Comparison of some positive variance estimators for the Fay-Herriot small area model 4. The MIX variance estimator

4.1 Variance estimation

The MIX variance estimator is a procedure that first calculates the REML variance estimate and only substitutes it by an adjusted likelihood variance estimate if the REML estimate is negative. The MIX variance estimator is always positive and it is unbiased up to a term of order o ( 1 / m ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Bamaabm aabaWaaSGbaeaacaaIXaaabaGaamyBaaaaaiaawIcacaGLPaaacaGG Uaaaaa@3C1E@ The MIX variance estimator of σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD3@ is defined by:

σ ^ v MIX 2 = { σ ^ v REML 2 if   σ ^ v REML 2 > 0 σ ^ v adj  2 if   σ ^ v REML 2 0 , ( 4.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiwaaqaaiaaikdaaaGc cqGH9aqpdaGabaqaauaabaqaciaaaeaacuaHdpWCgaqcamaaDaaale aacaWG2bGaaeOuaiaabweacaqGnbGaaeitaaqaaiaaikdaaaaakeaa caqGPbGaaeOzaiaacckacuaHdpWCgaqcamaaDaaaleaacaWG2bGaae OuaiaabweacaqGnbGaaeitaaqaaiaaikdaaaGccqGH+aGpcaaIWaaa baGafq4WdmNbaKaadaqhaaWcbaGaamODaiaabggacaqGKbGaaeOAai aabccaaeaacaaIYaaaaaGcbaGaaeyAaiaabAgacaGGGcGafq4WdmNb aKaadaqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaaca aIYaaaaOGaaeypaiaabccacaaIWaGaaiilaaaaaiaawUhaaiaaywW7 caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaisdacaGGUaGaaGymai aacMcaaaa@7170@

where σ ^ v adj  2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabggacaqGKbGaaeOAaiaabccaaeaacaaI Yaaaaaaa@3E3E@ is one of the adjusted likelihood estimators defined in Section 3.

Remark 4.1. The MIX variance estimator automatically carries some of the common properties shared by the REML and the adjusted likelihood variance estimator. For example, it is even and translation invariant. Thus, under normality of the sampling errors, the second order approximation (2.6) of the MSE of the EBLUP is also valid: Theorem 4.1 below shows that the MSE of the EBLUP under the MIX variance estimator inherits the same asymptotic properties as the MSE under the REML variance estimator.

Theorem 4.1. Under regularity conditions 1 through 3 given in Section 2, and the assumption that σ v 2 > 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaGqaaOGaa8NpaiaaicdacaGGSaaa aa@3D0F@ the MSE of the EBLUP under the MIX variance estimator is equal to the MSE under the REML variance estimator up to the second order. The theorem follows from the fact that the asymptotic variance of σ ^ v MIX 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiwaaqaaiaaikdaaaaa aa@3D5A@ coincides with the asymptotic variance of σ ^ vREML 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaaeODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaqG Yaaaaaaa@3E16@ (see Appendix A for details).

Theorem 4.2. Under the conditions of Theorem 4.1, Bias ( σ ^ v MIX 2 ) = o ( 1 / m ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeOqaiaabM gacaqGHbGaae4CamaabmaabaGafq4WdmNbaKaadaqhaaWcbaGaamOD aiaab2eacaqGjbGaaeiwaaqaaiaaikdaaaaakiaawIcacaGLPaaacq GH9aqpcaWGVbWaaeWaaeaadaWcgaqaaiaaigdaaeaacaWGTbaaaaGa ayjkaiaawMcaaiaac6caaaa@4870@ The proof is given in Appendix A.

4.2 MSE estimation

The fact that the MIX estimator, σ ^ v MIX 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiwaaqaaiaaikdaaaGc caGGSaaaaa@3E14@ is unbiased to the second order, is crucial to show that our proposed MSE estimator is also unbiased up to the second order.

Corollary 4.2. The MSE estimator of the EBLUP under σ ^ v MIX 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiwaaqaaiaaikdaaaaa aa@3D5A@ given by:

mse [ θ ^ i ( σ ^ v MIX 2 ) ] = g 1 i ( σ ^ v MIX 2 ) + g 2 i ( σ ^ v MIX 2 ) + 2 g 3 i ( σ ^ v MIX 2 ) ( 4.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaamWaaeaacuaH4oqCgaqcamaaBaaaleaacaWGPbaabeaa kmaabmaabaGafq4WdmNbaKaadaqhaaWcbaGaamODaiaab2eacaqGjb GaaeiwaaqaaiaaikdaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaa cqGH9aqpcaWGNbWaaSbaaSqaaiaaigdacaWGPbaabeaakmaabmaaba Gafq4WdmNbaKaadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiwaaqa aiaaikdaaaaakiaawIcacaGLPaaacqGHRaWkcaWGNbWaaSbaaSqaai aaikdacaWGPbaabeaakmaabmaabaGafq4WdmNbaKaadaqhaaWcbaGa amODaiaab2eacaqGjbGaaeiwaaqaaiaaikdaaaaakiaawIcacaGLPa aacqGHRaWkcaaIYaGaam4zamaaBaaaleaacaaIZaGaamyAaaqabaGc daqadaqaaiqbeo8aZzaajaWaa0baaSqaaiaadAhacaqGnbGaaeysai aabIfaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaaGzbVlaaywW7caaM f8UaaGzbVlaaywW7caGGOaGaaGinaiaac6cacaaIYaGaaiykaaaa@750E@

is second order unbiased. Once given that σ ^ v MIX 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiwaaqaaiaaikdaaaaa aa@3D5A@ is second order unbiased, the result follows along the lines of Datta and Lahiri (2000).

4.3 Alternative MSE estimators

In the following the MIX variance estimator is the combination of REML and AM.LL.

Rubin-Bleuer and You (2012) had suggested another MSE estimator, also unbiased up to the second order: a ‘split’ MSE estimator of the form:

mse * [ θ ^ i ( σ ^ v MIX 2 ) ] = { g 1 i ( σ ^ v MIX 2 ) + g 2 i ( σ ^ v MIX 2 ) + 2 g 3 i ( σ ^ v MIX 2 ) if   σ ^ v MIX 2 = σ ^ v REML 2 , g 1 i ( σ ^ v MIX 2 ) + g 2 i ( σ ^ v MIX 2 ) + 2 g 3 i ( σ ^ v MIX 2 ) ( 1 γ ^ i MIX ) 2 Bias ( σ ^ v MIX 2 ) if   σ ^ v MIX 2 = σ ^ v AM .LL 2 . ( 4.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbGaaiOkamaadmaabaGafqiUdeNbaKaadaWgaaWcbaGaamyA aaqabaGcdaqadaqaaiqbeo8aZzaajaWaa0baaSqaaiaadAhacaqGnb GaaeysaiaabIfaaeaacaaIYaaaaaGccaGLOaGaayzkaaaacaGLBbGa ayzxaaGaeyypa0ZaaiqaaeaafaqaaiGacaaabaGaam4zamaaBaaale aacaaIXaGaamyAaaqabaGcdaqadaqaaiqbeo8aZzaajaWaa0baaSqa aiaadAhacaqGnbGaaeysaiaabIfaaeaacaaIYaaaaaGccaGLOaGaay zkaaGaey4kaSIaam4zamaaBaaaleaacaaIYaGaamyAaaqabaGcdaqa daqaaiqbeo8aZzaajaWaa0baaSqaaiaadAhacaqGnbGaaeysaiaabI faaeaacaaIYaaaaaGccaGLOaGaayzkaaGaey4kaSIaaGOmaiaadEga daWgaaWcbaGaaG4maiaadMgaaeqaaOWaaeWaaeaacuaHdpWCgaqcam aaDaaaleaacaWG2bGaaeytaiaabMeacaqGybaabaGaaGOmaaaaaOGa ayjkaiaawMcaaaqaaiaabMgacaqGMbGaaeiiaiaabccacuaHdpWCga qcamaaDaaaleaacaWG2bGaaeytaiaabMeacaqGybaabaGaaGOmaaaa kiabg2da9iqbeo8aZzaajaWaa0baaSqaaiaadAhacaqGsbGaaeyrai aab2eacaqGmbaabaGaaGOmaaaakiaacYcaaqaabeqaaiaadEgadaWg aaWcbaGaaGymaiaadMgaaeqaaOWaaeWaaeaacuaHdpWCgaqcamaaDa aaleaacaWG2bGaaeytaiaabMeacaqGybaabaGaaGOmaaaaaOGaayjk aiaawMcaaiabgUcaRiaadEgadaWgaaWcbaGaaGOmaiaadMgaaeqaaO WaaeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWG2bGaaeytaiaabMea caqGybaabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaaiaaykW7caaMc8 UaaGPaVlabgUcaRiaaikdacaWGNbWaaSbaaSqaaiaaiodacaWGPbaa beaakmaabmaabaGafq4WdmNbaKaadaqhaaWcbaGaamODaiaab2eaca qGjbGaaeiwaaqaaiaaikdaaaaakiaawIcacaGLPaaacqGHsisldaqa daqaaiaaigdacqGHsislcuaHZoWzgaqcamaaBaaaleaacaWGPbGaae ytaiaabMeacaqGybaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaakiabgwSixlaabkeacaqGPbGaaeyyaiaabohadaqadaqaai qbeo8aZzaajaWaa0baaSqaaiaadAhacaqGnbGaaeysaiaabIfaaeaa caaIYaaaaaGccaGLOaGaayzkaaaaaeaacaqGPbGaaeOzaiaabccaca qGGaGafq4WdmNbaKaadaqhaaWcbaGaamODaiaab2eacaqGjbGaaeiw aaqaaiaaikdaaaGccqGH9aqpcuaHdpWCgaqcamaaDaaaleaacaWG2b Gaaeyqaiaab2eacaqGUaGaaeitaiaabYeaaeaacaaIYaaaaOGaaiOl aaaaaiaawUhaaiaaywW7caGGOaGaaGinaiaac6cacaaIZaGaaiykaa aa@D42C@

Estimator mse* MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbGaaeOkaaaa@3AA7@ has a lower average relative bias (ARB) than the MSE estimator given in (4.2). The lower ARB occurs because the MSE estimates overestimate when REML is positive and underestimate when REML is zero. The mse* MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbGaaeOkaaaa@3AA7@ estimator is good on average, but for a particular data set the mse* MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbGaaeOkaaaa@3AA7@ estimator might take on negative values.

Molina et al. (2015) proposed two different MSE estimators for the EBLUP under the MIX: with PT standing for their proposed preliminary test of hypothesis for zero variance these estimators are:

mse 0 { θ ^ i ( σ ^ v MIX 2 ) } = { mse { θ ^ i ( σ ^ v REML 2 ) } if  σ ^ v REML 2 > 0 g 2 i ( 0 ) if  σ ^ v REML 2 0 ( 4.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaSbaaSqaaiaaicdaaeqaaOWaaiWaaeaacuaH4oqCgaqc amaaBaaaleaacaWGPbaabeaakmaabmaabaGafq4WdmNbaKaadaqhaa WcbaGaamODaiaab2eacaqGjbGaaeiwaaqaaiaaikdaaaaakiaawIca caGLPaaaaiaawUhacaGL9baacqGH9aqpdaGabaqaauaabaqaciaaae aacaqGTbGaae4CaiaabwgadaGadaqaaiqbeI7aXzaajaWaaSbaaSqa aiaadMgaaeqaaOWaaeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWG2b GaaeOuaiaabweacaqGnbGaaeitaaqaaiaaikdaaaaakiaawIcacaGL PaaaaiaawUhacaGL9baaaeaacaqGPbGaaeOzaiaabccacuaHdpWCga qcamaaDaaaleaacaWG2bGaaeOuaiaabweacaqGnbGaaeitaaqaaiaa ikdaaaGccqGH+aGpcaaIWaaabaGaam4zamaaBaaaleaacaaIYaGaam yAaaqabaGcdaqadaqaaiaaicdaaiaawIcacaGLPaaaaeaacaqGPbGa aeOzaiaabccacuaHdpWCgaqcamaaDaaaleaacaWG2bGaaeOuaiaabw eacaqGnbGaaeitaaqaaiaaikdaaaGccaqG9aGaaeiiaiaaicdaaaaa caGL7baacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI0a GaaiOlaiaaisdacaGGPaaaaa@8188@

and

mse PT { θ ^ i ( σ ^ v MIX 2 ) } = { mse { θ ^ i ( σ ^ v REML 2 ) } if  σ ^ v REML 2 > 0  and PT rejected g 2 i ( 0 ) if  σ ^ v REML 2 0  or PT not rejected . ( 4.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaSbaaSqaaiaabcfacaqGubaabeaakmaacmaabaGafqiU deNbaKaadaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiqbeo8aZzaaja Waa0baaSqaaiaadAhacaqGnbGaaeysaiaabIfaaeaacaaIYaaaaaGc caGLOaGaayzkaaaacaGL7bGaayzFaaGaeyypa0Zaaiqaaeaafaqaae GacaaabaGaaeyBaiaabohacaqGLbWaaiWaaeaacuaH4oqCgaqcamaa BaaaleaacaWGPbaabeaakmaabmaabaGafq4WdmNbaKaadaqhaaWcba GaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaIYaaaaaGccaGL OaGaayzkaaaacaGL7bGaayzFaaaabaGaaeyAaiaabAgacaqGGaGafq 4WdmNbaKaadaqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabYea aeaacaaIYaaaaOGaeyOpa4JaaGimaiaabccacaqGHbGaaeOBaiaabs gacaqGGaGaaeiuaiaabsfacaqGGaGaaeOCaiaabwgacaqGQbGaaeyz aiaabogacaqG0bGaaeyzaiaabsgaaeaacaWGNbWaaSbaaSqaaiaaik dacaWGPbaabeaakmaabmaabaGaaGimaaGaayjkaiaawMcaaaqaaiaa bMgacaqGMbGaaeiiaiqbeo8aZzaajaWaa0baaSqaaiaadAhacaqGsb Gaaeyraiaab2eacaqGmbaabaGaaGOmaaaakiaab2dacaqGGaGaaGim aiaabccacaqGVbGaaeOCaiaabccacaqGqbGaaeivaiaabccacaqGUb Gaae4BaiaabshacaqGGaGaaeOCaiaabwgacaqGQbGaaeyzaiaaboga caqG0bGaaeyzaiaabsgacaqGUaaaaaGaay5EaaGaaGzbVlaaywW7ca GGOaGaaGinaiaac6cacaaI1aGaaiykaaaa@9C82@

The rationale for mse 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaSbaaSqaaiaabcdaaeqaaaaa@3AD9@ and mse PT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaSbaaSqaaiaabcfacaqGubaabeaaaaa@3BD0@ is based on the MSE of the BLUP with σ v 2 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaaeypaiaabccacaaIWaGaaiOl aaaa@3DAC@ Molina et al. (2015) showed in an empirical study that their proposed MSE estimators performed well on average when both σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@3AD3@ and the number of areas m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@381E@ were small.

Remark 4.2. mse 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaSbaaSqaaiaabcdaaeqaaaaa@3AD9@ and mse PT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaSbaaSqaaiaabcfacaqGubaabeaaaaa@3BD0@ are also unbiased up to the second order (see Appendix for a brief proof of this property). Our argument against mse { θ ^ i ( σ ^ v 2 ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaiWaaeaacuaH4oqCgaqcamaaBaaaleaacaWGPbaabeaa kmaabmaabaGafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaa aakiaawIcacaGLPaaaaiaawUhacaGL9baaaaa@445F@ (in 3.3) is also valid against mse 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaSbaaSqaaiaabcdaaeqaaaaa@3AD9@ and mse PT : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyBaiaabo hacaqGLbWaaSbaaSqaaiaabcfacaqGubaabeaakiaacQdaaaa@3C98@ for a moderate number of areas, the % of populations with σ ^ v REML 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaiaabkfacaqGfbGaaeytaiaabYeaaeaacaaI YaaaaOGaeyypa0JaaGimaaaa@3FE9@ may be significant even if σ v 2 / ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacq aHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaaaakeaacqaHipqEdaWg aaWcbaGaamyAaaqabaaaaaaa@3DDB@ is not negligible. In this case, the MSE of the EBLUP should account also for the variation due to variance estimation or risk underestimation.

Date modified: