqaai qbeo8aZzaajaWaa0baaSqaaiaadAhaaeaacaaIYaWaaeWaaeaacaWG YbaacaGLOaGaayzkaaaaaOGaeyOeI0IaamyramaabmaabaGafq4Wdm NbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaaaakiaawIcacaGLPaaa aiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaabaGaamOCaiabg2 da9iaaigdaaeaacaqGXaGaaeimaiaabYcacaqGWaGaaeimaiaabcda a0GaeyyeIuoaaOqaaiaabgdacaqGWaGaaeilaiaabcdacaqGWaGaae imaaaacaGGSaaaaa@785B@ where σ ^ v 2 ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdadaqadaqaaiaadkhaaiaawIca caGLPaaaaaaaaa@3D63@ is the value of σ ^ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdaaaaaaa@3AE3@ for the r th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOCamaaCa aaleqabaGaaeiDaiaabIgaaaaaaa@3A32@ simulation run ( r = 1 , , 10,000 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGYbGaeyypa0JaaGymaiaacYcacqWIMaYscaGGSaGaaeymaiaabcda caqGSaGaaeimaiaabcdacaqGWaaacaGLOaGaayzkaaGaaiOlaaaa@42D0@
  2. The Average Relative Bias (ARB) of the MSE per sampling variance group:

ARB ( mse ) = 5 m i { j : ψ j = 50 / n } RB ( mse ( θ ^ i ) ) , = 1 , 5 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyqaiaabk facaqGcbWaaSbaaSqaaiabloriSbqabaGcdaqadaqaaiaab2gacaqG ZbGaaeyzaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGynaaqaai aad2gaaaWaaabuaeaacaqGsbGaaeOqamaabmaabaGaaeyBaiaaboha caqGLbWaaeWaaeaacuaH4oqCgaqcamaaBaaaleaacaWGPbaabeaaaO GaayjkaiaawMcaaaGaayjkaiaawMcaaaWcbaGaamyAaiabgIGiopaa cmaabaGaamOAaiaacQdacqaHipqEdaWgaaadbaGaamOAaaqabaWccq GH9aqpdaWcgaqaaiaaiwdacaaIWaaabaGaamOBamaaBaaameaacqWI tecBaeqaaaaaaSGaay5Eaiaaw2haaaqab0GaeyyeIuoakiaacYcaca aMe8UaaGjbVlabloriSjabg2da9iaaigdacaGGSaGaeSOjGSKaaGyn aiaacYcaaaa@66D2@

  1.    The Root Relative MSE of MSE estimators per sampling variance group:

RRMSE ( mse ) = ( 5 m i { j : ψ j = 50 / n } r = 1 10,000 ( mse ( θ ^ i ( r ) ) MSE ( θ ^ i ) ) 2 / 10,000 MSE ( θ ^ i ) ) 1 / 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabk facaqGnbGaae4uaiaabweadaWgaaWcbaGaeS4eHWgabeaakmaabmaa baGaaeyBaiaabohacaqGLbaacaGLOaGaayzkaaGaeyypa0ZaaeWaae aadaWcaaqaaiaaiwdaaeaacaWGTbaaamaaqafabaWaaSaaaeaadaae WbqaamaalyaabaWaaeWaaeaacaqGTbGaae4Caiaabwgadaqadaqaai qbeI7aXzaajaWaa0baaSqaaiaadMgaaeaadaqadaqaaiaadkhaaiaa wIcacaGLPaaaaaaakiaawIcacaGLPaaacqGHsislcaqGnbGaae4uai aabweadaqadaqaaiqbeI7aXzaajaWaaSbaaSqaaiaadMgaaeqaaaGc caGLOaGaayzkaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaa GcbaGaaeymaiaabcdacaqGSaGaaeimaiaabcdacaqGWaaaaaWcbaGa amOCaiabg2da9iaaigdaaeaacaqGXaGaaeimaiaabYcacaqGWaGaae imaiaabcdaa0GaeyyeIuoaaOqaaiaab2eacaqGtbGaaeyramaabmaa baGafqiUdeNbaKaadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPa aaaaaaleaacaWGPbGaeyicI48aaiWaaeaacaWGQbGaaiOoaiabeI8a 5naaBaaameaacaWGQbaabeaaliabg2da9maalyaabaGaaGynaiaaic daaeaacaWGUbaaamaaBaaameaacqWItecBaeqaaaWccaGL7bGaayzF aaaabeqdcqGHris5aaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWcga qaaiaaigdaaeaacaaIYaaaaaaakiaac6caaaa@809F@

  1. The Average Relative Bias of Conditional MSE estimators:

A R B = 5 m i E [ mse ( θ ^ i ) | σ ^ v REML 2 = 0 ] / E [ ( θ ^ i θ i ) 2 | σ ^ v REML 2 = 0 ] 1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaiyqaiaack facaGGcbWaaSbaaSqaaiablkqiJcqabaGccqGH9aqpdaWcaaqaaiaa iwdaaeaacaWGTbaaamaalyaabaWaaabuaeaacaGGfbWaamWaaeaaca qGTbGaae4CaiaabwgadaqadaqaaiqbeI7aXzaajaWaaSbaaSqaaiaa dMgaaeqaaaGccaGLOaGaayzkaaWaaqqaaeaacaaMc8Uafq4WdmNbaK aadaqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaI YaaaaOGaeyypa0JaaGimaaGaay5bSdaacaGLBbGaayzxaaaaleaaca WGPbGaeyicI4SaeS4eHWgabeqdcqGHris5aaGcbaGaaiyramaadmaa baWaaeWaaeaacuaH4oqCgaqcamaaBaaaleaacaWGPbaabeaakiabgk HiTiabeI7aXnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaa CaaaleqabaGaaGOmaaaakmaaeeaabaGafq4WdmNbaKaadaqhaaWcba GaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaIYaaaaOGaeyyp a0JaaGimaaGaay5bSdaacaGLBbGaayzxaaaaaiabgkHiTiaaigdaca GGUaaaaa@7231@

Date modified: