Comparison of some positive variance estimators for the Fay-Herriot small area model
4. The MIX variance estimatorComparison of some positive variance estimators for the Fay-Herriot small area model
4. The MIX variance estimator
4.1 Variance
estimation
The MIX variance estimator is a
procedure that first calculates the REML variance estimate and only substitutes it by an adjusted likelihood variance estimate if the REML estimate is
negative. The MIX
variance estimator is always positive and it is unbiased up to a term of order
o
(
1
/
m
)
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Bamaabm
aabaWaaSGbaeaacaaIXaaabaGaamyBaaaaaiaawIcacaGLPaaacaGG
Uaaaaa@3C1E@
The
MIX variance estimator of
σ
v
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0
baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD3@
is
defined by:
σ
^
v
MIX
2
=
{
σ
^
v
REML
2
if
σ
^
v
REML
2
>
0
σ
^
v
adj
2
if
σ
^
v
REML
2
=
0
,
(
4.1
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK
aadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiwaaqaaiaaikdaaaGc
cqGH9aqpdaGabaqaauaabaqaciaaaeaacuaHdpWCgaqcamaaDaaale
aacaWG2bGaaeOuaiaabweacaqGnbGaaeitaaqaaiaaikdaaaaakeaa
caqGPbGaaeOzaiaacckacuaHdpWCgaqcamaaDaaaleaacaWG2bGaae
OuaiaabweacaqGnbGaaeitaaqaaiaaikdaaaGccqGH+aGpcaaIWaaa
baGafq4WdmNbaKaadaqhaaWcbaGaamODaiaabggacaqGKbGaaeOAai
aabccaaeaacaaIYaaaaaGcbaGaaeyAaiaabAgacaGGGcGafq4WdmNb
aKaadaqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaaca
aIYaaaaOGaaeypaiaabccacaaIWaGaaiilaaaaaiaawUhaaiaaywW7
caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaisdacaGGUaGaaGymai
aacMcaaaa@7170@
where
σ
^
v
adj
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK
aadaqhaaWcbaGaamODaiaabggacaqGKbGaaeOAaiaabccaaeaacaaI
Yaaaaaaa@3E3E@
is one of the adjusted likelihood estimators
defined in Section 3.
Remark 4.1. The MIX
variance estimator automatically carries some of the common properties shared
by the REML and the adjusted likelihood variance estimator. For example, it is
even and translation invariant. Thus, under normality of the sampling errors, the
second order approximation (2.6) of the MSE of the EBLUP is also valid: Theorem
4.1 below shows that the MSE of the EBLUP under the MIX variance estimator
inherits the same asymptotic properties as the MSE under the REML variance
estimator.
Theorem 4.1. Under
regularity conditions 1 through 3 given in Section 2, and the assumption that
σ
v
2
>
0
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0
baaSqaaiaadAhaaeaacaaIYaaaaGqaaOGaa8NpaiaaicdacaGGSaaa
aa@3D0F@
the MSE
of the EBLUP under the MIX variance estimator is equal to the MSE under the
REML variance estimator up to the second order. The theorem follows from the
fact that the asymptotic variance of
σ
^
v
MIX
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK
aadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiwaaqaaiaaikdaaaaa
aa@3D5A@
coincides with the asymptotic variance of
σ
^
vREML
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK
aadaqhaaWcbaGaaeODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaqG
Yaaaaaaa@3E16@
(see Appendix
A for details).
Theorem 4.2. Under the
conditions of Theorem 4.1,
Bias
(
σ
^
v
MIX
2
)
=
o
(
1
/
m
)
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeOqaiaabM
gacaqGHbGaae4CamaabmaabaGafq4WdmNbaKaadaqhaaWcbaGaamOD
aiaab2eacaqGjbGaaeiwaaqaaiaaikdaaaaakiaawIcacaGLPaaacq
GH9aqpcaWGVbWaaeWaaeaadaWcgaqaaiaaigdaaeaacaWGTbaaaaGa
ayjkaiaawMcaaiaac6caaaa@4870@
The proof is given in Appendix A.
4.2 MSE estimation
The fact that the MIX estimator,
σ
^
v
MIX
2
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK
aadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiwaaqaaiaaikdaaaGc
caGGSaaaaa@3E14@
is unbiased to the second order, is crucial to
show that our proposed MSE estimator is also unbiased up to the second order.
Corollary 4.2. The MSE estimator of the EBLUP under
σ
^
v
MIX
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK
aadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiwaaqaaiaaikdaaaaa
aa@3D5A@
given by:
mse
[
θ
^
i
(
σ
^
v
MIX
2
)
]
=
g
1
i
(
σ
^
v
MIX
2
)
+
g
2
i
(
σ
^
v
MIX
2
)
+
2
g
3
i
(
σ
^
v
MIX
2
)
(
4.2
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo
hacaqGLbWaamWaaeaacuaH4oqCgaqcamaaBaaaleaacaWGPbaabeaa
kmaabmaabaGafq4WdmNbaKaadaqhaaWcbaGaamODaiaab2eacaqGjb
GaaeiwaaqaaiaaikdaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaa
cqGH9aqpcaWGNbWaaSbaaSqaaiaaigdacaWGPbaabeaakmaabmaaba
Gafq4WdmNbaKaadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiwaaqa
aiaaikdaaaaakiaawIcacaGLPaaacqGHRaWkcaWGNbWaaSbaaSqaai
aaikdacaWGPbaabeaakmaabmaabaGafq4WdmNbaKaadaqhaaWcbaGa
amODaiaab2eacaqGjbGaaeiwaaqaaiaaikdaaaaakiaawIcacaGLPa
aacqGHRaWkcaaIYaGaam4zamaaBaaaleaacaaIZaGaamyAaaqabaGc
daqadaqaaiqbeo8aZzaajaWaa0baaSqaaiaadAhacaqGnbGaaeysai
aabIfaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaaGzbVlaaywW7caaM
f8UaaGzbVlaaywW7caGGOaGaaGinaiaac6cacaaIYaGaaiykaaaa@750E@
is second order unbiased. Once
given that
σ
^
v
MIX
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK
aadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiwaaqaaiaaikdaaaaa
aa@3D5A@
is second order unbiased, the result follows
along the lines of Datta and Lahiri (2000).
4.3 Alternative MSE
estimators
In the following
the MIX variance estimator is the combination of REML and AM.LL .
Rubin-Bleuer and
You (2012) had suggested another MSE estimator, also unbiased up to the second
order: a ‘split’ MSE estimator of the form:
mse
*
[
θ
^
i
(
σ
^
v
MIX
2
)
]
=
{
g
1
i
(
σ
^
v
MIX
2
)
+
g
2
i
(
σ
^
v
MIX
2
)
+
2
g
3
i
(
σ
^
v
MIX
2
)
if
σ
^
v
MIX
2
=
σ
^
v
REML
2
,
g
1
i
(
σ
^
v
MIX
2
)
+
g
2
i
(
σ
^
v
MIX
2
)
+
2
g
3
i
(
σ
^
v
MIX
2
)
−
(
1
−
γ
^
i
MIX
)
2
⋅
Bias
(
σ
^
v
MIX
2
)
if
σ
^
v
MIX
2
=
σ
^
v
AM
.LL
2
.
(
4.3
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo
hacaqGLbGaaiOkamaadmaabaGafqiUdeNbaKaadaWgaaWcbaGaamyA
aaqabaGcdaqadaqaaiqbeo8aZzaajaWaa0baaSqaaiaadAhacaqGnb
GaaeysaiaabIfaaeaacaaIYaaaaaGccaGLOaGaayzkaaaacaGLBbGa
ayzxaaGaeyypa0ZaaiqaaeaafaqaaiGacaaabaGaam4zamaaBaaale
aacaaIXaGaamyAaaqabaGcdaqadaqaaiqbeo8aZzaajaWaa0baaSqa
aiaadAhacaqGnbGaaeysaiaabIfaaeaacaaIYaaaaaGccaGLOaGaay
zkaaGaey4kaSIaam4zamaaBaaaleaacaaIYaGaamyAaaqabaGcdaqa
daqaaiqbeo8aZzaajaWaa0baaSqaaiaadAhacaqGnbGaaeysaiaabI
faaeaacaaIYaaaaaGccaGLOaGaayzkaaGaey4kaSIaaGOmaiaadEga
daWgaaWcbaGaaG4maiaadMgaaeqaaOWaaeWaaeaacuaHdpWCgaqcam
aaDaaaleaacaWG2bGaaeytaiaabMeacaqGybaabaGaaGOmaaaaaOGa
ayjkaiaawMcaaaqaaiaabMgacaqGMbGaaeiiaiaabccacuaHdpWCga
qcamaaDaaaleaacaWG2bGaaeytaiaabMeacaqGybaabaGaaGOmaaaa
kiabg2da9iqbeo8aZzaajaWaa0baaSqaaiaadAhacaqGsbGaaeyrai
aab2eacaqGmbaabaGaaGOmaaaakiaacYcaaqaabeqaaiaadEgadaWg
aaWcbaGaaGymaiaadMgaaeqaaOWaaeWaaeaacuaHdpWCgaqcamaaDa
aaleaacaWG2bGaaeytaiaabMeacaqGybaabaGaaGOmaaaaaOGaayjk
aiaawMcaaiabgUcaRiaadEgadaWgaaWcbaGaaGOmaiaadMgaaeqaaO
WaaeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWG2bGaaeytaiaabMea
caqGybaabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaaiaaykW7caaMc8
UaaGPaVlabgUcaRiaaikdacaWGNbWaaSbaaSqaaiaaiodacaWGPbaa
beaakmaabmaabaGafq4WdmNbaKaadaqhaaWcbaGaamODaiaab2eaca
qGjbGaaeiwaaqaaiaaikdaaaaakiaawIcacaGLPaaacqGHsisldaqa
daqaaiaaigdacqGHsislcuaHZoWzgaqcamaaBaaaleaacaWGPbGaae
ytaiaabMeacaqGybaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGa
aGOmaaaakiabgwSixlaabkeacaqGPbGaaeyyaiaabohadaqadaqaai
qbeo8aZzaajaWaa0baaSqaaiaadAhacaqGnbGaaeysaiaabIfaaeaa
caaIYaaaaaGccaGLOaGaayzkaaaaaeaacaqGPbGaaeOzaiaabccaca
qGGaGafq4WdmNbaKaadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiw
aaqaaiaaikdaaaGccqGH9aqpcuaHdpWCgaqcamaaDaaaleaacaWG2b
Gaaeyqaiaab2eacaqGUaGaaeitaiaabYeaaeaacaaIYaaaaOGaaiOl
aaaaaiaawUhaaiaaywW7caGGOaGaaGinaiaac6cacaaIZaGaaiykaa
aa@D42C@
Estimator
mse*
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo
hacaqGLbGaaeOkaaaa@3AA7@
has a lower average
relative bias (ARB) than the MSE estimator given in (4.2). The lower ARB occurs
because the MSE estimates overestimate when REML is positive and underestimate
when REML is zero. The
mse*
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo
hacaqGLbGaaeOkaaaa@3AA7@
estimator is good on average, but for a particular data set the
mse*
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo
hacaqGLbGaaeOkaaaa@3AA7@
estimator might take on negative values.
Molina et al. (2015) proposed two
different MSE estimators for the EBLUP under the MIX: with PT standing for
their proposed preliminary test of hypothesis for zero variance these
estimators are:
mse
0
{
θ
^
i
(
σ
^
v
MIX
2
)
}
=
{
mse
{
θ
^
i
(
σ
^
v
REML
2
)
}
if
σ
^
v
REML
2
>
0
g
2
i
(
0
)
if
σ
^
v
REML
2
=
0
(
4.4
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo
hacaqGLbWaaSbaaSqaaiaaicdaaeqaaOWaaiWaaeaacuaH4oqCgaqc
amaaBaaaleaacaWGPbaabeaakmaabmaabaGafq4WdmNbaKaadaqhaa
WcbaGaamODaiaab2eacaqGjbGaaeiwaaqaaiaaikdaaaaakiaawIca
caGLPaaaaiaawUhacaGL9baacqGH9aqpdaGabaqaauaabaqaciaaae
aacaqGTbGaae4CaiaabwgadaGadaqaaiqbeI7aXzaajaWaaSbaaSqa
aiaadMgaaeqaaOWaaeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWG2b
GaaeOuaiaabweacaqGnbGaaeitaaqaaiaaikdaaaaakiaawIcacaGL
PaaaaiaawUhacaGL9baaaeaacaqGPbGaaeOzaiaabccacuaHdpWCga
qcamaaDaaaleaacaWG2bGaaeOuaiaabweacaqGnbGaaeitaaqaaiaa
ikdaaaGccqGH+aGpcaaIWaaabaGaam4zamaaBaaaleaacaaIYaGaam
yAaaqabaGcdaqadaqaaiaaicdaaiaawIcacaGLPaaaaeaacaqGPbGa
aeOzaiaabccacuaHdpWCgaqcamaaDaaaleaacaWG2bGaaeOuaiaabw
eacaqGnbGaaeitaaqaaiaaikdaaaGccaqG9aGaaeiiaiaaicdaaaaa
caGL7baacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI0a
GaaiOlaiaaisdacaGGPaaaaa@8188@
and
mse
PT
{
θ
^
i
(
σ
^
v
MIX
2
)
}
=
{
mse
{
θ
^
i
(
σ
^
v
REML
2
)
}
if
σ
^
v
REML
2
>
0
and PT rejected
g
2
i
(
0
)
if
σ
^
v
REML
2
=
0
or PT not rejected
.
(
4.5
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo
hacaqGLbWaaSbaaSqaaiaabcfacaqGubaabeaakmaacmaabaGafqiU
deNbaKaadaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiqbeo8aZzaaja
Waa0baaSqaaiaadAhacaqGnbGaaeysaiaabIfaaeaacaaIYaaaaaGc
caGLOaGaayzkaaaacaGL7bGaayzFaaGaeyypa0Zaaiqaaeaafaqaae
GacaaabaGaaeyBaiaabohacaqGLbWaaiWaaeaacuaH4oqCgaqcamaa
BaaaleaacaWGPbaabeaakmaabmaabaGafq4WdmNbaKaadaqhaaWcba
GaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaIYaaaaaGccaGL
OaGaayzkaaaacaGL7bGaayzFaaaabaGaaeyAaiaabAgacaqGGaGafq
4WdmNbaKaadaqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabYea
aeaacaaIYaaaaOGaeyOpa4JaaGimaiaabccacaqGHbGaaeOBaiaabs
gacaqGGaGaaeiuaiaabsfacaqGGaGaaeOCaiaabwgacaqGQbGaaeyz
aiaabogacaqG0bGaaeyzaiaabsgaaeaacaWGNbWaaSbaaSqaaiaaik
dacaWGPbaabeaakmaabmaabaGaaGimaaGaayjkaiaawMcaaaqaaiaa
bMgacaqGMbGaaeiiaiqbeo8aZzaajaWaa0baaSqaaiaadAhacaqGsb
Gaaeyraiaab2eacaqGmbaabaGaaGOmaaaakiaab2dacaqGGaGaaGim
aiaabccacaqGVbGaaeOCaiaabccacaqGqbGaaeivaiaabccacaqGUb
Gaae4BaiaabshacaqGGaGaaeOCaiaabwgacaqGQbGaaeyzaiaaboga
caqG0bGaaeyzaiaabsgacaqGUaaaaaGaay5EaaGaaGzbVlaaywW7ca
GGOaGaaGinaiaac6cacaaI1aGaaiykaaaa@9C82@
The rationale for
mse
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo
hacaqGLbWaaSbaaSqaaiaabcdaaeqaaaaa@3AD9@
and
mse
PT
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo
hacaqGLbWaaSbaaSqaaiaabcfacaqGubaabeaaaaa@3BD0@
is
based on the MSE of the BLUP with
σ
v
2
=
0.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0
baaSqaaiaadAhaaeaacaaIYaaaaOGaaeypaiaabccacaaIWaGaaiOl
aaaa@3DAC@
Molina
et al. (2015) showed in an empirical study that their proposed MSE
estimators performed well on average when both
σ
v
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0
baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD3@
and the
number of areas
m
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@381E@
were
small.
Remark 4.2.
mse
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo
hacaqGLbWaaSbaaSqaaiaabcdaaeqaaaaa@3AD9@
and
mse
PT
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo
hacaqGLbWaaSbaaSqaaiaabcfacaqGubaabeaaaaa@3BD0@
are also unbiased up to the second order (see
Appendix for a brief proof of this property). Our argument against
mse
{
θ
^
i
(
σ
^
v
2
)
}
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo
hacaqGLbWaaiWaaeaacuaH4oqCgaqcamaaBaaaleaacaWGPbaabeaa
kmaabmaabaGafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaa
aakiaawIcacaGLPaaaaiaawUhacaGL9baaaaa@445F@
(in 3.3) is also valid against
mse
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo
hacaqGLbWaaSbaaSqaaiaabcdaaeqaaaaa@3AD9@
and
mse
PT
:
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo
hacaqGLbWaaSbaaSqaaiaabcfacaqGubaabeaakiaacQdaaaa@3C98@
for a
moderate number of areas, the % of populations with
σ
^
v
REML
2
=
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK
aadaqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaI
YaaaaOGaeyypa0JaaGimaaaa@3FE9@
may be significant even if
σ
v
2
/
ψ
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacq
aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg
aaWcbaGaamyAaaqabaaaaaaa@3DDB@
is not
negligible. In this case, the MSE of the EBLUP should account also for the variation due to
variance estimation or risk underestimation.
ISSN : 1492-0921
Editorial policy
Survey Methodology publishes articles dealing with various aspects of statistical development relevant to a statistical agency, such as design issues in the context of practical constraints, use of different data sources and collection techniques, total survey error, survey evaluation, research in survey methodology, time series analysis, seasonal adjustment, demographic studies, data integration, estimation and data analysis methods, and general survey systems development. The emphasis is placed on the development and evaluation of specific methodologies as applied to data collection or the data themselves. All papers will be refereed. However, the authors retain full responsibility for the contents of their papers and opinions expressed are not necessarily those of the Editorial Board or of Statistics Canada.
Submission of Manuscripts
Survey Methodology is published twice a year in electronic format. Authors are invited to submit their articles in English or French in electronic form, preferably in Word to the Editor, (statcan.smj-rte.statcan@canada.ca , Statistics Canada, 150 Tunney’s Pasture Driveway, Ottawa, Ontario, Canada, K1A 0T6). For formatting instructions, please see the guidelines provided in the journal and on the web site (www.statcan.gc.ca/SurveyMethodology).
Note of appreciation
Canada owes the success of its statistical system to a long-standing partnership between Statistics Canada, the citizens of Canada, its businesses, governments and other institutions. Accurate and timely statistical information could not be produced without their continued co-operation and goodwill.
Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt, reliable and courteous manner. To this end, the Agency has developed standards of service which its employees observe in serving its clients.
Copyright
Published by authority of the Minister responsible for Statistics Canada.
© Minister of Industry, 2016
Use of this publication is governed by the Statistics Canada Open Licence Agreement .
Catalogue No. 12-001-X
Frequency: semi-annual
Ottawa
Date modified:
2016-06-22