Inférence et fondements
Filtrer les résultats par
Aide à la rechercheMot(s)-clé(s)
Type
Enquête ou programme statistique
Résultats
Tout (105)
Tout (105) (10 à 20 de 105 résultats)
- Articles et rapports : 12-001-X202200200003Description :
Les enquêtes non probabilistes jouent un rôle croissant dans la recherche par enquête. L’étude de Wu rassemble de façon compétente les nombreux outils disponibles lorsqu’on suppose que la non-réponse est conditionnellement indépendante de la variable étudiée. Dans le présent exposé, j’étudie la façon d’intégrer les idées de Wu dans un cadre plus large qui englobe le cas dans lequel la non-réponse dépend de la variable étudiée, un cas qui est particulièrement dangereux dans les sondages non probabilistes.
Date de diffusion : 2022-12-15 - Articles et rapports : 12-001-X202200200004Description :
Cet exposé vise à approfondir l’examen de Wu sur l’inférence à partir d’échantillons non probabilistes, ainsi qu’à mettre en évidence les aspects qui constituent probablement d’autres pistes de recherche utiles. Elle se termine par un appel en faveur d’un registre organisé d’enquêtes probabilistes de grande qualité qui visera à fournir des renseignements utiles à l’ajustement d’enquêtes non probabilistes.
Date de diffusion : 2022-12-15 - Articles et rapports : 12-001-X202200200005Description :
Des hypothèses solides sont nécessaires pour faire des inférences au sujet d’une population finie à partir d’un échantillon non probabiliste. Les statistiques d’un échantillon non probabiliste devraient être accompagnées de preuves que les hypothèses sont respectées et que les estimations ponctuelles et les intervalles de confiance sont propres à l’utilisation. Je décris certains diagnostics qui peuvent être utilisés pour évaluer les hypothèses du modèle, et je discute des questions à prendre en considération au moment de décider s’il convient d’utiliser les données d’un échantillon non probabiliste.
Date de diffusion : 2022-12-15 - Articles et rapports : 12-001-X202200200006Description :
Il n’est pas possible de tirer parti de la puissante probabilité du plan pour établir l’inférence fondée sur la randomisation à partir d’échantillons non probabilistes. Cela nous incite à exploiter une probabilité divine naturelle qui accompagne toute population finie. Dans cette perspective, un des paramètres principaux est la corrélation due à un défaut des données (cdd), qui est la corrélation de la population finie sans modèle entre l’indicateur d’inclusion de l’échantillon de la personne et la caractéristique de la personne échantillonnée. Un mécanisme de génération de données équivaut à un échantillonnage probabiliste, en ce qui concerne l’effet de plan, si et seulement si la cdd correspondante est de l’ordre (stochastique) N-1/2, où N est la taille de la population (Meng, 2018). Par conséquent, les méthodes d’estimation linéaire valides existantes pour les échantillons non probabilistes peuvent être converties en plusieurs stratégies de miniaturisation de la cdd jusqu’à l’ordre N-1/2. Les méthodes quasi fondées sur le plan permettent d’accomplir cette tâche en réduisant la variabilité entre les N propensions d’inclusion au moyen d’une pondération. L’approche fondée sur un modèle de superpopulation permet d’atteindre le même objectif par la réduction de la variabilité des caractéristiques des N personnes en les remplaçant par leurs résidus issus d’un modèle de régression. Les estimateurs doublement robustes doivent la propriété dont ils portent le nom au fait qu’une corrélation est nulle chaque fois qu’une des variables corrélées est constante, quelle qu’elle soit. Comprendre les points communs de ces méthodes au moyen de la cdd nous aide à voir clairement la possibilité d’une « robustesse plus que double », c’est-à-dire une estimation valide qui ne dépend pas de la pleine validité du modèle de régression ni de la propension d’inclusion estimée, qui ne sont garanties ni l’une ni l’autre parce que les deux reposent sur la probabilité du procédé. Les renseignements générés par la cdd incitent également à un sous-échantillonnage de contrebalancement, une stratégie visant à créer une miniature de la population à partir d’un échantillon non probabiliste, et comportant un compromis de qualité et de quantité favorable parce que les erreurs quadratiques moyennes sont beaucoup plus sensibles à la cdd qu’à la taille de l’échantillon, en particulier pour les populations de grande taille.
Date de diffusion : 2022-12-15 - Articles et rapports : 12-001-X202200200007Description :
L’inférence statistique avec des échantillons d’enquête non probabilistes est un problème complexe bien connu en statistique. Dans la présente analyse, nous proposons deux nouvelles méthodes non paramétriques d’estimation des scores de propension pour pondérer les échantillons non probabilistes, à savoir la projection d’information et le calage uniforme dans un espace de Hilbert à noyau reproduisant.
Date de diffusion : 2022-12-15 - Articles et rapports : 12-001-X202200200008Description :
La présente réponse contient des remarques supplémentaires sur certaines questions soulevées par les participants à la discussion.
Date de diffusion : 2022-12-15 - Articles et rapports : 12-001-X202200200011Description :
L’échantillonnage à deux phases est un plan de sondage rentable couramment utilisé dans les enquêtes. Le présent article propose une méthode optimale d’estimation linéaire des totaux dans un échantillonnage à deux phases, qui exploite au mieux l’information auxiliaire de l’enquête. Tout d’abord, on calcule formellement un meilleur estimateur linéaire sans biais (MELSB) de tout total sous une forme analytique, et on démontre qu’il s’agit d’un estimateur par calage. Ensuite, la reformulation appropriée du MELSB et l’estimation de ses coefficients inconnus permettent de construire un estimateur par la régression « optimal », qui peut également être obtenu au moyen d’une procédure de calage adéquate. Ce calage présente une caractéristique distinctive : l’alignement des estimations des deux phases dans une procédure en une étape comprenant les échantillons combinés de la première et de la deuxième phase. L’estimation optimale est faisable pour certains plans à deux phases souvent employés dans les enquêtes à grande échelle. Pour les plans généraux à deux phases, une autre procédure de calage donne un estimateur par la régression généralisée comme estimateur optimal approximatif. L’approche générale proposée d’estimation optimale permet d’utiliser le plus efficacement possible l’information auxiliaire disponible dans toute enquête à deux phases. Les avantages de cette méthode par rapport aux méthodes existantes d’estimation dans un échantillonnage à deux phases sont démontrés théoriquement et au moyen d’une étude par simulations.
Date de diffusion : 2022-12-15 - Articles et rapports : 12-001-X202200100004Description :
Lorsque la taille de l’échantillon d’un domaine est faible, le fait d’emprunter des renseignements aux voisins est une technique d’estimation sur petits domaines qui permet d’obtenir des estimations plus fiables. L’un des modèles les plus connus en ce qui concerne l’estimation sur petits domaines est un modèle multinomial hiérarchique de Dirichlet pour les comptes multinomiaux. En raison des caractéristiques naturelles des données, il est pertinent d’émettre une hypothèse sur la restriction d’ordre unimodal dans le cas des espaces de paramètres. Dans notre application, l’indice de masse corporelle est plus susceptible de correspondre à un niveau de surpoids, ce qui signifie que la restriction d’ordre unimodal pourrait être raisonnable. La même restriction d’ordre unimodal pour tous les domaines pourrait être trop forte pour s’avérer dans certains cas. Pour accroître la souplesse, nous ajoutons une incertitude à la restriction d’ordre unimodal. Chaque domaine présentera des tendances unimodaux similaires, sans être identiques. Comme la restriction d’ordre intégrant de l’incertitude augmente la difficulté d’inférence, nous effectuons une comparaison avec les valeurs sommaires a posteriori et la pseudo-vraisemblance marginale logarithmique approximative.
Date de diffusion : 2022-06-21 - Articles et rapports : 12-001-X202200100009Description :
La probabilité inverse, aussi connue en tant que l’estimateur de Horvitz-Thompson, est un outil de base de l’estimation pour une population finie. Même lorsque de l’information auxiliaire est disponible pour modéliser la variable d’intérêt, elle est utilisée pour estimer l’erreur du modèle. Dans la présente étude, l’estimateur de probabilité inverse est généralisé par l’introduction d’une matrice définie positive. L’estimateur de probabilité inverse habituel est un cas spécial de l’estimateur généralisé, dans lequel la matrice définie positive est la matrice identité. Étant donné que l’estimation par calage permet de chercher des poids qui sont proches des poids de probabilité inverse, elle peut également être généralisée pour permettre de chercher des poids qui sont proches de ceux de l’estimateur de probabilité inverse généralisé. Nous savons que le calage est optimal, car il atteint asymptotiquement la borne inférieure de Godambe-Joshi, et celle-ci a été obtenue à partir d’un modèle dépourvu de corrélation. Cette borne inférieure peut également être généralisée en vue de permettre des corrélations. En choisissant judicieusement la matrice définie positive qui généralise les estimateurs par calage, cette borne inférieure généralisée peut être atteinte de façon asymptotique. Bien souvent, il n’existe pas de formule analytique pour calculer les estimateurs généralisés. Toutefois, des exemples simples et clairs sont fournis dans la présente étude pour illustrer la façon dont les estimateurs généralisés tirent parti des corrélations. Cette simplicité s’obtient en supposant une corrélation de 1 entre certaines unités de la population. Ces estimateurs simples peuvent être utiles, même si cette corrélation est inférieure à 1. Des résultats de simulation sont utilisés pour comparer les estimateurs généralisés aux estimateurs ordinaires.
Date de diffusion : 2022-06-21 - Articles et rapports : 12-001-X202100200003Description :
La pondération par calage est un moyen statistiquement efficace de traiter la non-réponse totale. En supposant que le modèle (ou la sortie) de la réponse justifiant l’ajustement du poids de calage est exact, il est souvent possible de mesurer la variance des estimations de façon asymptotique et sans biais. Une des manières d’estimer la variance consiste à créer des poids de rééchantillonnage jackknife. Cependant, il arrive que la méthode classique de calcul des poids de rééchantillonnage jackknife pour les poids d’analyse calés échoue. Dans ce cas, il existe généralement une autre méthode de calcul des poids de rééchantillonnage jackknife. Cette méthode est décrite ici et appliquée à un exemple simple.
Date de diffusion : 2022-01-06
- Précédent Go to previous page of Tout results
- 1 Aller à la page 1 des résultats «!tag»
- 2 (actuel) Aller à la page 2 des résultats «!tag»
- 3 Aller à la page 3 des résultats «!tag»
- 4 Aller à la page 4 des résultats «!tag»
- 5 Aller à la page 5 des résultats «!tag»
- 6 Aller à la page 6 des résultats «!tag»
- 7 Aller à la page 7 des résultats «!tag»
- ...
- 11 Aller à la page 11 des résultats «!tag»
- Suivant Go to next page of Tout results
Données (0)
Données (0) (0 résultat)
Aucun contenu disponible actuellement
Analyses (97)
Analyses (97) (0 à 10 de 97 résultats)
- Articles et rapports : 12-001-X202400100001Description : Inspirés par les deux excellentes discussions de notre article, nous offrons un regard nouveau et présentons de nouvelles avancées sur le problème de l’estimation des probabilités de participation pour des échantillons non probabilistes. Tout d’abord, nous proposons une amélioration de la méthode de Chen, Li et Wu (2020), fondée sur la théorie de la meilleure estimation linéaire sans biais, qui tire plus efficacement parti des données disponibles des échantillons probabiliste et non probabiliste. De plus, nous élaborons une méthode de vraisemblance de l’échantillon, dont l’idée est semblable à la méthode d’Elliott (2009), qui tient adéquatement compte du chevauchement entre les deux échantillons quand il est possible de l’identifier dans au moins un des échantillons. Nous utilisons la théorie de la meilleure prédiction linéaire sans biais pour traiter le scénario où le chevauchement est inconnu. Il est intéressant de constater que les deux méthodes que nous proposons coïncident quand le chevauchement est inconnu. Ensuite, nous montrons que de nombreuses méthodes existantes peuvent être obtenues comme cas particulier d’une fonction d’estimation sans biais générale. Enfin, nous concluons en formulant quelques commentaires sur l’estimation non paramétrique des probabilités de participation.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202400100002Description : Nous proposons des comparaisons entre trois méthodes paramétriques d’estimation des probabilités de participation ainsi que de brefs commentaires à propos des groupes homogènes et de la poststratification.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202400100003Description : Beaumont, Bosa, Brennan, Charlebois et Chu (2024) proposent des méthodes novatrices de sélection de modèles aux fins d’estimation des probabilités de participation pour des unités d’échantillonnage non probabiliste. Notre examen portera principalement sur le choix de la vraisemblance et du paramétrage du modèle, qui sont essentiels à l’efficacité des techniques proposées dans l’article. Nous examinons d’autres méthodes fondées sur la vraisemblance et la pseudo-vraisemblance pour estimer les probabilités de participation et nous présentons des simulations mettant en œuvre et comparant la sélection de variables fondée sur le critère d’information d’Akaike (AIC). Nous démontrons que, dans des scénarios pratiques importants, la méthode fondée sur une vraisemblance formulée sur les échantillons non probabiliste et probabiliste groupés qui sont observés offre un meilleur rendement que les autres solutions fondées sur la pseudo-vraisemblance. La différence de sensibilité du AIC est particulièrement grande en cas de petites tailles de l’échantillon probabiliste et de petit chevauchement dans les domaines de covariables.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202400100004Description : Les organismes nationaux de statistique étudient de plus en plus la possibilité d’utiliser des échantillons non probabilistes comme solution de rechange aux échantillons probabilistes. Toutefois, il est bien connu que l’utilisation d’un échantillon non probabiliste seul peut produire des estimations présentant un biais important en raison de la nature inconnue du mécanisme de sélection sous-jacent. Il est possible de réduire le biais en intégrant les données de l’échantillon non probabiliste aux données d’un échantillon probabiliste, à condition que les deux échantillons contiennent des variables auxiliaires communes. Nous nous concentrons sur les méthodes de pondération par l’inverse de la probabilité, lesquelles consistent à modéliser la probabilité de participation à l’échantillon non probabiliste. Premièrement, nous examinons le modèle logistique ainsi que l’estimation par la méthode du pseudo maximum de vraisemblance. Nous proposons une procédure de sélection de variables en fonction d’un critère d’information d’Akaike (AIC) modifié qui tient compte de la structure des données et du plan d’échantillonnage probabiliste. Nous proposons également une méthode simple fondée sur le rang pour former des strates a posteriori homogènes. Ensuite, nous adaptons l’algorithme des arbres de classification et de régression (CART) à ce scénario d’intégration de données, tout en tenant compte, encore une fois, du plan d’échantillonnage probabiliste. Nous proposons un estimateur de la variance bootstrap qui tient compte de deux sources de variabilité : le plan d’échantillonnage probabiliste et le modèle de participation. Nos méthodes sont illustrées au moyen de données recueillies par approche participative et de données d’enquête de Statistique Canada.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202400100014Description : Cet article est une introduction au numéro spécial sur l’utilisation d’échantillons non probabilistes comprenant trois articles présentés lors de la 29e conférence Morris Hansen par Courtney Kennedy, Yan Li et Jean-François Beaumont.Date de diffusion : 2024-06-25
- Articles et rapports : 12-001-X202300200005Description : Le sous-dénombrement de la population est un des principaux obstacles avec lesquels il faut composer lors de l’analyse statistique d’échantillons d’enquête non probabilistes. Nous considérons dans le présent article deux scénarios types de sous-dénombrement, à savoir le sous-dénombrement stochastique et le sous-dénombrement déterministe. Nous soutenons que l’on peut appliquer directement les méthodes d’estimation existantes selon l’hypothèse de positivité sur les scores de propension (c’est-à-dire les probabilités de participation) pour traiter le scénario de sous-dénombrement stochastique. Nous étudions des stratégies visant à atténuer les biais lors de l’estimation de la moyenne de la population cible selon le sous-dénombrement déterministe. Plus précisément, nous examinons une méthode de population fractionnée (split-population method) fondée sur une formulation d’enveloppe convexe et nous construisons des estimateurs menant à des biais réduits. Un estimateur doublement robuste peut être construit si un sous-échantillon de suivi de l’enquête probabiliste de référence comportant des mesures sur la variable étudiée devient réalisable. Le rendement de six estimateurs concurrents est examiné au moyen d’une étude par simulations, et des questions nécessitant un examen plus approfondi sont brièvement abordées.Date de diffusion : 2024-01-03
- Articles et rapports : 12-001-X202300200009Description : Dans le présent article, nous examinons la façon dont une grande base de données non probabiliste peut servir à améliorer des estimations de totaux de population finie d’un petit échantillon probabiliste grâce aux techniques d’intégration de données. Dans le cas où la variable d’intérêt est observée dans les deux sources de données, Kim et Tam (2021) ont proposé deux estimateurs convergents par rapport au plan de sondage qui peuvent être justifiés par la théorie des enquêtes à double base de sondage. D’abord, nous posons des conditions garantissant que les estimateurs en question seront plus efficaces que l’estimateur de Horvitz-Thompson lorsque l’échantillon probabiliste est sélectionné par échantillonnage de Poisson ou par échantillonnage aléatoire simple sans remise. Ensuite, nous étudions la famille des prédicteurs QR proposée par Särndal et Wright (1984) pour le cas moins courant où la base de données non probabiliste ne contient pas la variable d’intérêt, mais des variables auxiliaires. Une autre exigence est que la base non probabiliste soit vaste et puisse être couplée avec l’échantillon probabiliste. Les conditions que nous posons font que le prédicteur QR est asymptotiquement sans biais par rapport au plan de sondage. Nous calculons sa variance asymptotique sous le plan de sondage et présentons un estimateur de variance convergent par rapport au plan de sondage. Nous comparons les propriétés par rapport au plan de sondage de différents prédicteurs de la famille des prédicteurs QR dans une étude par simulation. La famille comprend un prédicteur fondé sur un modèle, un estimateur assisté par un modèle et un estimateur cosmétique. Dans nos scénarios de simulation, l’estimateur cosmétique a donné des résultats légèrement supérieurs à ceux de l’estimateur assisté par un modèle. Nos constatations sont confirmées par une application aux données de La Poste, laquelle illustre par ailleurs que les propriétés de l’estimateur cosmétique sont conservées indépendamment de l’échantillon non probabiliste observé.Date de diffusion : 2024-01-03
- Articles et rapports : 12-001-X202300200018Description : En tant qu’instrument d’élaboration et d’évaluation des politiques et de recherche scientifique, sociale et économique, les enquêtes par sondage sont employées depuis plus d’un siècle. Au cours de cette période, elles ont surtout servi à recueillir des données à des fins de dénombrement. L’estimation de leurs caractéristiques a normalement reposé sur la pondération et l’échantillonnage répété ou sur une inférence fondée sur le plan de sondage. Les données-échantillons ont toutefois aussi permis de modéliser les processus inobservables qui sont source de données de population finie. Ce genre d’utilisation qualifié d’analytique consiste souvent à intégrer les données-échantillons à des données de sources secondaires. Dans ce cas, des solutions de rechange à l’inférence, tirant leur inspiration du grand courant de la modélisation statistique, ont largement été mises de l’avant. Le but principal était alors de permettre un échantillonnage informatif. Les enquêtes modernes par sondage visent cependant davantage les situations où les données-échantillons font en réalité partie d’un ensemble plus complexe de sources de données, toutes contenant des informations pertinentes sur le processus d’intérêt. Lorsqu’on privilégie une méthode efficace de modélisation comme celle du maximum de vraisemblance, la question consiste alors à déterminer les modifications qui devraient être apportées en fonction tant de plans de sondage complexes que de sources multiples de données. C’est là que l’emploi du principe de l’information manquante trace nettement la voie à suivre. Le présent document permettra de faire le point sur la façon dont ce principe a servi à résoudre les problèmes d’analyse de données « désordonnées » liés à l’échantillonnage. Il sera aussi question d’un scénario qui est une conséquence de la croissance rapide des sources de données auxiliaires aux fins de l’analyse des données d’enquête. C’est le cas où les enregistrements échantillonnés d’une source ou d’un registre accessible sont couplés aux enregistrements d’une autre source moins accessible, avec des valeurs de la variable réponse d’intérêt tirées de cette seconde source et où un résultat clé obtenu consiste en estimations sur petits domaines de cette variable de réponse pour des domaines définis sur la première source.Date de diffusion : 2024-01-03
- Articles et rapports : 12-001-X202200200001Description :
Des arguments conceptuels et des exemples sont présentés qui suggèrent que l’approche d’inférence bayésienne pour les enquêtes permet de répondre aux défis nombreux et variés de l’analyse d’une enquête. Les modèles bayésiens qui intègrent des caractéristiques du plan de sondage complexe peuvent donner lieu à des inférences pertinentes pour l’ensemble de données observé, tout en ayant de bonnes propriétés d’échantillonnage répété. Les exemples portent essentiellement sur le rôle des variables auxiliaires et des poids d’échantillonnage, et les méthodes utilisées pour gérer lanon-réponse. Le présent article propose 10 raisons principales de favoriser l’approche d’inférence bayésienne pour les enquêtes.
Date de diffusion : 2022-12-15 - Articles et rapports : 12-001-X202200200002Description :
Nous offrons un examen critique et quelques discussions approfondies sur des questions théoriques et pratiques à l’aide d’une analyse des échantillons non probabilistes. Nous tentons de présenter des cadres inférentiels rigoureux et des procédures statistiques valides dans le cadre d’hypothèses couramment utilisées et d’aborder les questions relatives à la justification et à la vérification d’hypothèses sur des applications pratiques. Certains progrès méthodologiques actuels sont présentés et nous mentionnons des problèmes qui nécessitent un examen plus approfondi. Alors que l’article porte sur des échantillons non probabilistes, le rôle essentiel des échantillons d’enquête probabilistes comportant des renseignements riches et pertinents sur des variables auxiliaires est mis en évidence.
Date de diffusion : 2022-12-15
- Précédent Go to previous page of Analyses results
- 1 (actuel) Aller à la page 1 des résultats «!tag»
- 2 Aller à la page 2 des résultats «!tag»
- 3 Aller à la page 3 des résultats «!tag»
- 4 Aller à la page 4 des résultats «!tag»
- 5 Aller à la page 5 des résultats «!tag»
- 6 Aller à la page 6 des résultats «!tag»
- 7 Aller à la page 7 des résultats «!tag»
- ...
- 10 Aller à la page 10 des résultats «!tag»
- Suivant Go to next page of Analyses results
Références (8)
Références (8) ((8 résultats))
- Enquêtes et programmes statistiques — Documentation : 11-522-X201300014259Description :
Dans l’optique de réduire le fardeau de réponse des exploitants agricoles, Statistique Canada étudie d’autres approches que les enquêtes par téléphone pour produire des estimations des grandes cultures. Une option consiste à publier des estimations de la superficie récoltée et du rendement en septembre, comme cela se fait actuellement, mais de les calculer au moyen de modèles fondés sur des données par satellite et des données météorologiques, ainsi que les données de l’enquête téléphonique de juillet. Toutefois, avant d’adopter une telle approche, on doit trouver une méthode pour produire des estimations comportant un niveau d’exactitude suffisant. Des recherches sont en cours pour examiner différentes possibilités. Les résultats de la recherche initiale et les enjeux à prendre en compte sont abordés dans ce document.
Date de diffusion : 2014-10-31 - 2. Note sur les identificateurs dans l'Enquête longitudinale nationale sur les enfants et les jeunes ArchivéEnquêtes et programmes statistiques — Documentation : 12-002-X20040027035Description :
Lors du traitement des données du cycle 4 de l'Enquête longitudinale nationale sur les enfants et les jeunes (ELNEJ), des révisions historiques ont été apportées au trois premiers cycles de l'enquête afin de corriger des erreurs et faire une mise à jour des données. Au cours du traitement, une attention particulière a été portée à la variable PERSRUK (l'identificateur au niveau de la personne) et à la variable FIELDRUK (l'identificateur au niveau du ménage). Le même niveau d'attention n'a pas été accordé aux autres identificateurs incluent dans la base de données, soit, la variable CHILDID (un identificateur au niveau de l'enfant) et la variable _IDHD01 (un identificateur au niveau du ménage). Ces identificateurs ont été créés pour les fichiers publics et ils se retrouvent par défaut dans les fichiers maîtres. Lorsque les fichiers maîtres sont utilisés, la variable PERSRUK devrait être utilisée pour lier les différents fichiers de données de l'enquête entre eux et la variable FIELDRUK pour déterminer le ménage.
Date de diffusion : 2004-10-05 - 3. Enquête sur la sécurité financière - Méthodologie pour estimer la valeur des droits à pension ArchivéEnquêtes et programmes statistiques — Documentation : 13F0026M2001003Description :
Les premiers résultats de l'Enquête sur la sécurité financière (ESF), qui fournit de l'information sur la valeur nette du patrimoine des Canadiens, ont été publiés le 15 mars 2001 dans Le quotidien. L'enquête a recueilli des renseignements sur la valeur des avoirs financiers et non financiers de chaque unité familiale et sur le montant de sa dette.
Statistique Canada travaille actuellement à préciser cette première estimation de la valeur nette en y ajoutant une estimation de la valeur des droits à pension constitués dans les régimes de retraite d'employeur. Il s'agit d'un volet essentiel pour toute enquête sur l'avoir et la dette étant donné que, pour la plupart des unités familiales, c'est probablement l'un des avoirs les plus importants. Le vieillissement de la population rend l'information sur la constitution des droits à pension nécessaire afin de mieux comprendre la situation financière des personnes qui approchent de la retraite. Ces estimations mises à jour seront publiées à la fin de l'automne 2001.
Le processus utilisé pour obtenir une estimation de la valeur des droits à pension constitués dans les régimes de pension agréés d'employeur (RPA) est complexe. Le présent document décrit la méthodologie utilisée pour estimer cette valeur en ce qui concerne les groupes suivants : a) Les personnes qui faisaient partie d'un RPA au moment de l'enquête (appelées membres actuels d'un régime de retraite); b) Les personnes qui ont déjà fait partie d'un RPA et qui ont laissé l'argent dans le régime de retraite ou qui l'ont transféré dans un nouveau régime de retraite; c) Les personnes qui touchent des prestations d'un RPA.
Cette méthodologie a été proposée par Hubert Frenken et Michael Cohen. Hubert Frenken compte de nombreuses années d'expérience avec Statistique Canada où il a travaillé avec des données sur les régimes de retraite d'employeur. Michael Cohen fait partie de la direction de la firme d'actuariat-conseil William M. Mercer. Plus tôt cette année, Statistique Canada a organisé une consultation publique sur la méthodologie proposée. Le présent rapport inclut des mises à jour faites après avoir reçu les rétroactions des utilisateurs des données.
Date de diffusion : 2001-09-05 - Enquêtes et programmes statistiques — Documentation : 13F0026M2001002Description :
L'Enquête sur la sécurité financière (ESF) fournira des renseignements sur la situation nette des Canadiens. C'est pourquoi elle a recueilli, en mai et juin 1999, des données sur la valeur de l'avoir et de la dette de chacune des familles ou personnes seules comprises dans l'échantillon. Il s'est avéré difficile de calculer ou d'estimer la valeur d'un avoir en particulier, à savoir la valeur actualisée du montant que les répondants ont constitué dans leur régime de retraite d'employeur. On appelle souvent ces régimes des régimes de pension agréés (RPA), car ils doivent être agréés par l'Agence des douanes et du revenu du Canada (ARDC) (c'est-à-dire enregistrés auprès de l'ADRC). Bien qu'on communique à certains participants à un RPA une estimation de la valeur de leurs droits constitués, ils l'ignorent dans la plupart des cas. Pourtant, il s'agit sans doute d'un des avoirs les plus importants pour bon nombre d'unités familiales. De plus, à mesure que la génération du baby boom se rapproche de la retraite, le besoin d'information sur ses rentes constituées se fait très pressant si l'on veut mieux comprendre sa capacité financière à négocier ce nouveau virage.
La présente étude vise deux objectifs : décrire, pour stimuler des discussions, la méthodologie proposée en vue d'estimer la valeur actualisée des droits à pension pour les besoins de l'Enquête sur la sécurité financière; et recueillir des réactions à la méthodologie proposée. Le présent document propose une méthodologie pour estimer la valeur des droits constitués dans un régime d'employeur pour les groupes suivants : a) les personnes qui adhéraient à un RPA au moment de l'enquête (les «participants actuels»); b) les personnes qui ont déjà adhéré à un RPA et qui ont soit laissé leurs fonds dans le régime ou les ont transférés dans un nouveau régime; et c) les personnes qui touchent une rente prévue par un RPA.
Date de diffusion : 2001-02-07 - Enquêtes et programmes statistiques — Documentation : 11-522-X19990015642Description :
La Base de données longitudinale sur l'immigration (BDIM) établit un lien entre les dossiers administratifs de l'immigration et de l'impôt en une source exhaustive de données sur le comportement sur le marché du travail de la population des immigrants ayant obtenu le droit d'établissement au Canada. Elle porte sur la période de 1980 à 1995 et sera mise à jour en 1999 pour l'année d'imposition 1996. Statistique Canada gère la base de données pour le compte d'un consortium fédéral-provincial dirigé par Citoyenneté et Immigration Canada. Le présent document examine les enjeux du développement d'une base de données longitudinale combinant des dossiers administratifs, à l'appui de la recherche et de l'analyse en matière de politiques. L'accent est plus particulièrement mis sur les questions de méthodologie, de concepts, d'analyse et de protection des renseignements personnels découlant de la création et du développement continu de cette base de données. Le présent document aborde en outre brièvement les résultats des recherches, qui illustrent les liens en matière de résultats des politiques que la BDIM permet aux décideurs d'examiner.
Date de diffusion : 2000-03-02 - Enquêtes et programmes statistiques — Documentation : 11-522-X19990015650Description :
La U.S. Manufacturing Plant Ownership Change Database (OCD) a été créée d'après des données sur les usines extraites de la Longitudinal Research Database (LRD) du Census Bureau. Elle contient des données sur toutes les usines de fabrication qui ont changé de propriétaire au moins une fois entre 1963 et 1992. L'auteur fait le point sur l'OCD et examine les possibilités de recherche. Pour utiliser empiriquement ces possibilités, il se sert de données extraites de la base de données pour étudier le lien entre les changements de propriété et les fermetures d'usines.
Date de diffusion : 2000-03-02 - Enquêtes et programmes statistiques — Documentation : 11-522-X19990015658Description :
Le radon, qui est un gaz dont la présence est observée naturellement dans la plupart des maisons, est un facteur de risque confirmé pour le cancer du poumon chez les humains. Le National Research Council des États-Unis (1999) vient de terminer une évaluation approfondie du risque pour la santé de l'exposition résidentielle au radon, tout en élaborant des modèles de projection du risque de cancer pulmonaire dû au radon pour l'ensemble de la population. Cette analyse indique que le radon joue possiblement un rôle dans l'étiologie de 10-15 % des cas de cancer du poumon aux États-Unis, bien que ces estimations comportent une part appréciable d'incertitude. Les auteurs présentent une analyse partielle de l'incertidude et de la variabilité des estimations du risque de cancer pulmonaire dû à l'exposition résidentielle au radon, aux États-Unis, à l'aide d'un cadre général d'analyse de l'incertitude et de la variabilité établi antérieurement par ces mêmes auteurs. Plus particulièrement, il est question des estimations de l'excès de risque relatif (EFF) par âge et du risque relatif à vie (RRV), qui varient tous deux considérablement d'une personne à l'autre.
Date de diffusion : 2000-03-02 - Fichiers et documentation sur la géographie : 92F0138M1993001Géographie : CanadaDescription :
Dans une perspective d'amélioration et de développement, les divisions de la géographie de Statistique Canada et du U.S. Bureau of the Census ont entrepris conjointement un programme de recherche pour étudier les régions géographiques, et la pertinence de ces dernières. Un des principaux objectifs poursuivis est la définition d'une région géographique commune qui servira de base géostatistique aux travaux transfrontaliers de recherche, d'analyse et de cartographie.
Le présent rapport, première étape du programme de recherche, dresse la liste des régions géographiques normalisées canadiennes et américaines comparables d'après les définitions actuelles. Statistique Canada et l'U.S. Bureau of the Census ont deux grandes catégories d'entités géographiques normalisées: les régions administratives ou législatives (appelées entités "légales" aux États-Unis) et les régions statistiques.
Ce premier appariement de régions géographiques s'est fait uniquement à partir des définitions établies pour le Recensement de la population et du logement du Canada du 4 juin 1991 et du Recensement de la population et du logement des États- Unis du 1er avril 1990. La comparabilité globale des concepts est l'aspect important d'un tel appariement, non pas les seuils numériques utilisés pour les délimitations des régions.
Les utilisateurs doivent se servir du présent rapport comme d'un guide général pour comparer les régions géographiques de recensement du Canada et des États- Unis. Ils doivent garder à l'esprit que les types de peuplement et les niveaux de population présentent des différences qui font qu'une correspondance parfaite ne peut être établie entre des régions conceptuellement semblables. Les régions géographiques comparées dans le présent rapport peuvent servir de cadre pour d'autres recherches et d'autres analyses empiriques.
Date de diffusion : 1999-03-05
- Date de modification :