Sparse and efficient replication variance estimation for complex surveys - ARCHIVED

Articles and reports: 12-001-X201300111826

Description:

It is routine practice for survey organizations to provide replication weights as part of survey data files. These replication weights are meant to produce valid and efficient variance estimates for a variety of estimators in a simple and systematic manner. Most existing methods for constructing replication weights, however, are only valid for specific sampling designs and typically require a very large number of replicates. In this paper we first show how to produce replication weights based on the method outlined in Fay (1984) such that the resulting replication variance estimator is algebraically equivalent to the fully efficient linearization variance estimator for any given sampling design. We then propose a novel weight-calibration method to simultaneously achieve efficiency and sparsity in the sense that a small number of sets of replication weights can produce valid and efficient replication variance estimators for key population parameters. Our proposed method can be used in conjunction with existing resampling techniques for large-scale complex surveys. Validity of the proposed methods and extensions to some balanced sampling designs are also discussed. Simulation results showed that our proposed variance estimators perform very well in tracking coverage probabilities of confidence intervals. Our proposed strategies will likely have impact on how public-use survey data files are produced and how these data sets are analyzed.

Issue Number: 2013001
Author(s): Kim, Jae Kwang; Wu, Changbao

Main Product: Survey Methodology

FormatRelease dateMore information
HTMLJune 28, 2013
PDFJune 28, 2013