Comparison of some positive variance estimators for the Fay-Herriot small area model 6. Simulation results and analysis

6.1 Monte Carlo Distribution of the variance estimators

Table 6.1 shows that the REML variance estimator has the lowest bias ( σ v 2 = 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaGccqGH9aqpcaaIXaaa caGLOaGaayzkaaaaaa@3E27@ and the highest variance. The lower efficiency of REML may be due to it not being a smooth function of the data caused by its split definition (3.1). The MIX estimator inherits some of this low efficiency. The other variance estimators have lower variability, higher positive bias but the conditional expectation of AM.YL and AR.YL given σ ^ vREML 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaaeODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaqG YaaaaOGaeyypa0JaaGimaaaa@3FE0@ is close to zero. The unconditional bias of AM.LL is higher than the unconditional bias of the MIX. By definition of the MIX estimator, the conditional bias of the MIX and AM.LL estimators coincide. The MIX estimator also converges faster than the other estimators. For example, given the probability distribution over the 10,000 variance estimates with m = 45 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 da9iaaisdacaaI1aGaaiilaaaa@3B51@ we calculated the probability of estimates lying within an interval containing σ v 2 = 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaeyypa0JaaGymaiaac6caaaa@3D50@ The probability that the MIX estimates lie between 0.6 and 1.4 is 0.47 whereas the probability that AM.YL estimates lie between 0.6 and 1.4 is 0.16. Furthermore, the probability that MIX estimates are smaller than 0.2 is 0.05 whereas the probability that AM.YL estimates are smaller than 0.2 is 0.53.

Table 6.1
Expectation, variance and conditional expectation and variance of σ ^ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdaaaaaaa@3ABC@
Table summary
This table displays the results of Expectation. The information is grouped by Method (appearing as row headers), m and XXXX (appearing as column headers).
Method m E ( σ ^ v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamyramaabm aabaGafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaaaakiaa wIcacaGLPaaaaaa@3F4D@ V ( σ ^ v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamOvamaabm aabaGafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaaaakiaa wIcacaGLPaaaaaa@3F5E@ % REML = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaaiyjaiaabk facaqGfbGaaeytaiaabYeacqGH9aqpcaaIWaaaaa@3EDE@ E ( σ ^ v 2 / REML = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamyramaabm aabaWaaSGbaeaacuaHdpWCgaqcamaaDaaaleaacaWG2baabaGaaGOm aaaaaOqaaiaabkfacaqGfbGaaeytaiaabYeacqGH9aqpcaaIWaaaaa GaayjkaiaawMcaaaaa@445F@ V ( σ ^ v 2 / REML = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamOvamaabm aabaWaaSGbaeaacuaHdpWCgaqcamaaDaaaleaacaWG2baabaGaaGOm aaaaaOqaaiaabkfacaqGfbGaaeytaiaabYeacqGH9aqpcaaIWaaaaa GaayjkaiaawMcaaaaa@4470@
REML 15 1.48 3.38 43% N/A N/A
45 1.21 1.67 29% N/A N/A
100 1.07 0.81 16% N/A N/A
AM.LL 15 2.80 1.37 43% 1.80 0.11
45 1.88 1.01 29% 0.94 0.03
100 1.49 0.51 16% 0.63 0.01
MIX 15 2.28 1.87 43% 1.80 0.11
45 1.48 1.31 29% 0.94 0.03
100 1.17 0.66 16% 0.63 0.01
AR.YL 15 1.66 2.99 43% 0.27 0.01
45 1.24 1.72 29% 0.06 0.00
100 1.08 0.80 16% 0.02 0.00
AM.YL 15 0.52 0.84 43% 0.10 0.00
45 0.65 0.85 29% 0.03 0.00
100 0.76 0.59 16% 0.01 0.00

6.2 True MSE of the EBLUP, average relative bias and average root relative MSE of the MSE estimators

All variance estimators are consistent and asymptotically normal with variance converging at the same rate. They differ in their bias: REML, AR.YL and MIX have bias of the order of o ( 1 / m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Bamaabm aabaWaaSGbaeaacaaIXaaabaGaamyBaaaaaiaawIcacaGLPaaaaaa@3B6C@ whereas AM.LL and AM.YL have bias of the order O ( 1 / m ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4tamaabm aabaWaaSGbaeaacaaIXaaabaGaamyBaaaaaiaawIcacaGLPaaacaGG Uaaaaa@3BFE@ The bias inherent in the last three methods impacts the estimation of the MSE of the EBLUP even for a moderate number of areas.

For m = 100 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 da9iaaigdacaaIWaGaaGimaiaacYcaaaa@3C03@ Tables 6.2a and 6.2b show that as σ v 2 / ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaaaa@3DDB@ increases, the MSE of the EBLUP decreases and this relationship holds irrespective of the number of areas. We observe that the MSE of θ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaaaaa@3A0C@ under the REML and the MIX variance estimators are slightly higher than the rest of the MSEs, due to the higher variability inherent in these variance estimators. Table 6.2a presents results for the Taylor linearization MSE estimator and the two parametric MSE estimators under REML, AM.LL, AR.YL and AM.YL variance estimation. Table 6.2b presents results for the following MSE estimators under the MIX variance estimation: RB_Y1 defined in (4.3), RB_Y2 defined in (4.2), M_et_al, defined in (4.5), PB MSE and naïve PB MSE estimators. Among the Taylor MSE estimators, RB_Y1 and M_et_al under MIX exhibit the lowest bias. Among the bootstrap MSE estimators PB under MIX and Naive PB under AR.YL exhibit the lowest bias. Turning to the RRMSE of the MSE estimators, it decreases as σ v 2 / ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaaaa@3DDB@ increases. Differences between the RB_Y2 MSE estimator under the MIX and the Taylor MSE estimator under the AM.YL seem small but consistent. While ARB is lower for the RB_Y1, the M_et_al and the Naive MSE estimators under the MIX method than for the RB_Y2 under the MIX, and also lower for the Taylor and the Naive PB under the AR.YL method than for the RB_Y2 under the MIX, the opposite happens in terms of RRMSE. This can be explained in part due to the extreme negative conditional bias exhibited by these MSE estimators (i.e., the RB_Y1 and the M_et_al under the MIX and the Taylor and the Naive PB under the AR.YL method) as shown in Table 6.3. Even for m = 100 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 da9iaaigdacaaIWaGaaGimaaaa@3B53@ there is a relatively high proportion (16%) of populations that yield σ ^ v REML 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaI YaaaaOGaeyypa0JaaGimaaaa@3FE9@ and in these populations, estimates from most variance methods and most MSE estimators are farthest below the true value. That is, for these MSE estimators, the conditional MSE estimators do not fare well. The PB MSE estimator seems to adjust well for bias, but it is more variable than the Naive PB MSE. When we also include the ARB, the RRMSE and the A R B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaiyqaiaack facaGGcbWaaSbaaSqaaiablkqiJcqabaaaaa@3B10@ in the evaluation, the RB_Y2 under the MIX method, followed closely by Naïve PB under the MIX seems to perform the best. This may suggest the superiority of RB_Y2 and Naive under MIX for m = 100 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 da9iaaigdacaaIWaGaaGimaiaacYcaaaa@3C03@ which is a moderate number of areas for this data.

Table 6.2a
MSE, ARB & RRMSE (percentage) of MSE Estimators, m = 1 0 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamyBaiaah2 dacaWHXaGaaCimaiaahcdaaaa@3AEA@
Table summary
This table displays the results of MSE. The information is grouped by Method (appearing as row headers), This cell is empty, Taylor MSE estimator , PB estimator and Naïve PB estimator, calculated using XXXX, ARB and RRMSE units of measure (appearing as column headers).
Method σ v 2 / ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaaaa@3FE8@ MSE ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaa0aaaeaaca qGnbGaae4uaiaabweaaaaaaa@3BB8@ Taylor MSE estimator PB estimator Naïve PB estimator
ARB RRMSE ARB RRMSE ARB RRMSE
REML 0.06 135.4 5.1 71.1 -4.4 80.7 1.6 69.9
0.1 132.1 5.3 64.7 -4.7 74.0 -0.2 63.0
0.14 119.5 6.0 61.9 -5.5 71.3 -1.8 59.9
0.2 119.2 6.5 53.6 -5.8 62.4 -3.4 51.7
0.3 106.6 8.2 46.7 -6.8 55.0 -5.6 44.8
AM.LL 0.06 134.9 6.1 75.4 8.2 66.9 31.3 63.8
0.1 131.2 6.8 68.1 7.8 59.5 27.5 55.7
0.14 118.3 8.1 64.6 7.8 55.6 26.5 51.2
0.2 117.6 8.4 55.4 6.5 46.7 21.6 42.1
0.3 104.5 10.2 46.7 5.5 38.8 18.2 34.0
AR.YL 0.06 135.4 6.6 69.3 -4.3 80.2 2.1 69.4
0.1 132.0 7.4 61.9 -4.5 73.4 0.3 62.5
0.14 119.4 9.0 58.0 -5.3 70.6 -1.2 59.3
0.2 119.0 10.6 48.2 -5.6 61.8 -2.9 51.1
0.3 106.4 14.7 38.5 -6.6 54.3 -5.1 44.1
AM.YL 0.06 134.7 10.0 63.2 -12.3 81.0 -19.6 65.9
0.1 131.3 12.0 56.6 -12.5 75.2 -19.7 61.2
0.14 118.8 15.0 53.1 -13.7 73.3 -21.4 59.8
0.2 118.6 18.1 44.8 -13.4 65.2 -20.7 53.5
0.3 106.4 25.2 38.4 -14.4 58.8 -21.7 48.6
Table 6.2b
MSE, ARB & RRMSE (percentage) of MSE Estimators m = 1 0 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamyBaiaah2 dacaWHXaGaaCimaiaahcdaaaa@3AEA@
Table summary
This table displays the results of MSE This cell is empty, RB_Y1 , RB_Y2 , M_et_al , PB estimator and Naïve PB estimator, calculated using XXXX, ARB and RRMSE units of measure (appearing as column headers).
  σ v 2 / ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaaaa@3FE8@ MSE ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaa0aaaeaaca qGnbGaae4uaiaabweaaaaaaa@3BB8@ RB_Y1 RB_Y2 M_et_al PB estimator Naïve PB estimator
ARB RRMSE ARB RRMSE ARB RRMSE ARB RRMSE ARB RRMSE
MIX 0.06 135.4 2.7 75.7 13.6 63.0 5.2 71.1 -3.0 75.3 8.8 62.4
0.1 132.1 3.6 68.3 14.9 56.1 5.3 64.7 -3.2 68.3 6.6 55.4
0.14 119.5 4.9 64.7 16.0 52.4 6.0 61.9 -3.9 65.1 5.3 51.8
0.2 119.1 6.3 55.2 16.7 43.8 6.5 53.6 -4.4 56.3 2.9 43.7
0.3 106.5 9.4 46.2 19.9 36.0 8.3 46.7 -5.4 48.6 0.6 36.7
Table 6.3
MSE   ( E [ ( θ ^ i θ i ) 2 | σ ^ v REML 2 = 0 ] ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiWaceGabeqabeWabeqaeeaakeaacaqGnbGaae 4uaiaabweadaWgaaWcbaGaeSOaHmkabeaakiaabccadaqadaqaaiaa cweadaWadaqaamaabmaabaGafqiUdeNbaKaadaWgaaWcbaGaamyAaa qabaGccqGHsislcqaH4oqCdaWgaaWcbaGaamyAaaqabaaakiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaGcdaabbaqaaiaaykW7cuaHdp WCgaqcamaaDaaaleaacaWG2bGaaeOuaiaabweacaqGnbGaaeitaaqa aiaaikdaaaGccqGH9aqpcaaIWaaacaGLhWoaaiaawUfacaGLDbaaai aawIcacaGLPaaaaaa@5647@ and A R B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiWaceGabeqabeWabeqaeeaakeaacaGGbbGaai OuaiaackeadaWgaaWcbaGaeSOaHmkabeaaaaa@3C40@ (percentage), m = 1 0 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meqabeqadiWaceGabeqabeWabeqaeeaakeaacaWGTbGaaC ypaiaahgdacaWHWaGaaCimaaaa@3C40@
Table summary
This table displays the results of XXXX and XXXX (percentage). The information is grouped by Method (appearing as row headers), XXXX, This column is empty, Taylor MSE estimator, PB estimator and Naïve PB estimator, calculated using This cell is empty, RB_Y1, RB_Y2, M_et_al, PB estimator and Naïve PB estimator units of measure (appearing as column headers).
Method σ v 2 / ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaaaa@3FE8@ MSE ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaa0aaaeaaca qGnbGaae4uaiaabweaaaWaaSbaaSqaaiablkqiJcqabaaaaa@3D3B@ This column is empty Taylor MSE estimator This column is empty PB estimator Naïve PB estimator
REML 0.06 135.6 This cell is empty -76.5 This cell is empty -98.6 -74.8
0.1 133.0 This cell is empty -74.5 This cell is empty -94.4 -71.8
0.14 121.5 This cell is empty -78.6 This cell is empty -98.0 -74.9
0.2 120.4 This cell is empty -73.1 This cell is empty -89.8 -68.6
0.3 108.0 This cell is empty -73.6 This cell is empty -88.2 -67.3
AM.LL 0.06 135.0 This cell is empty -92.0 This cell is empty -67.6 -26.1
0.1 132.2 This cell is empty -85.2 This cell is empty -62.0 -24.6
0.14 120.2 This cell is empty -85.4 This cell is empty -62.3 -25.4
0.2 118.8 This cell is empty -74.4 This cell is empty -54.1 -22.1
0.3 105.9 This cell is empty -65.9 This cell is empty -49.7 -20.6
AR.YL 0.06 135.5 This cell is empty -68.6 This cell is empty -96.9 -73.0
0.1 132.9 This cell is empty -62.4 This cell is empty -92.6 -70.0
0.14 121.4 This cell is empty -61.1 This cell is empty -96.1 -73.0
0.2 120.2 This cell is empty -48.9 This cell is empty -87.9 -66.7
0.3 107.8 This cell is empty -34.5 This cell is empty -86.1 -65.4
AM.YL 0.06 134.9 This cell is empty -45.9 This cell is empty -88.6 -74.7
0.1 132.1 This cell is empty -39.4 This cell is empty -85.4 -72.2
0.14 120.4 This cell is empty -36.0 This cell is empty -89.3 -75.7
0.2 119.6 This cell is empty -23.6 This cell is empty -82.3 -69.7
0.3 107.6 This cell is empty -6.5 This cell is empty -81.7 -69.3
  This cell is empty This cell is empty RB_Y1 RB_Y2 M_et_al PB estimator Naïve PB estimator
MIX 0.06 135.0 -92.0 -22.0 -76.4 -46.0 -27.0
0.1 132.2 -85.2 -17.7 -74.3 -42.7 -25.9
0.14 120.2 -85.4 -15.0 -78.3 -43.3 -27.0
0.2 118.8 -74.4 -7.6 -72.8 -37.6 -23.9
0.3 105.9 -65.9 1.5 -73.1 -34.6 -22.6

Tables 6.4a and b below display results for m = 45 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 da9iaaisdacaaI1aaaaa@3AA1@ with 9 areas per σ v 2 / ψ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaOGaaiOlaaaa@3E97@ The AM.YL yields MSEs smaller than the MIX, with differences in MSEs of at most 2%. As the number of areas decreases, the bias of the variance estimators increase and the MSE estimators are affected by this. Indeed, the ARB of all MSE estimators have increased. In particular, the ARB of the Taylor MSE estimators under YL and LL variance estimation and the ARB of RB_Y2, have increased by 100% over the ARB with 100 areas. In terms of RRMSE, the Taylor MSE under the AM.YL has slightly lower RRMSE than the RB_Y2 under the MIX method for very small σ v 2 / ψ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaOGaaiOlaaaa@3E97@ In general, the variability (in RRMSE) of the RB_Y2 is lower than that of the Taylor under LL and YL estimation and than that of the RB_Y1 and the M_et_al. This may be due in part to the underestimation of the MSEs for the populations with zero REML estimates, which, for m = 45 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 da9iaaisdacaaI1aGaaiilaaaa@3B51@ range around 30% of all populations. Table 6.5 illustrates this better: given σ ^ v R EML 2 = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaadkfacaqGfbGaaeytaiaabYeaaeaacaaI YaaaaOGaeyypa0JaaGimaiaacYcaaaa@409B@ there is serious underestimation in RB_Y1 and M_et_al.

Table 6.4a
MSE, ARB & RRMSE (percentage) of MSE Estimators, m = 4 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamyBaiaah2 dacaWH0aGaaCynaaaa@3A39@ areas
Table summary
This table displays the results of MSE. The information is grouped by Method (appearing as row headers), XXXX, Taylor MSE estimator, PB estimator and Naïve PB estimator, calculated using ARB and RRMSE units of measure (appearing as column headers).
Method σ v 2 / ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaaaa@3FE8@ MSE ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaa0aaaeaaca qGnbGaae4uaiaabweaaaaaaa@3BB8@ Taylor MSE estimator PB estimator Naïve PB estimator
ARB RRMSE ARB RRMSE ARB RRMSE
REML 0.06 171.4 11.8 94.7 -4.7 107.0 6.2 89.2
0.1 174.1 11.9 83.9 -5.3 93.8 3.0 76.2
0.14 171.3 12.6 74.5 -5.4 81.9 1.1 65.3
0.2 166.6 13.9 63.4 -5.8 66.7 -1.2 52.0
0.3 128.9 20.1 63.0 -7.0 61.4 -3.1 46.7
AM.LL 0.06 171.1 15.5 100.0 16.0 84.9 43.5 83.3
0.1 173.4 16.8 87.0 14.4 71.1 36.7 68.5
0.14 170.4 17.7 75.7 12.6 59.7 30.7 56.7
0.2 165.3 18.2 61.7 9.9 46.2 23.5 43.2
0.3 127.5 25.6 55.0 10.0 39.7 22.6 36.6
AR.YL 0.06 171.1 17.2 89.9 -3.7 105.0 8.0 87.6
0.1 173.6 19.6 76.9 -4.3 91.8 4.8 74.6
0.14 170.8 22.6 65.8 -4.4 79.9 2.7 63.7
0.2 166.0 27.3 53.7 -4.8 64.8 0.3 50.5
0.3 128.3 43.8 54.8 -5.7 59.3 -1.3 45.0
AM.YL 0.06 167.5 30.2 78.4 -18.0 97.3 -23.8 73.3
0.1 169.6 36.5 72.2 -18.0 87.7 -23.6 66.7
0.14 167.0 42.7 69.3 -17.2 78.0 -22.3 59.7
0.2 162.8 52.1 70.8 -15.8 65.4 -20.3 50.6
0.3 126.0 81.3 91.1 -18.0 62.3 -22.9 48.4
Table 6.4b
MSE, ARB & RRMSE (percentage) of MSE Estimators, m = 4 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamyBaiaah2 dacaWH0aGaaCynaaaa@3A39@ areas
Table summary
This table displays the results of MSE XXXX, RB_Y1, RB_Y2, M_et_al, PB estimator and Naïve PB estimator, calculated using ARB, RRMSE and RRMS units of measure (appearing as column headers).
  σ v 2 / ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaaaa@3FE8@ MSE ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaa0aaaeaaca qGnbGaae4uaiaabweaaaaaaa@3BB8@ RB_Y1 RB_Y2 M_et_al PB estimator Naïve PB estimator
ARB RRMSE ARB RRMSE ARB RRMSE ARB RRMSE ARB RRMSE
MIX 0.06 171.4 9.8 99.4 31.9 84.0 11.8 94.7 3.5 93.8 21.9 78.5
0.1 174.0 12.1 86.2 33.2 73.1 11.9 83.9 2.6 80.4 17.5 65.1
0.14 171.2 14.5 74.9 34.4 64.6 12.6 74.5 2.0 68.7 14.0 54.4
0.2 166.5 17.7 61.7 36.0 55.8 13.9 63.4 0.7 54.5 9.8 41.8
0.3 128.9 28.8 57.6 48.8 58.2 20.2 63.1 0.3 48.6 8.7 35.9

Taking into account the ARB, the RRMSE and the A R B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaiyqaiaack facaGGcbWaaSbaaSqaaiablkqiJcqabaaaaa@3B10@ of the MSE estimators, the Naive PB MSE estimator under the MIX performs the best for larger σ v 2 / ψ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaOGaaiOlaaaa@3E97@ Table 6.6 displays performance measures, averaged over the five sampling variance groups, for the three Taylor MSE estimators under the MIX with data from the same model described in 5.1 but with three different values of σ v 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaaiOlaaaa@3B8F@ The RB_Y2 performs better when σ v 2 = 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaeyypa0JaaGymaiaacYcaaaa@3D4E@ but as σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD3@ becomes smaller, the M_et_al MSE estimator has an advantage, precisely because it was constructed under the premise that σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD3@ is approximately zero.

Table 6.5
MSE MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaaeytaiaabo facaqGfbWaaSbaaSqaaiablkqiJcqabaaaaa@3AF7@ and A R B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaaiyqaiaack facaGGcbWaaSbaaSqaaiablkqiJcqabaaaaa@3AEA@ (percentage). m = 4 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamyBaiaah2 dacaWH0aGaaCynaaaa@3A39@ Areas
Table summary
This table displays the results of XXXX and XXXX (percentage). XXXX Areas. The information is grouped by Method (appearing as row headers), XXXX, This column is empty, Taylor MSE estimator, PB estimator and Naïve PB estimator, calculated using This cell is empty, RB_Y1, RB_Y2 and M_et_al units of measure (appearing as column headers).
Method σ v 2 / ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaaaa@3FE8@ MSE ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaa0aaaeaaca qGnbGaae4uaiaabweaaaWaaSbaaSqaaiablkqiJcqabaaaaa@3D3B@ This column is empty Taylor MSE estimator This column is empty PB estimator Naïve PB estimator
REML 0.06 170.2 This cell is empty -64.3 This cell is empty -89.7 -60.7
0.1 173.0 This cell is empty -62.4 This cell is empty -83.7 -57.1
0.14 170.2 This cell is empty -58.1 This cell is empty -75.5 -51.8
0.2 165.8 This cell is empty -51.9 This cell is empty -65.1 -44.8
0.3 131.1 This cell is empty -59.0 This cell is empty -70.5 -49.2
AM.LL 0.06 170.0 This cell is empty -71.5 This cell is empty -49.0 -3.1
0.1 172.3 This cell is empty -61.5 This cell is empty -42.1 -2.3
0.14 169.1 This cell is empty -51.1 This cell is empty -35.7 -2.1
0.2 164.7 This cell is empty -38.3 This cell is empty -28.3 -1.6
0.3 129.9 This cell is empty -28.8 This cell is empty -29.1 -3.7
AR.YL 0.06 169.9 This cell is empty -48.3 This cell is empty -86.2 -56.7
0.1 172.6 This cell is empty -38.0 This cell is empty -80.2 -53.2
0.14 169.7 This cell is empty -25.9 This cell is empty -72.2 -48.2
0.2 165.3 This cell is empty -7.4 This cell is empty -61.9 -41.5
0.3 130.5 This cell is empty 19.3 This cell is empty -66.8 -45.5
AM.YL 0.06 166.6 This cell is empty -8.2 This cell is empty -73.5 -60.7
0.1 168.8 This cell is empty 3.8 This cell is empty -70.1 -58.1
0.14 166.1 This cell is empty 16.1 This cell is empty -64.1 -53.3
0.2 162.2 This cell is empty 35.9 This cell is empty -56.1 -46.8
0.3 128.1 This cell is empty 72.8 This cell is empty -62.5 -52.5
  This cell is empty This cell is empty RB_Y1 RB_Y2 M_et_al This cell is empty This cell is empty
MIX 0.06 170.0 -71.5 6.2 -64.3 -28.1 -4.0
0.1 172.3 -61.5 13.2 -62.3 -23.8 -3.5
0.14 169.1 -51.1 18.9 -57.8 -20.0 -3.3
0.2 164.7 -38.3 26.8 -51.6 -15.7 -2.9
0.3 129.9 -28.8 40.4 -58.7 -16.7 -5.1
Table 6.6
MSE, ARB, A R B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaaiyqaiaack facaGGcbWaaSbaaSqaaiablkqiJcqabaaaaa@3AEA@ and RRMSE (percentage), 45 areas
Table summary
This table displays the results of MSE. The information is grouped by XXXX (appearing as row headers), XXXX, RB_Y1, RB_Y2 and M_et_al, calculated using ARB, XXXX and RRMSE units of measure (appearing as column headers).
% REML = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbiqaaaJccaGGLa GaaeOuaiaabweacaqGnbGaaeitaiabg2da9iaaicdaaaa@3F1A@ σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3CDF@ MSE ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaa0aaaeaaca qGnbGaae4uaiaabweaaaaaaa@3BB7@ RB_Y1 RB_Y2 M_et_al
ARB A R B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaaiyqaiaack facaGGcbWaaSbaaSqaaiablkqiJcqabaaaaa@3D1C@ RRMSE ARB A R B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaaiyqaiaack facaGGcbWaaSbaaSqaaiablkqiJcqabaaaaa@3D1C@ RRMSE ARB A R B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaaiyqaiaack facaGGcbWaaSbaaSqaaiablkqiJcqabaaaaa@3D1C@ RRMSE
29 1 108 16 -50 75 36 21 66 14 -59 75
48 0.2 99 48 -36 101 113 88 114 47 -38 94
51 0.1 91 58 -33 108 137 107 127 58 -32 100

Tables 6.7a and 6.7b below show the outcomes for m = 15 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 da9iaaigdacaaI1aaaaa@3A9E@ areas with 3 areas per σ v 2 / ψ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaOGaaiOlaaaa@3E97@ Differences in MSEs per variance estimation method are at most 5%.

There is no monotone relationship between ARB or RRMSE and σ v 2 / ψ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaOGaaiilaaaa@3E95@ which could be an indication that the second order approximation to estimating the MSE is poor under every method of variance estimation. The ARB of all Taylor MSE estimators under the LL and the YL methods of variance estimation are unacceptably high and the same is true for the RRMSE. The RB_Y2 under the MIX does not fare well either. The reason for this last outcome is clear: the high % of zero REML estimates (43%) implies the MIX coincides with AM.LL for the zero REML populations. Thus, the MIX has a positive bias for m = 15 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 da9iaaigdacaaI1aGaaiilaaaa@3B4E@ and the RB_Y2 does not account for this bias. The RB_Y1 accounts for the bias in the MIX, but the bias estimator is not very precise for m = 15. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 da9iaaigdacaaI1aGaaiOlaaaa@3B50@ The M_et_al MSE estimator almost coincides with the ARB and RRMSE of the Taylor MSE estimator under the REML variance estimation, because by definition they are equal when σ ^ v REML 2 = 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaI YaaaaOGaeyypa0JaaGimaiaac6caaaa@409B@ The ARB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyqaiaabk facaqGcbWaaSbaaSqaaiablkqiJcqabaaaaa@3B0D@ of the three Taylor MSE estimators under the MIX is poor. Taking into account all performance measures, the bootstrap MSE estimators perform better than the Taylor MSE estimators. For m = 15 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 da9iaaigdacaaI1aaaaa@3A9E@ areas with 3 areas per σ v 2 / ψ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaOGaaiilaaaa@3E95@ PB under MIX performs the best, followed by the Naive under AR.YL and AM.YL.

Table 6.7a
MSE, ARB & RRMSE (percentage) of MSE estimators, m = 1 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamyBaiaah2 dacaWHXaGaaCynaaaa@3A36@ areas
Table summary
This table displays the results of MSE. The information is grouped by Method (appearing as row headers), XXXX, Taylor MSE estimator, PB estimator and Naïve PB estimator, calculated using ARB and RRMSE units of measure (appearing as column headers).
Method σ v 2 / ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaaaa@3FE8@ MSE ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaa0aaaeaaca qGnbGaae4uaiaabweaaaaaaa@3BB8@ Taylor MSE estimator PB estimator Naïve PB estimator
ARB RRMSE ARB RRMSE ARB RRMSE
REML 0.06 584.8 12.6 87.9 1.2 85.9 6.9 64.5
0.1 376.7 26.5 106.3 2.3 85.6 9.6 62.8
0.14 352.5 25.2 90.1 0.7 54.1 4.3 39.3
0.2 209.4 43.0 123.0 0.4 74.0 6.3 51.1
0.3 198.7 50.6 124.7 -1.0 46.3 2.6 31.5
AM.LL 0.06 589.3 24.1 89.3 13.7 61.2 24.1 65.8
0.1 380.7 48.3 107.1 19.4 58.6 32.5 62.9
0.14 355.7 40.2 88.6 10.0 36.2 16.8 38.1
0.2 212.5 76.3 117.9 17.8 45.1 28.7 47.3
0.3 200.7 76.5 105.1 10.7 26.9 17.2 27.6
AR.YL 0.06 583.3 23.8 83.3 3.2 79.5 3.2 61.6
0.1 375.1 53.3 106.7 5.4 78.6 5.4 59.7
0.14 351.3 53.3 102.7 2.4 49.4 2.4 37.1
0.2 207.7 107.3 153.1 4.1 66.2 4.1 47.2
0.3 197.5 142.0 199.4 1.9 41.1 1.9 28.9
AM.YL 0.06 571.4 41.6 103.5 -8.0 61.2 -9.2 43.3
0.1 363.3 95.0 161.4 -11.3 62.9 -13.2 44.1
0.14 342.0 97.2 179.7 -6.7 40.4 -7.8 29.3
0.2 197.0 198.4 274.6 -14.5 58.2 -16.7 41.7
0.3 191.4 270.2 362.4 -11.5 38.4 -13.1 28.7
Table 6.7b
MSE, ARB & RRMSE (percentage) of MSE estimators, m = 1 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamyBaiaah2 dacaWHXaGaaCynaaaa@3A36@ areas
Table summary
This table displays the results of MSE XXXX, RB_Y1, RB_Y2, M_et_al, PB estimator and Naïve PB estimator, calculated using ARB, RRMSE, RRMS, %ARB and %RRMSE units of measure (appearing as column headers).
  σ v 2 / ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaaaa@3FE8@ MSE ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaa0aaaeaaca qGnbGaae4uaiaabweaaaaaaa@3BB8@ RB_Y1 RB_Y2 M_et_al PB estimator Naïve PB estimator
ARB RRMSE ARB RRMSE ARB RRMSE %ARB %RRMSE %ARB %RRMSE
MIX 0.06 584.9 21.0 84.7 35.4 93.7 12.6 87.9 10.0 53.8 19.3 62.1
0.1 377.1 46.0 103.9 68.4 122.6 26.4 106.1 14.8 52.7 26.6 59.9
0.14 353.0 41.9 91.5 59.4 112.7 25.0 89.9 7.6 33.2 13.7 36.7
0.2 209.7 83.2 127.8 108.9 155.8 42.8 122.8 14.0 42.5 23.7 46.0
0.3 198.9 94.8 136.7 117.1 162.2 50.4 124.6 8.7 26.6 14.5 27.7

Summarizing, under the Fay-Herriot model with positive σ v 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaaiilaaaa@3B8D@ and among the positive variance estimators under study, the MIX and the AR.YL variance estimators are the only ones with negligible asymptotic bias. The AM.YL and the LL variance estimators have a larger asymptotic bias. On the other hand, our simulation showed that for a moderate number of areas and for populations that yield zero REML estimates, both YL variance estimators were negatively biased, and produced EBLUPs that were close to the synthetic estimator of the mean. In contrast, the MIX, built as the combination of the AM.LL and the REML, was only mildly negatively biased in these populations. Moreover, the unconditional distribution of the MIX approached normality much faster than those of the other variance estimators.

Table 6.8
MSE MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaaeytaiaabo facaqGfbWaaSbaaSqaaiablkqiJcqabaaaaa@3AF7@ and A R B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaaiyqaiaack facaGGcbWaaSbaaSqaaiablkqiJcqabaaaaa@3AEA@ m = 1 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaGaamyBaiaah2 dacaWHXaGaaCynaaaa@3A36@ areas
Table summary
This table displays the results of XXXX and XXXX XXXX areas. The information is grouped by Method (appearing as row headers), XXXX, This column is empty, Taylor MSE estimator, PB estimator and Naïve PB estimator, calculated using This cell is empty, RB_Y1, RB_Y2, M_et_al, PB estimator and Naive PB estimator units of measure (appearing as column headers).
Method σ v 2 / ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaaaa@3FE8@ MSE ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbeqabeWaceGabiqabeqabmqabeabbaGcbaWaa0aaaeaaca qGnbGaae4uaiaabweaaaWaaSbaaSqaaiablkqiJcqabaaaaa@3D3B@ This column is empty Taylor MSE estimator This column is empty PB estimator Naïve PB estimator
REML 0.06 594.2 This cell is empty -22.6 This cell is empty -31.7 -16.5
0.1 381.2 This cell is empty -32.9 This cell is empty -43.2 -22.5
0.14 345.1 This cell is empty -17.7 This cell is empty -22.7 -10.7
0.2 212.7 This cell is empty -41.1 This cell is empty -47.3 -25.5
0.3 197.9 This cell is empty -30.4 This cell is empty -32.7 -17.6
AM.LL 0.06 595.6 This cell is empty -4.1 This cell is empty -5.7 12.1
0.1 385.7 This cell is empty 8.6 This cell is empty -7.0 15.6
0.14 351.2 This cell is empty 18.9 This cell is empty -2.0 10.4
0.2 216.0 This cell is empty 46.4 This cell is empty -5.8 14.4
0.3 199.5 This cell is empty 67.0 This cell is empty -2.9 9.8
AR.YL 0.06 592.2 This cell is empty -0.8 This cell is empty -27.1 -11.0
0.1 379.7 This cell is empty 21.0 This cell is empty -36.5 -14.8
0.14 344.5 This cell is empty 44.0 This cell is empty -18.6 -6.3
0.2 210.9 This cell is empty 98.2 This cell is empty -38.6 -16.4
0.3 196.6 This cell is empty 177.3 This cell is empty -26.1 -11.0
AM.YL 0.06 581.7 This cell is empty 30.7 This cell is empty -21.9 -18.0
0.1 368.6 This cell is empty 79.8 This cell is empty -31.5 -25.8
0.14 333.9 This cell is empty 98.3 This cell is empty -15.2 -11.9
0.2 198.9 This cell is empty 198.0 This cell is empty -36.4 -30.0
0.3 190.0 This cell is empty 296.3 This cell is empty -26.2 -21.5
  This cell is empty This cell is empty RB_Y1 RB_Y2 M_et_al PB estimator Naive PB estimator
MIX 0.06 595.6 -4.1 27.9 -22.9 3.4 17.8
0.1 385.7 8.6 57.1 -33.7 5.1 22.8
0.14 351.2 18.9 58.5 -19.1 4.9 14.3
0.2 216.0 46.4 102.4 -42.0 5.9 20.4
0.3 199.5 67.0 116.3 -30.9 4.8 13.4

In terms of MSE of the EBLUP, there were considerable gains in precision over the direct estimator, under all methods of variance estimation considered here, even for a small number of areas. The AM.LL and both the AM.YL and the AR.YL variance estimators carried lower variability than the REML and the MIX. It impacted only minimally the MSE of the EBLUP: differences among MSEs for the same signal to noise ratio were small. These differences widened as either the number of areas or the signal to noise ratio decreased. Thus, it may possible that for an extremely low signal to noise ratio, the MSE under MIX would be somewhat larger than under the AM.YL variance estimator.

Under the MIX method of variance estimation, we compared three different Taylor-type MSE estimators and two bootstrap MSE estimators. All three Taylor estimators of the MSE under MIX (RB_Y1, RB_Y2 and M_et_al) are unbiased up to the second order. Also the Taylor-type estimators of the MSE under the LL and the YL are unbiased up to the second order. RB_Y1, AM.LL and AM.YL may yield negative MSE estimates.

The Taylor MSE under the REML method of variance estimation and the M_et_al under the MIX coincide by definition, hence their performance measures have negligible differences (their true MSEs are different, however in our study, for m = 100 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 da9iaaigdacaaIWaGaaGimaiaacYcaaaa@3C03@ the MIX coincided with the REML 84% of the time). For a moderate number of areas, which for this data could be m = 45  or  100 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 da9iaaisdacaaI1aGaaeiiaiaab+gacaqGYbGaaeiiaiaaigdacaaI WaGaaGimaiaacYcaaaa@40AD@ and for populations that yield zero REML estimates, both the Taylor MSE estimators under the REML and the M_et_al MSE estimators do not account for the variation due to the estimation of σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD3@ and this is reflected in their very negative ARB , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyqaiaabk facaqGcbWaaSbaaSqaaiablkqiJcqabaGccaGGSaaaaa@3BC7@ which is below -60% for the smaller signal to noise ratios. On the other hand, the RB_Y1 does account for the variation due to the estimation of σ v 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaaiilaaaa@3B8D@ but its ARB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyqaiaabk facaqGcbWaaSbaaSqaaiablkqiJcqabaaaaa@3B0D@ is also very negative: the RB_Y1 is a split MSE estimator that for populations with σ ^ v REML 2 = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaI YaaaaOGaeyypa0JaaGimaiaacYcaaaa@4099@ it subtracts a factor of the unconditional bias of the AM.LL, which is always positive, whereas a better formula for a split MSE estimator would be to use an estimator of the conditional bias E ( σ ^ v 2 / σ ^ v REML 2 = 0 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyramaabm aabaWaaSGbaeaacuaHdpWCgaqcamaaDaaaleaacaWG2baabaGaaGOm aaaaaOqaaiqbeo8aZzaajaWaa0baaSqaaiaadAhacaqGsbGaaeyrai aab2eacaqGmbaabaGaaGOmaaaakiabg2da9iaaicdaaaaacaGLOaGa ayzkaaGaaiOlaaaa@46C5@ Indeed, even for a moderate number of areas ( m = 100 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGTbGaeyypa0JaaGymaiaaicdacaaIWaaacaGLOaGaayzkaaGaaiil aaaa@3D8C@ Table 6.1 shows that the unconditional bias of the MIX is 49% whereas the conditional bias of the MIX is -37%.

The PB MSE estimator under the AR.YL and the MIX methods adjusted well for the bias but paid in terms of variance. Among all the MSE estimators it appears that the Naive Bootstrap MSE estimator performed best, and even better under the MIX variance estimation, when taking into account the three measures ARB, ARB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyqaiaabk facaqGcbWaaSbaaSqaaiablkqiJcqabaaaaa@3B0D@ and RRMSE together. We found that for a moderate number of areas, the RB_Y2 had the lowest RRMSE among the Taylor estimators under the MIX method. On the other hand, M_et_al is most reliable when the true underlying variance σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD3@ is very small: in this case M_et_al is effectively the MSE estimator of the synthetic estimator of the small area mean. We do not recommend relying on the second order approximation to the MSE when m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@381E@ is small: the approximation (2.6) to the MSE does not necessarily hold, the performance measures obtained from our study are very unstable and they may vary from data set to data set.

In conclusion, under the hypothesis of σ v 2 > 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaeyOpa4JaaGimaiaacYcaaaa@3D4F@ the relative performances of competing positive variance estimators depend on the size of σ v 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaaiilaaaa@3B8D@ the signal to noise ratio, the number of areas and the objective function. For a moderate number of areas, the MIX variance estimator appeared to perform better than the LL and the YL estimators in this study; under the MIX method, the Naive PB MSE estimator had the lowest ARB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyqaiaabk facaqGcbWaaSbaaSqaaiablkqiJcqabaaaaa@3B0D@ and RRMSE combined; the M_et_al MSE estimator under the MIX variance estimator performed marginally better than the RB_Y1 when the underlying σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD3@ was very small. However, the percentage of REML zeros yielded under the simulation model shows that an outcome of σ ^ v REML 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaI YaaaaOGaeyypa0JaaGimaaaa@3FE9@ and/or negative tests of hypothesis do not necessarily mean that σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD3@ is sufficiently small to rely on M_et_al. In the absence of other information, the Naive PB estimator under the MIX appears to perform better.

Acknowledgements

The authors would like to thank Professor J.N.K. Rao from Carleton University for his useful comments and to Victor Estevao from Statistics Canada for developing the grid maximization especially for this project. We also would like to thank the reviewers for their careful appraisal of our paper and for their suggestions to improve this paper.

Appendix A

Proof of Theorem 4.1

The asymptotic variance of σ ^ v MIX 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiwaaqaaiaaikdaaaaa aa@3D5A@ is given by: V ¯ ( σ ^ v MIX 2 ) = lim m E ( σ ^ v MIX 2 σ v 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOvayaara WaaeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWG2bGaaeytaiaabMea caqGybaabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9maaxababa GaciiBaiaacMgacaGGTbaaleaacaWGTbGaeyOKH4QaeyOhIukabeaa kiaadweadaqadaqaaiqbeo8aZzaajaWaa0baaSqaaiaadAhacaqGnb GaaeysaiaabIfaaeaacaaIYaaaaOGaeyOeI0Iaeq4Wdm3aa0baaSqa aiaadAhaaeaacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaaca aIYaaaaaaa@565B@

We show that E ( σ ^ v MIX 2 σ v 2 ) 2 E ( σ ^ v REML 2 σ v 2 ) 2 + o ( 1 / m )  as  m . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyramaabm aabaGafq4WdmNbaKaadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiw aaqaaiaaikdaaaGccqGHsislcqaHdpWCdaqhaaWcbaGaamODaaqaai aaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGH KjYOcaWGfbWaaeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWG2bGaae OuaiaabweacaqGnbGaaeitaaqaaiaaikdaaaGccqGHsislcqaHdpWC daqhaaWcbaGaamODaaqaaiaaikdaaaaakiaawIcacaGLPaaadaahaa WcbeqaaiaaikdaaaGccqGHRaWkcaWGVbWaaeWaaeaadaWcgaqaaiaa igdaaeaacaWGTbaaaaGaayjkaiaawMcaaiaabccacaqGHbGaae4Cai aabccacaWGTbGaeyOKH4QaeyOhIuQaaiOlaaaa@6322@

E ( σ ^ v MIX 2 σ v 2 ) 2 = { σ ^ v REML 2 > 0 } ( σ ^ v REML 2 σ v 2 ) 2 d P + { σ ^ v REML 2 = 0 } ( σ ^ v AM .LL 2 σ v 2 ) 2 d P Ω ( σ ^ v REML 2 σ v 2 ) 2 d P + { σ ^ v REML 2 = 0 } ( σ ^ v AM .LL 2 σ v 2 ) 2 d P = E ( σ ^ v REML 2 σ v 2 ) 2 (A .1) + o ( 1 m ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaadweadaqadaqaaiqbeo8aZzaajaWaa0baaSqaaiaadAhacaqG nbGaaeysaiaabIfaaeaacaaIYaaaaOGaeyOeI0Iaeq4Wdm3aa0baaS qaaiaadAhaaeaacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaa caaIYaaaaaGcbaGaeyypa0Zaa8quaeaadaqadaqaaiqbeo8aZzaaja Waa0baaSqaaiaadAhacaqGsbGaaeyraiaab2eacaqGmbaabaGaaGOm aaaakiabgkHiTiabeo8aZnaaDaaaleaacaWG2baabaGaaGOmaaaaaO GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaadsgacaWGqbaa leaadaGadaqaaiqbeo8aZzaajaWaa0baaWqaaiaadAhacaqGsbGaae yraiaab2eacaqGmbaabaGaaGOmaaaaliabg6da+iaaicdaaiaawUha caGL9baaaeqaniabgUIiYdGccqGHRaWkdaWdrbqaamaabmaabaGafq 4WdmNbaKaadaqhaaWcbaGaamODaiaabgeacaqGnbGaaeOlaiaabYea caqGmbaabaGaaGOmaaaakiabgkHiTiabeo8aZnaaDaaaleaacaWG2b aabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaa kiaadsgacaWGqbaaleaadaGadaqaaiqbeo8aZzaajaWaa0baaWqaai aadAhacaqGsbGaaeyraiaab2eacaqGmbaabaGaaGOmaaaaliabg2da 9iaaicdaaiaawUhacaGL9baaaeqaniabgUIiYdaakeaaaqaabeqaai abgsMiJoaapefabaWaaeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWG 2bGaaeOuaiaabweacaqGnbGaaeitaaqaaiaaikdaaaGccqGHsislcq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakiaawIcacaGLPaaa daahaaWcbeqaaiaaikdaaaGccaWGKbGaamiuaaWcbaGaeuyQdCfabe qdcqGHRiI8aOGaey4kaSYaa8quaeaadaqadaqaaiqbeo8aZzaajaWa a0baaSqaaiaadAhacaqGbbGaaeytaiaab6cacaqGmbGaaeitaaqaai aaikdaaaGccqGHsislcqaHdpWCdaqhaaWcbaGaamODaaqaaiaaikda aaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaWGKbGaam iuaaWcbaWaaiWaaeaacuaHdpWCgaqcamaaDaaameaacaWG2bGaaeOu aiaabweacaqGnbGaaeitaaqaaiaaikdaaaWccqGH9aqpcaaIWaaaca GL7bGaayzFaaaabeqdcqGHRiI8aOGaeyypa0JaamyramaabmaabaGa fq4WdmNbaKaadaqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabY eaaeaacaaIYaaaaOGaeyOeI0Iaeq4Wdm3aa0baaSqaaiaadAhaaeaa caaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaaG zbVlaabIcacaqGbbGaaeOlaiaabgdacaqGPaaabaGaey4kaSIaaGPa Vlaad+gadaqadaqaamaalaaabaGaaGymaaqaaiaad2gaaaaacaGLOa GaayzkaaGaaiOlaaaaaaaa@D27C@

Indeed, by the Holder and Minkowski inequalities, with any 1 < p < , 1 / p + 1 / q = 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaGymaiabgY da8iaadchacqGH8aapcqGHEisPcaGGSaWaaSGbaeaacaaIXaaabaGa amiCaaaacqGHRaWkdaWcgaqaaiaaigdaaeaacaWGXbaaaiabg2da9i aaigdacaGGSaaaaa@43E5@ and setting X ( σ ^ v AM .LL 2 σ v 2 ) 2 = O p ( 1 / m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiwaiabgg Mi6oaabmaabaGafq4WdmNbaKaadaqhaaWcbaGaamODaiaabgeacaqG nbGaaeOlaiaabYeacaqGmbaabaGaaGOmaaaakiabgkHiTiabeo8aZn aaDaaaleaacaWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaa leqabaGaaGOmaaaakiabg2da9iaac+eadaWgaaWcbaGaamiCaaqaba GcdaqadaqaamaalyaabaGaaGymaaqaaiaad2gaaaaacaGLOaGaayzk aaaaaa@4EE0@ and the indicator I ( σ ^ vREML 2 = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamysamaabm aabaGafq4WdmNbaKaadaqhaaWcbaGaaeODaiaabkfacaqGfbGaaeyt aiaabYeaaeaacaqGYaaaaOGaeyypa0JaaGimaaGaayjkaiaawMcaaa aa@4237@ of populations with σ ^ v REML 2 = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaI YaaaaOGaeyypa0JaaGimaiaacYcaaaa@4099@ we have:

{ σ ^ v REML 2 < 0 } ( σ ^ v AM .LL 2 σ v 2 ) 2 d P ( Ω ( σ ^ v AM .LL 2 σ v 2 ) 2 p d P ) 1 / p . ( P { σ ^ v REML 2 = 0 } ) 1 / q = ( O ( 1 m p ) ) 1 / p . ( o ( 1 ) ) 1 / q = o ( 1 m ) , ( A .2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaamaapefabaWaaeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWG2bGa aeyqaiaab2eacaqGUaGaaeitaiaabYeaaeaacaaIYaaaaOGaeyOeI0 Iaeq4Wdm3aa0baaSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGaayzk aaWaaWbaaSqabeaacaaIYaaaaOGaamizaiaadcfaaSqaamaacmaaba Gafq4WdmNbaKaadaqhaaadbaGaamODaiaabkfacaqGfbGaaeytaiaa bYeaaeaacaaIYaaaaSGaeyipaWJaaGimaaGaay5Eaiaaw2haaaqab0 Gaey4kIipaaOqaaiabgsMiJoaabmaabaWaa8quaeaadaqadaqaaiqb eo8aZzaajaWaa0baaSqaaiaadAhacaqGbbGaaeytaiaab6cacaqGmb GaaeitaaqaaiaaikdaaaGccqGHsislcqaHdpWCdaqhaaWcbaGaamOD aaqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaca WGWbaaaOGaamizaiaadcfaaSqaaiabfM6axbqab0Gaey4kIipaaOGa ayjkaiaawMcaamaaCaaaleqabaWaaSGbaeaacaaIXaaabaGaamiCaa aaaaGccaGGUaWaaeWaaeaacaWGqbWaaiWaaeaacuaHdpWCgaqcamaa DaaaleaacaWG2bGaaeOuaiaabweacaqGnbGaaeitaaqaaiaaikdaaa GccqGH9aqpcaaIWaaacaGL7bGaayzFaaaacaGLOaGaayzkaaWaaWba aSqabeaadaWcgaqaaiaaigdaaeaacaWGXbaaaaaaaOqaaaqaaiabg2 da9maabmaabaGaam4tamaabmaabaWaaSaaaeaacaaIXaaabaGaamyB amaaCaaaleqabaGaamiCaaaaaaaakiaawIcacaGLPaaaaiaawIcaca GLPaaadaahaaWcbeqaamaalyaabaGaaGymaaqaaiaadchaaaaaaOGa aiOlamaabmaabaGaam4BamaabmaabaGaaGymaaGaayjkaiaawMcaaa GaayjkaiaawMcaamaaCaaaleqabaWaaSGbaeaacaaIXaaabaGaamyC aaaaaaGccqGH9aqpcaWGVbWaaeWaaeaadaWcaaqaaiaaigdaaeaaca WGTbaaaaGaayjkaiaawMcaaiaacYcaaaGaaGzbVlaaywW7caaMf8Ua aGzbVlaacIcacaGGbbGaaiOlaiaaikdacaGGPaaaaa@A079@

since ( σ ^ v AM .LL 2 σ v 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacu aHdpWCgaqcamaaDaaaleaacaWG2bGaaeyqaiaab2eacaqGUaGaaeit aiaabYeaaeaacaaIYaaaaOGaeyOeI0Iaeq4Wdm3aa0baaSqaaiaadA haaeaacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaa aaaa@45E0@ is uniformly bounded and σ ^ v REML 2 P σ v 2 > 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaI YaaaaOWaaybyaeqaleqabaGaamiuaaqdbaGaeyOKH4kaaOGaaGjbVl abeo8aZnaaDaaaleaacaWG2baabaGaaGOmaaaakiabg6da+iaaicda caGGUaaaaa@493E@ Note that the AM.LL and REML estimators of σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD3@ are uniformly bounded as a consequence of their almost sure convergence to σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD3@ (see, for example, Yuan and Jennrich 1998).

Proof of Theorem 4.2

We denote by σ ^ v ML 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabC4Wdyaaja Waa0baaSqaaiaadAhacaqGnbGaaeitaaqaaiaaikdaaaaaaa@3C0E@ the maximum likelihood variance estimator.

We show first that σ ^ v REML 2 σ ^ v ML 2 = O p ( 1 / m ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabC4Wdyaaja Waa0baaSqaaiaadAhacaqGsbGaaeyraiaab2eacaqGmbaabaGaaGOm aaaakiabgkHiTiqaho8agaqcamaaDaaaleaacaWG2bGaaeytaiaabY eaaeaacaaIYaaaaOGaeyypa0Jaam4tamaaBaaaleaacaWGWbaabeaa kmaabmaabaWaaSGbaeaacaaIXaaabaGaamyBaaaaaiaawIcacaGLPa aacaGGUaaaaa@4A91@ Let G * ( σ v 2 ) = log ( L * ) / σ v 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaGGQaaabeaakmaabmaabaGaaC4WdmaaDaaaleaacaWG2baa baGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9maalyaabaGaeyOaIy RaciiBaiaac+gacaGGNbWaaeWaaeaacaWGmbWaaSbaaSqaaiaaykW7 caGGQaaabeaaaOGaayjkaiaawMcaaaqaaiabgkGi2kaaho8adaqhaa WcbaGaamODaaqaaiaaikdaaaGccqGH9aqpaaGaaGimaaaa@4E20@ be the estimating equation that yields the variance estimator *. Equation (3.4) implies:

G AM .LL ( σ v 2 ) G ML ( σ v 2 ) = log σ v 2 / σ v 2 = 1 m σ v 2 = O ( 1 m ) . ( A .3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaqGbbGaaeytaiaab6cacaqGmbGaaeitaaqabaGcdaqadaqa aiaaho8adaqhaaWcbaGaamODaaqaaiaaikdaaaaakiaawIcacaGLPa aacqGHsislcaWGhbWaaSbaaSqaaiaab2eacaqGmbaabeaakmaabmaa baGaaC4WdmaaDaaaleaacaWG2baabaGaaGOmaaaaaOGaayjkaiaawM caaiabg2da9maalyaabaGaeyOaIyRaciiBaiaac+gacaGGNbGaaC4W dmaaDaaaleaacaWG2baabaGaaGOmaaaaaOqaaiabgkGi2caacaWHdp Waa0baaSqaaiaadAhaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaI XaaabaGaamyBaiaaho8adaqhaaWcbaGaamODaaqaaiaaikdaaaaaaO Gaeyypa0Jaam4tamaabmaabaWaaSaaaeaacaaIXaaabaGaamyBaaaa aiaawIcacaGLPaaacaGGUaGaaGzbVlaaywW7caaMf8Uaaiikaiaacg eacaGGUaGaaG4maiaacMcaaaa@6A65@

With G ML ( ) ( G ML / σ v 2 ) ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaaDa aaleaacaqGnbGaaeitaaqaaOGamai2gkdiIcaadaqadaqaaiabgwSi xdGaayjkaiaawMcaaiablYLianaabmaabaWaaSGbaeaacqGHciITca WGhbWaaSbaaSqaaiaab2eacaqGmbaabeaaaOqaaiabgkGi2kaaho8a daqhaaWcbaGaamODaaqaaiaaikdaaaaaaaGccaGLOaGaayzkaaWaae WaaeaacqGHflY1aiaawIcacaGLPaaaaaa@4FEC@ and G ML ( )( G ML / σ v 2 )( ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaaDa aaleaacaqGnbGaaeitaaqaaOGamai2gkdiIUGaaGzaVRGamai2gkdi IcaadaqadaqaaiabgwSixdGaayjkaiaawMcaaiablYLianaabmaaba WaaSGbaeaacqGHciITcaWGhbWaa0baaSqaaiaab2eacaqGmbaabaGc cWaGyBOmGikaaaqaaiabgkGi2kaaho8adaqhaaWcbaGaamODaaqaai aaikdaaaaaaaGccaGLOaGaayzkaaWaaeWaaeaacqGHflY1aiaawIca caGLPaaacaGGSaaaaa@57FC@ equation (A.3) implies:

G ML ( σ v 2 ) G AM .LL ( σ v 2 ) = O ( 1 m ) . ( A .4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaaDa aaleaacaqGnbGaaeitaaqaaOGamai2gkdiIcaadaqadaqaaiaaho8a daqhaaWcbaGaamODaaqaaiaaikdaaaaakiaawIcacaGLPaaacqGHsi slcaWGhbWaa0baaSqaaiaabgeacaqGnbGaaeOlaiaabYeacaqGmbaa baGccWaGyBOmGikaamaabmaabaGaaC4WdmaaDaaaleaacaWG2baaba GaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9iaad+eadaqadaqaamaa laaabaGaaGymaaqaaiaad2gaaaaacaGLOaGaayzkaaGaaiOlaiaayw W7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaacgeacaGGUaGaaGin aiaacMcaaaa@6012@

Now, using equation (A.4), the m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca WGTbaaleqaaOGaeyOeI0caaa@3930@ consistency of the ML and AM.LL estimators of σ v 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaC4WdmaaDa aaleaacaWG2baabaGaaGOmaaaakiaacYcaaaa@3B19@ the two-term Taylor expansion of G ML ( )  and  G AM .LL ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaqGnbGaaeitaaqabaGcdaqadaqaaiabgwSixdGaayjkaiaa wMcaaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaam4ramaaBaaale aacaqGbbGaaeytaiaab6cacaqGmbGaaeitaaqabaGcdaqadaqaaiab gwSixdGaayjkaiaawMcaaaaa@4A5A@ at σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaC4WdmaaDa aaleaacaWG2baabaGaaGOmaaaaaaa@3A5F@ and G ML ( σ v 2 ) = O ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaaDa aaleaacaqGnbGaaeitaaqaaOGamai2gkdiIcaadaqadaqaaiaaho8a daqhaaWcbaGaamODaaqaaiaaikdaaaaakiaawIcacaGLPaaacqGH9a qpcaWGpbWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaa@4592@ as m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkabg6HiLkaacYcaaaa@3C2C@ the left- hand side in (A.3) is equal to:

= G ML ( σ v 2 ) ( σ ^ v ML 2 σ v 2 ) G AM .LL ( σ v 2 ) ( σ ^ v AM .LL 2 σ v 2 ) + O p ( 1 m ) = G ML ( σ v 2 ) ( σ ^ v ML 2 σ ^ v AM .LL 2 ) + ( G ML ( σ v 2 ) G AM .LL ( σ v 2 ) ) ( σ ^ v AM .LL 2 σ v 2 ) + O p ( 1 m ) = G ML ( σ v 2 ) ( σ ^ v ML 2 σ ^ v AM .LL 2 ) + O p ( 1 m 3 / 2 ) + O p ( 1 m ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGceaqabeaacqGH9a qpcaWGhbWaa0baaSqaaiaab2eacaqGmbaabaGccWaGyBOmGikaamaa bmaabaGaaC4WdmaaDaaaleaacaWG2baabaGaaGOmaaaaaOGaayjkai aawMcaamaabmaabaGabC4WdyaajaWaa0baaSqaaiaadAhacaqGnbGa aeitaaqaaiaaikdaaaGccqGHsislcaWHdpWaa0baaSqaaiaadAhaae aacaaIYaaaaaGccaGLOaGaayzkaaGaeyOeI0Iaam4ramaaDaaaleaa caqGbbGaaeytaiaab6cacaqGmbGaaeitaaqaaOGamai2gkdiIcaada qadaqaaiaaho8adaqhaaWcbaGaamODaaqaaiaaikdaaaaakiaawIca caGLPaaadaqadaqaaiqaho8agaqcamaaDaaaleaacaWG2bGaaeyqai aab2eacaqGUaGaaeitaiaabYeaaeaacaaIYaaaaOGaeyOeI0IaaC4W dmaaDaaaleaacaWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaiabgU caRiaad+eadaWgaaWcbaGaamiCaaqabaGcdaqadaqaamaalaaabaGa aGymaaqaaiaad2gaaaaacaGLOaGaayzkaaaabaGaeyypa0Jaam4ram aaDaaaleaacaqGnbGaaeitaaqaaOGamai2gkdiIcaadaqadaqaaiaa ho8adaqhaaWcbaGaamODaaqaaiaaikdaaaaakiaawIcacaGLPaaada qadaqaaiqaho8agaqcamaaDaaaleaacaWG2bGaaeytaiaabYeaaeaa caaIYaaaaOGaeyOeI0IabC4WdyaajaWaa0baaSqaaiaadAhacaqGbb Gaaeytaiaab6cacaqGmbGaaeitaaqaaiaaikdaaaaakiaawIcacaGL PaaacqGHRaWkdaqadaqaaiaadEeadaqhaaWcbaGaaeytaiaabYeaae aakiadaITHYaIOaaWaaeWaaeaacaWHdpWaa0baaSqaaiaadAhaaeaa caaIYaaaaaGccaGLOaGaayzkaaGaeyOeI0Iaam4ramaaDaaaleaaca qGbbGaaeytaiaab6cacaqGmbGaaeitaaqaaOGamai2gkdiIcaadaqa daqaaiaaho8adaqhaaWcbaGaamODaaqaaiaaikdaaaaakiaawIcaca GLPaaaaiaawIcacaGLPaaadaqadaqaaiqaho8agaqcamaaDaaaleaa caWG2bGaaeyqaiaab2eacaqGUaGaaeitaiaabYeaaeaacaaIYaaaaO GaeyOeI0IaaC4WdmaaDaaaleaacaWG2baabaGaaGOmaaaaaOGaayjk aiaawMcaaiabgUcaRiaad+eadaWgaaWcbaGaamiCaaqabaGcdaqada qaamaalaaabaGaaGymaaqaaiaad2gaaaaacaGLOaGaayzkaaaabaGa eyypa0Jaam4ramaaDaaaleaacaqGnbGaaeitaaqaaOGamai2gkdiIc aadaqadaqaaiaaho8adaqhaaWcbaGaamODaaqaaiaaikdaaaaakiaa wIcacaGLPaaadaqadaqaaiqaho8agaqcamaaDaaaleaacaWG2bGaae ytaiaabYeaaeaacaaIYaaaaOGaeyOeI0IabC4WdyaajaWaa0baaSqa aiaadAhacaqGbbGaaeytaiaab6cacaqGmbGaaeitaaqaaiaaikdaaa aakiaawIcacaGLPaaacqGHRaWkcaWGpbWaaSbaaSqaaiaadchaaeqa aOWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGTbWaaWbaaSqabeaada WcgaqaaiaaiodaaeaacaaIYaaaaaaaaaaakiaawIcacaGLPaaacqGH RaWkcaWGpbWaaSbaaSqaaiaadchaaeqaaOWaaeWaaeaadaWcaaqaai aaigdaaeaacaWGTbaaaaGaayjkaiaawMcaaiaac6caaaaa@DD3F@

The last equality above implies

σ ^ v AM .LL 2 σ ^ v ML 2 = O p ( 1 m )  as   m . ( A .5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabC4Wdyaaja Waa0baaSqaaiaadAhacaqGbbGaaeytaiaab6cacaqGmbGaaeitaaqa aiaaikdaaaGccqGHsislceWHdpGbaKaadaqhaaWcbaGaamODaiaab2 eacaqGmbaabaGaaGOmaaaakiabg2da9iaad+eadaWgaaWcbaGaamiC aaqabaGcdaqadaqaamaalaaabaGaaGymaaqaaiaad2gaaaaacaGLOa GaayzkaaGaaeiiaiaabggacaqGZbGaaeiiaiaabccacaWGTbGaeyOK H4QaeyOhIuQaaiOlaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaai ikaiaacgeacaGGUaGaaGynaiaacMcaaaa@5E99@

Similarly, we establish a relationship between G REML ( σ v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaqGsbGaaeyraiaab2eacaqGmbaabeaakmaabmaabaGaaC4W dmaaDaaaleaacaWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaaaa@4030@ and G ML ( σ v 2 ) : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaqGnbGaaeitaaqabaGcdaqadaqaaiaaho8adaqhaaWcbaGa amODaaqaaiaaikdaaaaakiaawIcacaGLPaaacaGG6aaaaa@3F51@ given that tr ( V 1 Z ( Z V 1 Z ) 1 Z V 1 ) = O ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabk hadaqadaqaaiaahAfadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWH AbWaaeWaaeaaceWHAbGbauaacaWHwbWaaWbaaSqabeaacqGHsislca aIXaaaaOGaaCOwaaGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0Ia aGymaaaakiqahQfagaqbaiaahAfadaahaaWcbeqaaiabgkHiTiaaig daaaaakiaawIcacaGLPaaacqGH9aqpcaWGpbWaaeWaaeaacaaIXaaa caGLOaGaayzkaaaaaa@4E05@ follows from conditions 1 through 3 in Section 3 and equation (3.1), we have:

G REML ( σ v 2 ) G ML ( σ v 2 ) = 1 m tr ( V 1 Z ( Z V 1 Z ) 1 Z V 1 ) = O ( 1 m )   as   m , ( A .6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaqGsbGaaeyraiaab2eacaqGmbaabeaakmaabmaabaGaaC4W dmaaDaaaleaacaWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaiabgk HiTiaadEeadaWgaaWcbaGaaeytaiaabYeaaeqaaOWaaeWaaeaacaWH dpWaa0baaSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaey ypa0ZaaSaaaeaacaaIXaaabaGaamyBaaaacaqG0bGaaeOCamaabmaa baGaaCOvamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahQfadaqada qaaiqahQfagaqbaiaahAfadaahaaWcbeqaaiabgkHiTiaaigdaaaGc caWHAbaacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaO GabCOwayaafaGaaCOvamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGa ayjkaiaawMcaaiabg2da9iaad+eadaqadaqaamaalaaabaGaaGymaa qaaiaad2gaaaaacaGLOaGaayzkaaGaaeiiaiaabccacaqGHbGaae4C aiaabccacaqGGaGaamyBaiabgkziUkabg6HiLkaacYcacaaMf8UaaG zbVlaacIcacaGGbbGaaiOlaiaaiAdacaGGPaaaaa@7333@

Equation (A.6) and the same argument as with the AM.LL estimator, imply:

σ ^ v REML 2 σ ^ v ML 2 = O p ( 1 m )   as   m . ( A .7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabC4Wdyaaja Waa0baaSqaaiaadAhacaqGsbGaaeyraiaab2eacaqGmbaabaGaaGOm aaaakiabgkHiTiqaho8agaqcamaaDaaaleaacaWG2bGaaeytaiaabY eaaeaacaaIYaaaaOGaeyypa0Jaam4tamaaBaaaleaacaWGWbaabeaa kmaabmaabaWaaSaaaeaacaaIXaaabaGaamyBaaaaaiaawIcacaGLPa aacaqGGaGaaeiiaiaabggacaqGZbGaaeiiaiaabccacaWGTbGaeyOK H4QaeyOhIuQaaiOlaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaai ikaiaacgeacaGGUaGaaG4naiaacMcaaaa@5E97@

Equations (A.5) and (A.7) combined, yield:

( σ ^ v REML 2 σ ^ v AM .LL 2 ) = O P ( 1 m ) . ( A .8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacu aHdpWCgaqcamaaDaaaleaacaWG2bGaaeOuaiaabweacaqGnbGaaeit aaqaaiaaikdaaaGccqGHsislcuaHdpWCgaqcamaaDaaaleaacaWG2b Gaaeyqaiaab2eacaqGUaGaaeitaiaabYeaaeaacaaIYaaaaaGccaGL OaGaayzkaaGaeyypa0Jaam4tamaaBaaaleaacaWGqbaabeaakmaabm aabaWaaSaaaeaacaaIXaaabaGaamyBaaaaaiaawIcacaGLPaaacaGG UaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaiyqaiaac6 cacaaI4aGaaiykaaaa@5A77@

Now we express the bias of the MIX estimator by:

B MIX ( σ ^ v MIX 2 ) = { σ ^ v REML 2 > 0 } ( σ ^ v REML 2 σ v 2 ) d P + { σ ^ v REML 2 = 0 } ( σ ^ v AM .LL 2 σ v 2 ) d P . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaqGnbGaaeysaiaabIfaaeqaaOWaaeWaaeaacuaHdpWCgaqc amaaDaaaleaacaWG2bGaaeytaiaabMeacaqGybaabaGaaGOmaaaaaO GaayjkaiaawMcaaiabg2da9maapefabaWaaeWaaeaacuaHdpWCgaqc amaaDaaaleaacaWG2bGaaeOuaiaabweacaqGnbGaaeitaaqaaiaaik daaaGccqGHsislcqaHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaa kiaawIcacaGLPaaacaWGKbGaamiuaaWcbaWaaiWaaeaacuaHdpWCga qcamaaDaaameaacaWG2bGaaeOuaiaabweacaqGnbGaaeitaaqaaiaa ikdaaaWccqGH+aGpcaaIWaaacaGL7bGaayzFaaaabeqdcqGHRiI8aO Gaey4kaSYaa8quaeaadaqadaqaaiqbeo8aZzaajaWaa0baaSqaaiaa dAhacaqGbbGaaeytaiaab6cacaqGmbGaaeitaaqaaiaaikdaaaGccq GHsislcqaHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakiaawIca caGLPaaacaWGKbGaamiuaaWcbaWaaiWaaeaacuaHdpWCgaqcamaaDa aameaacaWG2bGaaeOuaiaabweacaqGnbGaaeitaaqaaiaaikdaaaWc cqGH9aqpcaaIWaaacaGL7bGaayzFaaaabeqdcqGHRiI8aOGaaiOlaa aa@7DEF@

We add and subtract { σ ^ v REML 2 = 0 } ( σ ^ v REML 2 σ v 2 ) d P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaa8qeaeaada qadaqaaiqbeo8aZzaajaWaa0baaSqaaiaadAhaciGGsbGaaiyraiaa c2eacaGGmbaabaGaaGOmaaaakiabgkHiTiabeo8aZnaaDaaaleaaca WG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaiaadsgacaWGqbaaleaa daGadaqaaiqbeo8aZzaajaWaa0baaWqaaiaadAhacaqGsbGaaeyrai aab2eacaqGmbaabaGaaGOmaaaaliabg2da9iaaicdaaiaawUhacaGL 9baaaeqaniabgUIiYdaaaa@530E@ from the right-hand side of the equation above to obtain:

B MIX ( σ ^ v MIX 2 ) = Ω ( σ ^ v REML 2 σ v 2 ) d P + { σ ^ v REML 2 = 0 } ( σ ^ v AM .LL 2 σ ^ v REML 2 ) d P = Bias ( σ ^ v REML 2 ) + { σ ^ v REML 2 = 0 } ( σ ^ v AM .LL 2 σ ^ v REML 2 ) d P . ( A .9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaadkeadaWgaaWcbaGaaeytaiaabMeacaqGybaabeaakmaabmaa baGafq4WdmNbaKaadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiwaa qaaiaaikdaaaaakiaawIcacaGLPaaaaeaacqGH9aqpdaWdrbqaamaa bmaabaGafq4WdmNbaKaadaqhaaWcbaGaamODaiaabkfacaqGfbGaae ytaiaabYeaaeaacaaIYaaaaOGaeyOeI0Iaeq4Wdm3aa0baaSqaaiaa dAhaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaamizaiaadcfaaSqaai abfM6axbqab0Gaey4kIipakiabgUcaRmaapefabaWaaeWaaeaacuaH dpWCgaqcamaaDaaaleaacaWG2bGaaeyqaiaab2eacaqGUaGaaeitai aabYeaaeaacaaIYaaaaOGaeyOeI0Iafq4WdmNbaKaadaqhaaWcbaGa amODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaIYaaaaaGccaGLOa GaayzkaaGaamizaiaadcfaaSqaamaacmaabaGafq4WdmNbaKaadaqh aaadbaGaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaIYaaaaS Gaeyypa0JaaGimaaGaay5Eaiaaw2haaaqab0Gaey4kIipaaOqaaaqa aiabg2da9iaabkeacaqGPbGaaeyyaiaabohadaqadaqaaiqbeo8aZz aajaWaa0baaSqaaiaadAhacaqGsbGaaeyraiaab2eacaqGmbaabaGa aGOmaaaaaOGaayjkaiaawMcaaiabgUcaRmaapefabaWaaeWaaeaacu aHdpWCgaqcamaaDaaaleaacaWG2bGaaeyqaiaab2eacaqGUaGaaeit aiaabYeaaeaacaaIYaaaaOGaeyOeI0Iafq4WdmNbaKaadaqhaaWcba GaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaIYaaaaaGccaGL OaGaayzkaaGaamizaiaadcfaaSqaamaacmaabaGafq4WdmNbaKaada qhaaadbaGaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaIYaaa aSGaeyypa0JaaGimaaGaay5Eaiaaw2haaaqab0Gaey4kIipakiaac6 caaaGaaGzbVlaaywW7caaMf8UaaiikaiaacgeacaGGUaGaaGyoaiaa cMcaaaa@AE35@

Now, since σ ^ vAM.LL 2 σ ^ vREML 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabgeacaqGnbGaaeOlaiaabYeacaqGmbaa baGaaeOmaaaakiabgkHiTiqbeo8aZzaajaWaa0baaSqaaiaadAhaca qGsbGaaeyraiaab2eacaqGmbaabaGaaGOmaaaaaaa@4689@ is uniformly bounded, we apply the Holder and Minkowski inequality with p = q = 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2 da9iaadghacqGH9aqpcaaIYaaaaa@3BBF@ and equation (A.8) to the last term in (A.9) to obtain:

B MIX ( σ ^ v MIX 2 ) = Bias ( σ ^ v REML 2 ) + ( Ω ( σ ^ v AM .LL 2 σ ^ v REML 2 ) 2 d P ) 1 / 2 P { σ ^ v REML 2 = 0 } 1 / 2 = Bias ( σ ^ v REML 2 ) + O ( 1 m ) o ( 1 ) = Bias ( σ ^ v REML 2 ) + o ( 1 m ) . ( A .10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaadkeadaWgaaWcbaGaaeytaiaabMeacaqGybaabeaakmaabmaa baGafq4WdmNbaKaadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiwaa qaaiaaikdaaaaakiaawIcacaGLPaaaaeaacqGH9aqpcaqGcbGaaeyA aiaabggacaqGZbWaaeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWG2b GaaeOuaiaabweacaqGnbGaaeitaaqaaiaaikdaaaaakiaawIcacaGL PaaacqGHRaWkdaqadaqaamaapefabaWaaeWaaeaacuaHdpWCgaqcam aaDaaaleaacaWG2bGaaeyqaiaab2eacaqGUaGaaeitaiaabYeaaeaa caaIYaaaaOGaeyOeI0Iafq4WdmNbaKaadaqhaaWcbaGaamODaiaabk facaqGfbGaaeytaiaabYeaaeaacaaIYaaaaaGccaGLOaGaayzkaaWa aWbaaSqabeaacaaIYaaaaOGaamizaiaadcfaaSqaaiabfM6axbqab0 Gaey4kIipaaOGaayjkaiaawMcaamaaCaaaleqabaWaaSGbaeaacaaI XaaabaGaaGOmaaaaaaGccqGHflY1caWGqbWaaiWaaeaacuaHdpWCga qcamaaDaaaleaacaWG2bGaaeOuaiaabweacaqGnbGaaeitaaqaaiaa ikdaaaGccqGH9aqpcaaIWaaacaGL7bGaayzFaaWaaWbaaSqabeaada WcgaqaaiaaigdaaeaacaaIYaaaaaaaaOqaaaqaaiabg2da9iaabkea caqGPbGaaeyyaiaabohadaqadaqaaiqbeo8aZzaajaWaa0baaSqaai aadAhacaqGsbGaaeyraiaab2eacaqGmbaabaGaaGOmaaaaaOGaayjk aiaawMcaaiabgUcaRiaad+eadaqadaqaamaalaaabaGaaGymaaqaai aad2gaaaaacaGLOaGaayzkaaGaeyyXICTaam4BamaabmaabaGaaGym aaGaayjkaiaawMcaaiabg2da9iaabkeacaqGPbGaaeyyaiaabohada qadaqaaiqbeo8aZzaajaWaa0baaSqaaiaadAhacaqGsbGaaeyraiaa b2eacaqGmbaabaGaaGOmaaaaaOGaayjkaiaawMcaaiabgUcaRiaad+ gadaqadaqaamaalaaabaGaaGymaaqaaiaad2gaaaaacaGLOaGaayzk aaGaaiOlaaaacaaMf8UaaGzbVlaacIcacaGGbbGaaiOlaiaaigdaca aIWaGaaiykaaaa@ACEB@

Proof of Remark 4.2: mse 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaSbaaSqaaiaaicdaaeqaaaaa@3AC0@ is unbiased up to the second order

E ( mse 0 ) MSE ( θ ^ i ) = { σ ^ v REML 2 > 0 } ( g 1 i + g 2 i + 2 g 3 i ) ( σ ^ v REML 2 ) d P + { σ ^ v REML 2 = 0 } g 2 i ( σ ^ v REML 2 ) d P MSE = [ Ω ( g 1 i + g 2 i + 2 g 3 i ) ( σ ^ v REML 2 ) d P MSE ] + { σ ^ v REML 2 = 0 } g 2 i ( σ ^ v REML 2 ) d P { σ ^ v REML 2 = 0 } ( g 1 i + g 2 i + 2 g 3 i ) ( σ ^ v REML 2 ) d P = [ o ( 1 m ) ] { σ ^ v REML 2 = 0 } 2 g 3 i ( σ ^ v REML 2 ) d P , ( A .11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiaadweadaqadaqaaiaab2gacaqGZbGaaeyzamaaBaaaleaacaaI WaaabeaaaOGaayjkaiaawMcaaiabgkHiTiaab2eacaqGtbGaaeyram aabmaabaGabCiUdyaajaWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGa ayzkaaaabaGaeyypa0Zaa8quaeaadaqadaqaaiaadEgadaWgaaWcba GaaGymaiaadMgaaeqaaOGaey4kaSIaam4zamaaBaaaleaacaaIYaGa amyAaaqabaGccqGHRaWkcaaIYaGaam4zamaaBaaaleaacaaIZaGaam yAaaqabaaakiaawIcacaGLPaaadaqadaqaaiqaho8agaqcamaaDaaa leaacaWG2bGaaeOuaiaabweacaqGnbGaaeitaaqaaiaaikdaaaaaki aawIcacaGLPaaacaWGKbGaamiuaaWcbaWaaiWaaeaaceWHdpGbaKaa daqhaaadbaGaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaIYa aaaSGaeyOpa4JaaGPaVlaaicdaaiaawUhacaGL9baaaeqaniabgUIi YdGccqGHRaWkdaWdrbqaaiaadEgadaWgaaWcbaGaaGOmaiaadMgaae qaaaqaamaacmaabaGabC4WdyaajaWaa0baaWqaaiaadAhacaqGsbGa aeyraiaab2eacaqGmbaabaGaaGOmaaaaliabg2da9iaaykW7caaIWa aacaGL7bGaayzFaaaabeqdcqGHRiI8aOWaaeWaaeaaceWHdpGbaKaa daqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaIYa aaaaGccaGLOaGaayzkaaGaamizaiaadcfacqGHsislcaqGnbGaae4u aiaabweaaeaaaqaabeqaaiabg2da9maadmaabaWaa8quaeaadaqada qaaiaadEgadaWgaaWcbaGaaGymaiaadMgaaeqaaOGaey4kaSIaam4z amaaBaaaleaacaaIYaGaamyAaaqabaGccqGHRaWkcaaIYaGaam4zam aaBaaaleaacaaIZaGaamyAaaqabaaakiaawIcacaGLPaaadaqadaqa aiqaho8agaqcamaaDaaaleaacaWG2bGaaeOuaiaabweacaqGnbGaae itaaqaaiaaikdaaaaakiaawIcacaGLPaaacaWGKbGaamiuaaWcbaGa aCyQdaqab0Gaey4kIipakiabgkHiTiaab2eacaqGtbGaaeyraaGaay 5waiaaw2faaaqaaiaaykW7caaMc8UaaGPaVlaaykW7cqGHRaWkdaWd rbqaaiaadEgadaWgaaWcbaGaaGOmaiaadMgaaeqaaaqaamaacmaaba GabC4WdyaajaWaa0baaWqaaiaadAhacaqGsbGaaeyraiaab2eacaqG mbaabaGaaGOmaaaaliabg2da9iaaykW7caaIWaaacaGL7bGaayzFaa aabeqdcqGHRiI8aOWaaeWaaeaaceWHdpGbaKaadaqhaaWcbaGaamOD aiaabkfacaqGfbGaaeytaiaabYeaaeaacaaIYaaaaaGccaGLOaGaay zkaaGaamizaiaadcfacqGHsisldaWdrbqaamaabmaabaGaam4zamaa BaaaleaacaaIXaGaamyAaaqabaGccqGHRaWkcaWGNbWaaSbaaSqaai aaikdacaWGPbaabeaakiabgUcaRiaaikdacaWGNbWaaSbaaSqaaiaa iodacaWGPbaabeaaaOGaayjkaiaawMcaamaabmaabaGabC4Wdyaaja Waa0baaSqaaiaadAhacaqGsbGaaeyraiaab2eacaqGmbaabaGaaGOm aaaaaOGaayjkaiaawMcaaiaadsgacaWGqbaaleaadaGadaqaaiqaho 8agaqcamaaDaaameaacaWG2bGaaeOuaiaabweacaqGnbGaaeitaaqa aiaaikdaaaWccqGH9aqpcaaMc8UaaGimaaGaay5Eaiaaw2haaaqab0 Gaey4kIipaaaGcbaaabaGaeyypa0ZaamWaaeaacaGGVbWaaeWaaeaa daWcaaqaaiaaigdaaeaacaWGTbaaaaGaayjkaiaawMcaaaGaay5wai aaw2faaiabgkHiTmaapefabaGaaGOmaiaadEgadaWgaaWcbaGaaG4m aiaadMgaaeqaaOWaaeWaaeaaceWHdpGbaKaadaqhaaWcbaGaamODai aabkfacaqGfbGaaeytaiaabYeaaeaacaaIYaaaaaGccaGLOaGaayzk aaGaamizaiaadcfaaSqaamaacmaabaGabC4WdyaajaWaa0baaWqaai aadAhacaqGsbGaaeyraiaab2eacaqGmbaabaGaaGOmaaaaliabg2da 9iaaykW7caaIWaaacaGL7bGaayzFaaaabeqdcqGHRiI8aOGaaiilaa aacaGGOaGaaiyqaiaac6cacaaIXaGaaGymaiaacMcaaaa@19A6@

since g 1 i ( σ ^ v REML 2 ) = g 1 i ( 0 ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaaIXaGaamyAaaqabaGcdaqadaqaaiqaho8agaqcamaaDaaa leaacaWG2bGaaeOuaiaabweacaqGnbGaaeitaaqaaiaaikdaaaaaki aawIcacaGLPaaacqGH9aqpcaWGNbWaaSbaaSqaaiaaigdacaWGPbaa beaakmaabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da9iaaicdaaa a@49BD@ in { σ ^ v REML 2 = 0 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaiWaaeaace WHdpGbaKaadaqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabYea aeaacaaIYaaaaOGaeyypa0JaaGimaaGaay5Eaiaaw2haaaaa@4186@ and g 2 i ( σ ^ v REML 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaaIYaGaamyAaaqabaGcdaqadaqaaiqaho8agaqcamaaDaaa leaacaWG2bGaaeOuaiaabweacaqGnbGaaeitaaqaaiaaikdaaaaaki aawIcacaGLPaaaaaa@41EA@ cancels out in (A.11). But

g 3 i ( σ ^ v REML 2 ) = g 3 i ( 0 ) = V ¯ ( 0 ) ψ i = O p ( 1 m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaaIZaGaamyAaaqabaGcdaqadaqaaiqaho8agaqcamaaDaaa leaacaWG2bGaaeOuaiaabweacaqGnbGaaeitaaqaaiaaikdaaaaaki aawIcacaGLPaaacqGH9aqpcaWGNbWaaSbaaSqaaiaaiodacaWGPbaa beaakmaabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da9maalaaaba GabmOvayaaraWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaabaGaaCiY dmaaBaaaleaacaWGPbaabeaaaaGccqGH9aqpcaWGpbWaaSbaaSqaai aadchaaeqaaOWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGTbaaaaGa ayjkaiaawMcaaaaa@550F@

and is uniformly bounded under the regularity conditions given in Section 2, hence the last term in (A.11) is also an o ( 1 / m ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaai4Bamaabm aabaWaaSGbaeaacaaIXaaabaGaamyBaaaaaiaawIcacaGLPaaacaGG Saaaaa@3BFB@ which renders mse 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaSbaaSqaaiaaicdaaeqaaaaa@3AC0@ unbiased up to the second order.

Appendix B

B.1 Comparison between REML and AR.YL using the scoring algorithm

The scoring algorithm could sometimes yield zero estimates for the likelihood of the AR.YL. Indeed, for data sets simulated under the model given in Section 5, with m = 45 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 da9iaaisdacaaI1aaaaa@3A81@ and σ v 2 = 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaeyypa0JaaGymaiaacYcaaaa@3D2E@ the REML and AR.YL scoring algorithms yielded 28% and 26% zeros respectively. Figures B.1 to B.3 illustrate the why: the likelihoods correspond to a single population generated under the model with σ v 2 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaC4WdmaaDa aaleaacaWG2baabaGaaGOmaaaakiabg2da9iaaigdaaaa@3C0A@ for which σ ^ v REML 2 = 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabC4Wdyaaja Waa0baaSqaaiaadAhacaqGsbGaaeyraiaab2eacaqGmbaabaGaaGOm aaaakiabg2da9iaaicdacaGGUaaaaa@4007@

Figure B.1, B.2 and B.3 of article 14542

Description of Figure B.1, B.2 and B.3

Figure B.1

Figure showing the REML likelihood on the x-axis versus σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVjpeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD9@  on the y-axis. The REML likelihood reaches its maximum value for σ v 2 =0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVjpeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaeyypa0JaaGimaiaac6caaaa@3D55@  After, it quickly decreases to 0 which is reached close to σ v 2 =2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVjpeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaeyypa0JaaGOmaiaac6caaaa@3D57@

Figure B.2

Figure showing the AR.YL likelihood on the x-axis versus σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVjpeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD9@  on the y-axis. The AR.YL likelihood is increasing up to its maximum value, reached for σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVjpeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD9@  very close to 0. After, it quickly decreases to 0 which is reached close to σ v 2 =2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVjpeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaeyypa0JaaGOmaiaac6caaaa@3D57@

Figure B.3

Figure showing the AM.LL likelihood on the x-axis versus σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVjpeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD9@  on the y-axis. The AM.LL likelihood is about 0 for σ v 2 =0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVjpeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaeyypa0JaaGimaiaac6caaaa@3D55@  After, it quickly increases to its maximum value reached for σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVjpeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD9@  close to 0. Finally, it slowly decreases to 0 which is reached for σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVjpeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD9@  between 3 and 4.

Figure B.2 shows that the maximum value of the AR.YL likelihood is very near the border. The scoring algorithm may often miss the maximum and yield a zero value. Figure B.3 shows that the AM.LL likelihood has a maximum value that differentiates better from the border.

B.2 Treatment of zeros in the parametric bootstrap

For each estimate σ ^ v 2 = σ ^ v 2 ( y ( r ) ) , r = 1 , 10 K , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdaaaGccqGH9aqpcuaHdpWCgaqc amaaDaaaleaacaWG2baabaGaaGOmaaaakmaabmaabaGaaCyEamaaCa aaleqabaWaaeWaaeaacaWGYbaacaGLOaGaayzkaaaaaaGccaGLOaGa ayzkaaGaaiilaiaadkhacqGH9aqpcaaIXaGaaiilaiablAciljaaig dacaaIWaGaam4saiaacYcaaaa@4D05@ and each method of variance estimation:

  1. Generate a large number B of random area effects v i ( b ) i .i .d . N ( 0 , σ ^ v 2 ) , b = 1 , , B , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODamaaDa aaleaacaWGPbaabaWaaeWaaeaacaWGIbaacaGLOaGaayzkaaaaaOWa aCbiaeaacqWI8iIoaSqabeaacaqGPbGaaeOlaiaabMgacaqGUaGaae izaiaab6caaaGccaWGobWaaeWaaeaacaaIWaGaaiilaiqbeo8aZzaa jaWaa0baaSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaai ilaiaadkgacqGH9aqpcaaIXaGaaiilaiablAciljaacYcacaWGcbGa aiilaaaa@50C2@ and generate, independently of v i ( b ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODamaaDa aaleaacaWGPbaabaWaaeWaaeaacaWGIbaacaGLOaGaayzkaaaaaOGa aiilaaaa@3C4C@ sampling errors e i ( b ) i .i .d . N ( 0 , ψ i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyzamaaDa aaleaacaWGPbaabaWaaeWaaeaacaWGIbaacaGLOaGaayzkaaaaaOWa aCbiaeaacqWI8iIoaSqabeaacaqGPbGaaeOlaiaabMgacaqGUaGaae izaiaab6caaaGccaWGobWaaeWaaeaacaaIWaGaaiilaiabeI8a5naa BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaacYcaaaa@4941@ i = 1 , , m , b = 1 , , B . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2 da9iaaigdacaGGSaGaeSOjGSKaaiilaiaad2gacaGGSaGaamOyaiab g2da9iaaigdacaGGSaGaeSOjGSKaaiilaiaadkeacaGGUaaaaa@4482@ Generate bootstrap data y i ( b ) = θ i ( b ) + e i ( b ) , θ i ( b ) = x i β ^ + v i ( b ) , i = 1 , , m . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGPbaabaWaaeWaaeaacaWGIbaacaGLOaGaayzkaaaaaOGa eyypa0JaeqiUde3aa0baaSqaaiaadMgaaeaadaqadaqaaiaadkgaai aawIcacaGLPaaaaaGccqGHRaWkcaWGLbWaa0baaSqaaiaadMgaaeaa daqadaqaaiaadkgaaiaawIcacaGLPaaaaaGccaGGSaGaeqiUde3aa0 baaSqaaiaadMgaaeaadaqadaqaaiaadkgaaiaawIcacaGLPaaaaaGc cqGH9aqpcaWH4bWaa0baaSqaaiaadMgaaeaakiadaITHYaIOaaGafq OSdiMbaKaacqGHRaWkcaWG2bWaa0baaSqaaiaadMgaaeaadaqadaqa aiaadkgaaiaawIcacaGLPaaaaaGccaGGSaGaamyAaiabg2da9iaaig dacaGGSaGaeSOjGSKaaiilaiaad2gacaGGUaaaaa@6200@ If σ ^ v REML 2 ( y ( r ) ) = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaI YaaaaOWaaeWaaeaacaWG5bWaaWbaaSqabeaadaqadaqaaiaadkhaai aawIcacaGLPaaaaaaakiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiil aaaa@45B7@ then generate ( y i ( b ) , θ i ( b ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG5bWaa0baaSqaaiaadMgaaeaadaqadaqaaiaadkgaaiaawIcacaGL PaaaaaGccaGGSaGaeqiUde3aa0baaSqaaiaadMgaaeaadaqadaqaai aadkgaaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaacaGGSaaaaa@43D3@ b = 1 , , B , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOyaiabg2 da9iaaigdacaGGSaGaeSOjGSKaaiilaiaadkeacaGGSaaaaa@3DAD@ from the synthetic model (see also Rao and Molina 2015).
  2. Fit the model to the bootstrap data and obtain σ ^ v 2 ( b ) ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdadaqadaqaaiaadkgaaiaawIca caGLPaaaaaGccaGG7aaaaa@3DFC@ for the MIX estimator calculate σ ^ v MIX 2 ( b ) = σ ^ v REML 2 ( b )  if   σ ^ v 2 ( b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiwaaqaaiaaikdadaqa daqaaiaadkgaaiaawIcacaGLPaaaaaGccqGH9aqpcuaHdpWCgaqcam aaDaaaleaacaWG2bGaaeOuaiaabweacaqGnbGaaeitaaqaaiaaikda daqadaqaaiaadkgaaiaawIcacaGLPaaaaaGccaqGGaGaaeyAaiaabA gacaqGGaGaaeiiaiqbeo8aZzaajaWaa0baaSqaaiaadAhaaeaacaaI YaWaaeWaaeaacaWGIbaacaGLOaGaayzkaaaaaaaa@540C@ is positive and σ ^ vMIX 2 ( b ) = σ ^ v AM 2 ( b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaaeODaiaab2eacaqGjbGaaeiwaaqaaiaabkdadaqa daqaaiaadkgaaiaawIcacaGLPaaaaaGccqGH9aqpcuaHdpWCgaqcam aaDaaaleaacaWG2bGaaeyqaiaab2eaaeaacaaIYaWaaeWaaeaacaWG IbaacaGLOaGaayzkaaaaaaaa@486C@ otherwise.
  3. Now obtain β ^ ( b ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqOSdiMbaK aadaahaaWcbeqaamaabmaabaGaamOyaaGaayjkaiaawMcaaaaakiaa cYcaaaa@3C14@ the corresponding EBLUP θ ^ i ( b ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaamaabmaabaGaamOyaaGaayjkaiaawMca aaaakiaacYcaaaa@3D17@ the bootstrap components g 1 i ( b ) = g 1 i ( σ ^ v 2 ( y ( b ) ) ) ,   g 2 i ( b ) = g 2 i ( σ ^ v 2 ( y ( b ) ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zamaaDa aaleaacaaIXaGaamyAaaqaamaabmaabaGaamOyaaGaayjkaiaawMca aaaakiabg2da9iaadEgadaWgaaWcbaGaaGymaiaadMgaaeqaaOWaae WaaeaacuaHdpWCgaqcamaaDaaaleaacaWG2baabaGaaGOmaaaakmaa bmaabaGaamyEamaaCaaaleqabaWaaeWaaeaacaWGIbaacaGLOaGaay zkaaaaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGaaiilaiaabcca caWGNbWaa0baaSqaaiaaikdacaWGPbaabaWaaeWaaeaacaWGIbaaca GLOaGaayzkaaaaaOGaeyypa0Jaam4zamaaBaaaleaacaaIYaGaamyA aaqabaGcdaqadaqaaiqbeo8aZzaajaWaa0baaSqaaiaadAhaaeaaca aIYaaaaOWaaeWaaeaacaWG5bWaaWbaaSqabeaadaqadaqaaiaadkga aiaawIcacaGLPaaaaaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaa a@5F6B@ and g ¯ j i PB = B 1 b g j i ( b ) , j = 1 , 2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabm4zayaara Waa0baaSqaaiaadQgacaWGPbaabaGaaeiuaiaabkeaaaGccqGH9aqp caWGcbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabeaeaacaWGNb Waa0baaSqaaiaadQgacaWGPbaabaWaaeWaaeaacaWGIbaacaGLOaGa ayzkaaaaaaqaaiaadkgaaeqaniabggHiLdGccaGGSaGaamOAaiabg2 da9iaaigdacaGGSaGaaGOmaiaac6caaaa@4D15@
  4. The Naive MSE bootstrap estimator is mse naive = B 1 b = 1 B ( θ ^ i ( b ) θ i ( b ) ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaSbaaSqaaiaab6gacaqGHbGaaeyAaiaabAhacaqGLbaa beaakiabg2da9iaadkeadaahaaWcbeqaaiabgkHiTiaaigdaaaGcda aeWaqaamaabmaabaGafqiUdeNbaKaadaqhaaWcbaGaamyAaaqaamaa bmaabaGaamOyaaGaayjkaiaawMcaaaaakiabgkHiTiabeI7aXnaaDa aaleaacaWGPbaabaWaaeWaaeaacaWGIbaacaGLOaGaayzkaaaaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqaaiaadkgacqGH9a qpcaaIXaaabaGaamOqaaqdcqGHris5aOGaaiOlaaaa@5685@
  5. The PB MSE estimator (which is adjusted for bias (Pfeffermann and Glickman 2004) is: mse PB ( θ ^ i ) = g 1 i ( σ ^ v 2 ) + g 2 i ( σ ^ v 2 ) g ¯ 1 i PB g ¯ 2 i PB + mse naive . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaSbaaSqaaiaabcfacaqGcbaabeaakmaabmaabaGafqiU deNbaKaadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacqGH9a qpcaWGNbWaaSbaaSqaaiaaigdacaWGPbaabeaakmaabmaabaGafq4W dmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaaaakiaawIcacaGLPa aacqGHRaWkcaWGNbWaaSbaaSqaaiaaikdacaWGPbaabeaakmaabmaa baGafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaaaakiaawI cacaGLPaaacqGHsislceWGNbGbaebadaqhaaWcbaGaaGymaiaadMga aeaacaqGqbGaaeOqaaaakiabgkHiTiqadEgagaqeamaaDaaaleaaca aIYaGaamyAaaqaaiaabcfacaqGcbaaaOGaey4kaSIaaeyBaiaaboha caqGLbWaaSbaaSqaaiaab6gacaqGHbGaaeyAaiaabAhacaqGLbaabe aakiaac6caaaa@663B@
  6. To calculate ARB , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyqaiaabk facaqGcbWaaSbaaSqaaiablkqiJcqabaGccaGGSaaaaa@3BA7@ average ( mse PB ( r ) ( θ ^ i ) M S E ( θ ^ i ) ) / M S E ( θ ^ i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSGbaeaada qadaqaaiaab2gacaqGZbGaaeyzamaaDaaaleaacaqGqbGaaeOqaaqa amaabmaabaGaamOCaaGaayjkaiaawMcaaaaakmaabmaabaGafqiUde NbaKaadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacqGHsisl caGGnbGaai4uaiaacweadaqadaqaaiqbeI7aXzaajaWaaSbaaSqaai aadMgaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaaiyt aiaacofacaGGfbWaaeWaaeaacuaH4oqCgaqcamaaBaaaleaacaWGPb aabeaaaOGaayjkaiaawMcaaaaaaaa@52F0@ over the populations with ( r ) / σ ^ v REML 2 ( y ( r ) ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSGbaeaada qadaqaaiaadkhaaiaawIcacaGLPaaaaeaacuaHdpWCgaqcamaaDaaa leaacaWG2bGaaeOuaiaabweacaqGnbGaaeitaaqaaiaaikdaaaGcda qadaqaaiaahMhadaahaaWcbeqaamaabmaabaGaamOCaaGaayjkaiaa wMcaaaaaaOGaayjkaiaawMcaaaaacqGH9aqpcaaIWaaaaa@47A1@ and do similarly with ARB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyqaiaabk facaqGcbWaaSbaaSqaaiablkqiJcqabaaaaa@3AED@ of mse naive . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqWqpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaSbaaSqaaiaab6gacaqGHbGaaeyAaiaabAhacaqGLbaa beaakiaac6caaaa@3F64@

References

Chen, S., and Lahiri, P. (2008). On mean squared prediction error estimation in small area estimation problems. Communications in Statistics-Theory and Methods, 37, 1792-1798.

Chen, S., and Lahiri, P. (2011). On the estimation of Mean Squared Prediction Error in small area estimation. Calcutta Statistical Association Bulletin, 63, (Special 7th Triennial Proceedings Volume), Nos. 249-252.

Cressie, N. (1992). REML estimation in empirical Bayes smoothing of census undercount. Survey Methodology, 18, 1, 75-94.

Das, K., Jiang, J. and Rao, J.N.K. (2004). Mean squared error of empirical predictor. The Annals of Statistics, 32, 2, 818-840.

Datta, G., and Lahiri, P. (2000). A unified measure of uncertainty of estimated best linear unbiased predictors in small area estimation problems. Statistica Sinica, 10, 613-627.

Estevao, V. (2014). Grid optimization algorithm for maximum likelihood. Internal report, Statistical Research and Innovation Division (SRID), Statistics Canada.

Fay, R.E., and Herriot, R.A. (1979). Estimation of income from small places: An application of James-Stein Procedures to census data. Journal of the American Statistical Association, 74, 269-277.

Lahiri, P., and Li, H. (2009). Generalized maximum likelihood method in linear mixed models with an application in small area estimation. In Proceedings of the Federal Committee on Statistical Methodology Research Conference, available at http//www.fcsm.gov/events/papers2009.html.

Lahiri, P., and Pramanik, S. (2011). Discussion of “Estimating random effects via adjustment for density maximization” by C. Morris and R. Tang. Statistical Science, 26, 2, 291-295.

Li, H., and Lahiri, P. (2011). An adjusted maximum likelihood method for solving small area estimation problems. Journal of Multivariate Analysis, 101, 882-892.

Molina, I., Rao, J.N.K. and Datta, G.S. (2015). Small area estimation under a Fay-Herriot model with preliminary testing for the presence of random effects. Survey Methodology, 41, 1, 1-19.

Morris, C.N. (2006). Mixed model prediction and small area estimation (with discussions). Test, 15, 72-76.

Pfeffermann, D., and Glickman, H. (2004). Mean squarred error approximation in small area estimation by use of parametric and non-parametric bootstrap. Proceedings of the American Statistical Association, Section on Survey Research Methods, Alexandria, VA. 4167-78.

Rao, J.N.K. (2003). Small Area Estimation. New York: John Wiley & Sons, Inc.

Rao, J.N.K., and Molina, I. (2015). Small Area Estimation, second edition. New York: John Wiley & Sons, Inc.

Rubin-Bleuer, S., and Schiopu-Kratina, I. (2005). On the two-phase framework for joint model and design-based inference. The Annals of Statistics, 33, 6, 2789‑2810.

Rubin-Bleuer, S., and You, Y. (2012). A positive variance estimator for the Fay-Herriot small area model. SRID-2012-009E, Statistical Research and Innovation Division (SRID), Statistics Canada.

Rubin-Bleuer, S., Yung, W. and Landry, S. (2010). Adjusted maximum likelihood method for a small area model accounting for time and area effects. SRID-2010-006E, Statistical Research and Innovation Division (SRID), Statistics Canada.

Rubin-Bleuer, S., Yung, W. and Landry, S. (2011). Adjusted maximum likelihood method for a small area model accounting for time and area effects. Long abstract, Small Area Estimation, (SAE 20122) in Trier, Germany, International Statistical Institute Satellite Conference.

Rubin-Bleuer, S., Yung, W. and Landry, S. (2012). Variance Component Estimation through the Adjusted Maximum Likelihood Approach. Presentation at the Conference in Honour of the 75th birthday of J.N.K. Rao Carleton University, May 2012, Ottawa.

Yoshimori, M., and Lahiri, P. (2014). A new adjusted maximum likelihood method for the Fay-Herriot small area model. Journal of Multivariate Analysis, 124, 281‑294.

Yuan, P. (2009). Comparison of SAE methods of variance estimation. Internal document, Statistical Research and Innovation Division (SRID), Statistics Canada.

Yuan, K.H., and Jennrich, R. (1998). Asymptotics of estimating equations under natural conditions. Journal of Multivariate Analysis, 65, 2, 245-260.

Date modified: