An alternative way of estimating a cumulative logistic model with complex survey data - ARCHIVED
Articles and reports: 12-001-X201900200007
When fitting an ordered categorical variable with L > 2 levels to a set of covariates onto complex survey data, it is common to assume that the elements of the population fit a simple cumulative logistic regression model (proportional-odds logistic-regression model). This means the probability that the categorical variable is at or below some level is a binary logistic function of the model covariates. Moreover, except for the intercept, the values of the logistic-regression parameters are the same at each level. The conventional “design-based” method used for fitting the proportional-odds model is based on pseudo-maximum likelihood. We compare estimates computed using pseudo-maximum likelihood with those computed by assuming an alternative design-sensitive robust model-based framework. We show with a simple numerical example how estimates using the two approaches can differ. The alternative approach is easily extended to fit a general cumulative logistic model, in which the parallel-lines assumption can fail. A test of that assumption easily follows.
Main Product: Survey Methodology
Related information
Subjects and keywords
Subjects
- Date modified: