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Sparse and efficient replication variance estimation for 
complex surveys 

Jae Kwang Kim and Changbao Wu1 

Abstract 

It is routine practice for survey organizations to provide replication weights as part of survey data 

files. These replication weights are meant to produce valid and efficient variance estimates for a 

variety of estimators in a simple and systematic manner. Most existing methods for constructing 

replication weights, however, are only valid for specific sampling designs and typically require a 

very large number of replicates. In this paper we first show how to produce replication weights 

based on the method outlined in Fay (1984) such that the resulting replication variance estimator is 

algebraically equivalent to the fully efficient linearization variance estimator for any given sampling 

design. We then propose a novel weight-calibration method to simultaneously achieve efficiency 

and sparsity in the sense that a small number of sets of replication weights can produce valid and 

efficient replication variance estimators for key population parameters. Our proposed method can be 

used in conjunction with existing resampling techniques for large-scale complex surveys. Validity 

of the proposed methods and extensions to some balanced sampling designs are also discussed. 

Simulation results showed that our proposed variance estimators perform very well in tracking 

coverage probabilities of confidence intervals. Our proposed strategies will likely have impact on 

how public-use survey data files are produced and how these data sets are analyzed. 
 

Key Words: Bootstrap; Calibration; Jackknife; Linearization method; Replication weights; 
Sampling design; Spectral decomposition. 

 
 

1  Introduction 
 

Variance estimation is an important practical problem in sample surveys. In addition to 

analytic use of variances such as testing statistical hypotheses and constructing confidence 

intervals, variance estimation can also be used to provide descriptive measures on the accuracy of 

survey estimates and the efficiency of the given sampling design. There are two types of 

commonly used techniques for variance estimation under the design-based framework. The first 

is called the linearization method, which uses the standard variance formula applied either 

directly to the estimator if the parameter is a population total or to the linearized one-step Taylor 
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series expansion of the estimator if the parameter is a nonlinear function of one or several 

population totals. The second is called the replication method, which constructs variance 

estimators in a simple systematic way using multiple sets of replication weights along with the 

original survey data set. 

Replication variance estimation techniques have become very popular for design-based 

inferences using complex survey data. Some early practices using replication weights go back to 

1970s at the U.S. Bureau of the Census, Bureau of Labor Statistics and Westat (Dippo, Fay and 

Morganstein 1984). It is now a routine practice for survey organizations to provide replication 

weights together with survey data. The most attractive feature of this approach is that it works the 

same way regardless of the complexity of the parameter. For parameters that are smooth 

functions of population means or totals, the “linearization” step has been automatically built into 

the estimation process and computation of partial derivatives involved in the Taylor series 

expansion is not required. It is extremely user-friendly for multi-purpose data analyses once the 

survey data set is released together with replication weights. Furthermore, the use of replication 

methods reduces concerns on confidentiality issues since detailed design information such as 

stratum or cluster identifier is not released (Lu and Sitter 2008). 

Replication weights are typically constructed by the bootstrap, the jackknife or the balanced 

repeated replication (BRR) methods. Rust and Rao (1996), Shao (1996, 2003) and Wolter (2007) 

provided excellent overviews on the topic. There are three major issues in the construction of 

replication weights: validity, efficiency and sparsity. Validity refers to the asymptotic 

unbiasedness of replication variance estimators under the given sampling design. The asymptotic 

unbiasedness of an estimator is generally a weaker concept than the estimator being consistent. If 

the coefficient of variation of the variance estimator goes to zero, then the asymptotically 

unbiased variance estimator is also consistent. Efficiency is measured by the relative performance 

of the replication variance estimator to the standard linearization variance estimator which is 
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viewed as fully efficient. Sparsity refers to the number of sets of replication weights required to 

achieve fully efficient variance estimation. 

Validity of replication variance estimators was discussed by Krewski and Rao (1981), Shao 

and Tu (1995) and Fuller (2009a), among others. Efficiency and stability of replication variance 

estimators were discussed by Rust and Kalton (1987) and Jang and Eltinge (2009). For sparsity, 

Kott (2001) considered using delete-a-group jackknife to achieve sparsity under certain designs, 

and Lu, Brick and Sitter (2006) also discussed combining strata for sparse replication variance 

estimation. 

Most replication methods discussed in the literature are only valid for certain sampling 

designs. For example, the jackknife method is commonly used for stratified random sampling 

(Krewski and Rao 1981). The bootstrap method has several popular procedures, including the 

without-replacement bootstrap method (Gross 1980; McCarthy and Snowden 1985), the 

re-scaling bootstrap method (Rao and Wu 1988; Preston 2009) and the mirror-match bootstrap 

method (Sitter 1992). These procedures, however, are only applicable for certain types of 

sampling designs. 

The sparsity of a replication method depends on how the replication weights are constructed. 

The number of sets of the jackknife replication weights is related to the number of units in the 

sample and can be very large if the sample size is large. Bootstrap methods typically require at 

least 1,000 sets of replication weights in order to achieve the desired level of efficiency. As a 

compromise, most survey organizations provide 500 sets of bootstrap weights alongside the main 

survey variables. The resulting data sets are still too big for data users to have visual checks and 

can be very cumbersome to manipulate in practice. 

This paper presents methods for constructing efficient and sparse replication weights for 

variance estimation under the design-based framework. By maintaining full efficiency of the 

resulting variance estimator for key variables with a smaller number of sets of replication 

weights, our methods address one of the major tasks at the data file preparation stage and can 
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easily be applied by survey runners to reduce the burden of data users in dealing with excessively 

large data files. A major limitation of our proposed method is that it does not directly handle 

situations where design weights are adjusted for nonresponse or calibrated to known auxiliary 

population information. 

In Section 2, we present a general procedure for constructing replication weights based on the 

method of Fay (1984) and Fay and Dippo (1989), which provides fully efficient replication 

weights for arbitrary sampling designs. In Section 3, we discuss two strategies, random sampling 

and calibration weighting, for constructing sparse replication weights. By using a novel 

application of the calibration technique, our proposed methods allow the use of a small number of 

sets of replication weights while the resulting replication variance estimators remain efficient. In 

Section 4, some asymptotic theory for the validity of the replication variance estimator is 

presented. In Section 5, extensions to some balanced sampling designs are discussed. In 

Section 6, we report results from a simulation study, using real data from Statistics Canada’s 

Family Expenditure Survey, to evaluate the effectiveness of the proposed strategies for 

replication variance estimation. Some concluding remarks are given in Section 7. 

 
2  A general procedure for constructing fully efficient replication 

weights 
 

In principle, we can construct replication weights for any measurable sampling design, using 

the method outlined in Fay (1984) and Fay and Dippo (1989), such that the resulting replication 

variance estimators are algebraically equivalent to the standard linearization variance estimators. 

Let {1, 2, , }N   be the set of N  units in the finite population and {1, 2, , }n   be 

the set of n  units in the sample, selected according to a probability sampling design. Let 

1 /i iw    be the basic design weight, where ( )i P i     is the first order inclusion 

probability for unit .i  
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Let iy  be the value of the study variable y  for unit i  and 
1

N

y ii
t y


   be the population 

total of interest. The Horvitz-Thompson estimator of yt  is given by  

                                                                   ˆ .y i i
i

t w y


 


 (2.1) 

The estimator ˆ
yt  given in (2.1) is also called the expansion estimator, with the basic design 

weight iw  denoting the number of units in the population represented by unit i  in the sample. 

The standard variance estimator of ˆ
yt  can be written as 

                                                              ,ij i j
i j

v y y
 

 
 

 (2.2) 

where ( ) / ( )ij ij i j ij i j          and ( , )ij P i j     is the second order joint inclusion 

probability for ( ).ij  It is assumed that 0ij   for all ( ).ij  Note that .ii i    The standard 

variance estimator v  is often viewed as fully efficient since it is the Horvitz-Thompson estimator of 

the design-based variance ˆ( ).yV t  

Let ( )ij   be an n n  matrix. We can re-write (2.2) as ,v  y y  where 

1 2( , , , )ny y y  y  is the vector of sampled ’s.iy  The matrix   is nonnegative definite and 

can be decomposed as  

                                                                 
1

p

k k k
k 

     (2.3) 

for some 0k   and some n- dimensional vectors , 1, 2, , .k k p   The most well-known 

decomposition (2.3) is given by the spectral decomposition where k  is the eigenvector 

associated with the eigenvalue .k  In practice, very small eigenvalues are often ignored for 

computational reasons. For stratified sampling, the matrix   is block-diagonal so the 

computational burden may be alleviated. However, we do not restrict (2.3) to the spectral 

decomposition. Any decomposition satisfying (2.3) can be used. 
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Suppose that we want to express the fully efficient variance estimator v  given by (2.2) as a 

replication variance estimator in the form of  

                                                           ( ) 2

1

ˆ ˆ( ) ,
L

k
R k y y

k

v c t t


   (2.4) 

where ( ) ( ) ( ) ( ) ( )
1

ˆ , ( , , )k k k k k
y i i ni

t w y w w


  


w  is the thk  set of replication weights, 0kc   

is the factor associated with the thk  set of replication weights and L  is the total number of 

replications; see Kim, Navarro and Fuller (2006) for further discussion. 

The form given by (2.4) does not include all replication variance estimators. For instance, 

Campbell (1980) provided a jackknife variance estimator where the pseudovalues are derived 

based on the von Mises approximation to the parameter of interest. Nevertheless, most replication 

variance estimators can be put in this form. 

We have the following result on the construction of ( )kw  for Rv  based on the 

decomposition (2.3). 
 

Theorem 1. The fully efficient variance estimator v  and the replication variance estimator Rv  

are algebraically identical if we let L p  and ( ) 1/2( / ) ,k
k k kc   w w  where 

1( , , )nw w  w  is the set of original basic design weights. 
 

Proof. The proof follows directly from the fact that 2

1
( )

p

k kk
v


    y y y  and that 

( ) ( ) 1/2ˆ ˆ ( ) ( / ) .k k
y y k k kt t c      w w y y  

 

The choices of ’skc  can be arbitrary and bear no impact on the validity and efficiency of the 

replication variance estimators. However, certain choices of kc  will result in replication weights 

with negative values, which is undesirable as it may produce negative replicates for the 

parameters that are always positive. In practical situations one can always choose relatively large 

kc  to avoid negative values for replication weights. In our simulation study (Case I) reported in 

Section 5, the problem of negative replication weights can be eliminated with the choice 

of 1.kc   
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The replication variance estimator ( ) 2

1
ˆ ˆ( )

L k
R k y yk

v c t t


   with L p  and replication 

weights ( ) 1/2( / )k
k k kc   w w  is fully efficient for an arbitrary variable .y  It also provides 

fully efficient variance estimator for ̂  when   is a smooth function of population means or 

totals. Practical implementation of the method depends crucially on two related issues: (i) the 

feasibility of the decomposition of the n n  matrix   specified in (2.3); and (ii) the number of 

sets of replication weights required to achieve the full efficiency determined by rank( ).p    

As for the first issue, modern advances in computational power and improved performances of 

available software packages make it possible to do the spectral decomposition with relatively 

large .n  For instance, on a 12-CPU unix machine with 96 gigabytes of memory, the R function 

eigen() can handle matrices of sizes at least as large as n  4,000. Note that the computational 

task involved here is for survey runners at the data preparation stage and is not for users of the 

data files. As for the second issue, the value of p  is related to the given sampling design. For 

simple random sampling without replacement, we have 

2 1(1 / )( ( 1)) ( / ),n n nN n N n n n     1 1 I  

where nI  is the n n  identity matrix and (1,1, ,1)n
1   is the 1n   vector of 1’s.  It follows 

that rank( ) trace( / ) 1.n n np n n     1 1I  This is typically the case for single stage 

unequal probability sampling designs. For stratified simple random sampling, we have 

,p n H   where H  is the total number of strata. 

It should be noted that p n  for any sampling design and the exact value of p  is not 

required for the proposed procedure to be implemented. However, since the values of p  and n  

have the same order of magnitude, the proposed method requires a large number of replicates 

whenever n  is large. Under the current practices in sample surveys, the fully efficient replication 

weights described above become immediately implementable if p  500 and the second order 

inclusion probabilities ij  are available. When p  is large, a two-stage procedure to be described 
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in Section 3 can be used to produce a small number 0L  sets of replication weights for public-use 

data files. 

In some cases, the spectral decomposition (2.3) can be avoided. For example, Deville (1999) 

argued that the variance estimator of ˆ
yt  under unequal probability sampling designs with fixed 

sample size can be approximated by  

                                                     

2

(1 ) i
i y

i i

y
v c t



 
    

 


 (2.5) 

where   1
21 , (1 ) (1 )i i i ki k

c b b


 
        

 and ( / ).y i i ii
t b y


 


 More 

generally, we consider the following form of matrix   in ,v  y y  where 

                                                   1
0 0 0 0( )       X X X X  (2.6) 

where 0 1diag{ , , }, 0n i      for all 11, 2, , , ( , , )ni n   X x x  and ix  is a vector 

of design and auxiliary variables. Many elementary single-stage sampling designs take the form 

(2.6) for variance estimation. In particular, Deville’s formula in (2.5) can be expressed as 

v  y y  with   given by (2.6), where 2 (1 )i i ic       in 0  and .i i x  The 

conditional Poisson sampling design to be discussed in Section 5 also takes the form (2.6) where 

ix  are the design variables in the design constraint 1

1
.

N

i i ii i


 
  

x x  

For the matrix given by (2.6), it can be shown that 

0
ˆ ˆ( ) ( ),   y y y X y X     

where 1
0 0

ˆ ( ) .   X X X y  Thus, we have 

                                                        2

1

ˆ( ) ,
n

k k k
k

y


    y y x  (2.7) 

which is useful in deriving an expression for replication variance estimator in the form given by 

(2.4). The fully efficient variance estimator v  in (2.7) and the replication variance estimator Rv  
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in (2.4) are algebraically identical if we let L n  and ( ) 1/2( / ) ,k
k k kc   w w  where 

1( , , )nw w  w  is the set of original basic design weights and 1( , , )k k nk
    with 

1
0

1
0

1 ( ) if 

( ) otherwise.

k i i

ik

k i i

i k



     
  
   

x X X x

x X X x




 

The proof follows directly from the fact that 2

1
ˆ , ( )

n

k k k k kk
y


          y x y y y  and that 

( ) ( ) 1/2ˆ ˆ ( ) ( / ) .k k
y y k k kt t c      w w y y  

 
3  Sparse and efficient replication weights 
 

Large-scale complex surveys usually have a relatively large sample size ranging from a few 

hundreds to many thousands. The fully efficient replication weights described in Section 2 or 

replication weights constructed by some existing methods such as the jackknife or the bootstrap 

methods would involve a very large number of sets of weights. Although valid replication 

weights provide enormous convenience to the users of survey data, who are not necessarily the 

survey runners, the burden of manipulating a data set with hundreds or even thousands of 

replicate weights can be enormous. As a result, how to achieve efficient replication variance 

estimation with a relatively small number of replicate weights is a question with both theoretical 

and practical value. 

We propose two strategies to construct sparse and efficient replication weights. We start with 

a large number L  sets of replication weights. These initial weights may be produced using the 

general method described in Section 2 or by existing methods. Suppose they can be viewed as 

fully efficient. The first strategy is to select a small number 0L  sets of weights from the initial 

large number L  sets of weights using a probability sampling method. The small number 0L  

satisfies the desired sparsity and the random selection procedure guarantees validity of the 

resulting variance estimators. The second strategy is to achieve efficiency through a novel 
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weight-calibration procedure. The 0L  sets of calibrated replication weights provide fully efficient 

variance estimators for variables used in the calibration and also highly efficient variance 

estimators for variables related to calibration variables. 

 
3.1  Achieve sparsity and efficiency through random sampling 
 

Suppose that the fully efficient replication variance estimator is given by Rv   

( ) 2

1
ˆ ˆ( ) ,

L k
k y yk

c t t


  with replication weights constructed by using Theorem 1. Observe that Rv  

can be viewed as a finite population total. If we want to use 0 ( )L L  sets of replication weights 

to provide valid inference for variance estimation, the following simple strategy can be used. 

First, select 0L  sets of weights from the original L  sets of weights by simple random sampling 

without replacement. For notational simplicity and without loss of generality, we denote the 

selected sets of weights by ( )
0, 1, 2, , .j j L w  Then, calculate the replication variance 

estimator of ˆ
yt  based on the 0L  sets of weights as  

                                                       
0

(1) ( ) 2

10

ˆ ˆ( ) .
L

j
R j y y

j

L
v c t t

L 

   (3.1) 

The variance estimator (1)
Rv  is still unbiased for an arbitrary variable ,y  since * (1)( )RE v   

( ) 2

1
ˆ ˆ( ) ,

L k
k y y Rk

c t t v


   where * ( )E   denotes the expectation under the random selection of 

0L  sets of weights. 

An alternative form of the replication variance estimator based on the 0L  sets of weights can 

be derived as follows. Noting that ( ) 1/2ˆ ˆ ( / ) ,k
y y k k kt t c     y  we can re-write the fully 

efficient variance estimator as 

2

1 1

( ) ,
L L

R k k k
k k

v m
 

     
  
 y  

where 
1

.
L

kk
m


   The ’sk  are orthogonal eigenvectors satisfying k    under spectral 

decomposition and k
 y  are projections of y  onto the n- dimensional unit-sphere. It is very 
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natural to use the following weighted version for the variance estimator of ˆ
yt  based on the 0L  

randomly selected sets of weights: 

                              
0 0 0

(2) 2 ( ) 2

1 1 10

ˆ ˆ( ) ( ) ,
L L L

j
R j j j j y y

j j j

m
v m c t t

m  

       
  
   y  (3.2) 

where 0

0 1
.

L

jj
m


   Noting that (2)

Rv  is a ratio estimator of ,Rv  it is usually more efficient 

than (1).Rv  

A third version of the replication variance estimator can be constructed by first selecting 0L  

sets of weights with unequal probabilities and then using a Horvitz-Thompson estimator of .Rv  

Note that we can view 2

1
( )

L

R k kk
v


   y  as a population total and k  as a size variable. We 

select 0L  sets of weights from the original L  sets of weights with inclusion probabilities k  

proportional to .k  The resulting variance estimator of ˆ
yt  is given by 

                                                         
0

(3) ( ) 2

1

ˆ ˆ( ) ,
L

j j
R y y

j j

c
v t t



 
  (3.3) 

where 0 1
.

L

j j kk
L


     It turns out that the eigenvalues k  differ substantially in 

magnitude and using k  as size measure leads to a large portion of the L  sets of weights being 

selected with probability one. In the simulation study described in Section 5, we also included a 

fourth version of the replication variance estimator, denoted as ( 4) ,Rv  with 1/2
k  as the size 

measure and 1/2 1/2
0 1

.
L

j j kk
L


     

Another possible version of the replication variance estimator is to simply select 0L  sets of 

weights corresponding to the 0L  largest values of k  and then use (2) .Rv  Simulation results, not 

reported here, showed that the resulting variance estimator is severely biased and shouldn’t be 

used in practice. 

 
3.2  Achieve sparsity and efficiency through weight-calibration 
 

We now discuss a novel approach of achieving sparsity without losing the efficiency of the 

variance estimators for some key variables. Suppose 0L  is the desired replication size, which is 
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much smaller than the sample size .n  For example, the Natural Resources Inventory Survey 

(sponsored by the US department of Agriculture) used 0L   29 while the PSU sample size can 

be as large as n   300,000. We present a weight-calibration technique that not only allows the 

use of a small 0 ,L  but also provides fully efficient variance estimators for key population 

parameters. Our proposed strategy for constructing the smaller number 0L  sets of replication 

weights consists of the following four steps: 
 

Step 1. Choose a set of key variables for which full efficiency of the variance estimator is 

desired. Let 1( , , )i i imz z  z  be the vector of key variables for the thi  unit included in the 

survey data file, where 0 .m L  Among them can be important auxiliary variables and study 

variables as well as design variables. Let ˆ .i ii
t w


  z z  Let 1

ˆ( )v t z  be an m m  estimated 

variance-covariance matrix for t̂ z  computed by the standard linearization method or by a 

replication method that is fully efficient. 
 

Step 2. Construct an initial 0L  sets of replication weights that produce an asymptotically 

unbiased variance estimator. These initial replicates can be obtained by a bootstrap method with 

0L  replicates, or by the delete-a-group jackknife method of Kott (2001), or by the sampling 

method described in Section 3.1. Let ( ) ( ) ( )
0 10 0 0( , , ) , 1, ,k k k

nw w k L  w  be the initial sets of 

weights. Denote ( ) ( )
0 0

ˆ k k
y i ii

t w y


  
 and let  

                                                           
0

( ) 2
0 0 0

1

ˆ ˆ( )
L

k
k y y

k

v c t t


   (3.4) 

be the replication variance estimator based on the 0L  sets of weights.  

We can apply the variance formula (3.4) to the vector of key variables z  to get 

0 ( ) ( )
0 0 0 01

ˆ ˆ ˆ ˆ ˆ( ) ( )( ) ,
L k k

kk
v t c t t t t


  z z z z z  where ( ) ( )

0 0
ˆ .k k

i ii
t w


  z z  Note that 0

ˆ( )v t z  is not as 

efficient as 1
ˆ( )v t z  obtained in Step 1. 

 

Step 3. Decompose the nonnegative definite variance-covariance matrix 1
ˆ( )v t z  as 
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                                                              1
1

ˆ( )
m

k k k
k

v t


 z q q  (3.5) 

using the spectral decomposition or any other suitable methods. Let 0k   for 

01, ,k m L    and define 

( ) 1/2
0 0

ˆ ˆ ( / ) , 1, 2, , .k
k k kt t c k L    z z q  

It follows that the 0L  pseudo-replicates ( )ˆ kt z  defined above satisfy 

                                                 
0

( ) ( )
0 1

1

ˆ ˆ ˆ ˆ ˆ( )( ) ( ),
L

k k
k

k

c t t t t v t


   z z z z z  (3.6) 

due to the decomposition to 1
ˆ( )v t z  given in (3.5). It should be noted that (3.5) bears no relation 

to the decomposition to   described in Section 2 and the condition 0m L  is required to make 

(3.6) possible. 
 

Step 4. Improve the efficiency of 0v  computed from (3.4) for an arbitrary y  variable through a 

weight-calibration procedure. For the thk  set of initial weights ( ) ( ) ( )
0 10 0( , , ) ,k k k

nw w  w  the 

calibrated weights ( ) ( ) ( )
1( , , )k k k

c c ncw w  w  minimize the chi-square distance measure 

                                          ( ) ( ) ( ) ( ) 2 ( )
0 0 0( , ) ( ) /

k

k k k k k
c i ic i i

i

w w w


   


w w  (3.7) 

subject to the constraint 

                                                                ( ) ( )ˆ ,k k
ic i

i

w t





zz  (3.8) 

where  ( )
0; 0 ,k

k ii i w     the ’si  are known constants, and ( )ˆ kt z  is the thk  pseudo 

replicate of t̂ z  defined in Step 3. 

The calibrated weights ( ) ( ) ( )
1 0( , , ) , 1, 2, ,k k k

c c ncw w k L  w  are used in (3.4) to compute 

the final replication variance estimator 0 ( ) 2
01

ˆ ˆ ˆ( ) ( ) ,
L k

C y k yc yk
v t c t t


   where ( )ˆ k

yct   

( ) .k
ic ii

w y
 
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The proposed weight-calibration procedure ensures that the replication estimator ˆ( )Cv t z  based 

on the 0L  sets of calibrated weights matches exactly the fully efficient estimator 1
ˆ( ),v t z  due to 

the calibration constraints (3.8) and the equation (3.6). Furthermore, the calibrated replication 

weights provide more efficient variance estimators for an arbitrary y  that is related to .z  To see 

this, we re-write ( ) ( )
0 0

ˆ k k
y i ii

t w y


  
 as 

                                                            ( ) ( ) ( )
0 0 0

ˆˆ ˆ ˆ( ) ,k k k
y et t t   z  (3.9) 

where ( ) ( )
0 0

ˆˆ ,ˆ ˆk k
e i i i i ii

t w e e y


   
z  and   1ˆ .i i i i i i i ii i

w w y


 
    

 z z z  Let 

ˆ .ˆe i ii
t w e


  

 The variance estimator of ˆ
yt  based on the initial 0L  sets of weights can be 

expressed as 

0

0 0 0

( ) 2
0 0 0

1

( ) 2 ( ) 2 ( ) ( )
0 0 0 0 0 0 0

1 1 1

0 0 0

ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) (( ) ( ) ) 2 ( )(( ) ( ) )

ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) 2 cov ( , ),

L
k

y k y y
k

L L L
k k k k

k e e k k e e
k k k

e e

v t c t t

c t t c t t c t t t t

v t v t t t



  

 

         

   



  z z z z

z z

   

  

 

where 0
ˆ ˆcov ( , )et t z  is the estimated covariance between êt and t̂ z  based on the initial 0L  sets of 

replication weights. In many designs, we can choose a suitable i  such that ˆ ˆCov( , ) .et t 0z  

This is the case, for instance, with the choice of 1( 1)i iw     or 1
i iw   under Poisson 

sampling. Fuller (1998) discussed the required conditions in the context of two-phase sampling. 

It follows that 

                                                       0 0 0
ˆ ˆˆ ˆ ˆ( ) ( ) ( )y ev t v t v t   z  (3.10) 

Using similar argument, it can be shown that the variance estimator based on the 0L  sets of 

calibrated weights satisfies 

                                                       0 1
ˆ ˆˆ ˆ ˆ( ) ( ) ( )C y ev t v t v t   z  (3.11) 

The variance estimator ˆ( )C yv t  given by (3.11) is generally more efficient than 0
ˆ( )yv t  given 

by (3.10), due to the use of 1
ˆ( )v t z  instead of 0

ˆ( ).v t z  The gain of efficiency depends on the 
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relative magnitude of 1
ˆ ˆˆ( )v t z  over 0

ˆ( ).ev t  If y  is highly correlated with ˆ ,ŷ  z  the 

variance of the residual term 0
ˆ( )ev t  will be relatively small. In this case ˆ( )C yv t  will be highly 

efficient. On the other hand, if there is no correlation between y  and ,ŷ  then no improvement 

will be achieved by using the calibrated weights ( ) ;k
cw  see also Theorem 3 in Section 4. 

One of the drawbacks of the chi-square distance ( ) ( )
0( , )k k

c w w  in Step 4 is that some of the 

resulting calibrated weights could take negative values. To avoid negative weights, we propose 

replacing the chi-square distance in (3.7) by the following minimum entropy distance 

                             
( )

( ) ( ) 1 ( ) ( ) ( )
0 0 0( )

0

( , ) log
k

k
ick k k k k

c i i ic ik
i i

w
D w w w

w




             



w w  (3.12) 

for two reasons. First, the calibrated weights ( )k
icw  are guaranteed to be positive. Second, there 

exists a well-behaved computational algorithm for this constrained minimization problem. It can 

be shown that ( )k
cw  minimizing ( ) ( )

0( , )k k
cD w w  subject to (3.8) are given by  

                                                               
( )
0( ) /

,
1

k
i ik

ic
i

w
w




  z
 (3.13) 

where the Lagrange multiplier   is the solution to 

                                                   
( )
0 ( )/

ˆ( ) .
1

k
i i i k

i i

w
g t




  

 0



 z

z

z
 (3.14) 

An efficient computational algorithm for finding the solution   to (3.14) can be found in Wu 

(2004) and a related R function can be obtained by a minor modification of the R function 

presented in Wu (2005). 

 
4  Validity 
 

In this section we provide some general discussion on the validity of the replication variance 

estimator. Let ( )yf t   be a finite population parameter, which is a smooth function of the 

population total 
1

.
N

y ii
t y


   We assume that ˆ ˆ( )yf t   is used to estimate ,  where ˆ

yt  is the 
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Horvitz-Thompson estimator of yt  defined in (2.1). The replication variance estimator of ̂  is 

constructed by 

                                                         ( ) 2

1

ˆ ˆ ˆ( ) ( ) ,
L

k
R k

k

v c


      (4.1) 

where ( ) ( )ˆ ˆ( )k k
yf t   and ( )ˆ k

yt  is the thk  replicate of ˆ .yt  

To explore the asymptotic properties of the replication variance estimator (4.1), we assume a 

sequence of the finite populations and the survey samples, as described in Isaki and Fuller 

(1982). The finite populations and the sampling designs satisfy following regularity conditions. 
 

C1. For any population characteristics iu  with bounded second moments, 

1/2

1

( ).
N

i i i i i p
i i

w O n N

 

   u u u u


 

C2. The design weights are uniformly bounded. That is, 1
1 2iK N nw K   for all i  and 

any ,n  where 1K  and 2K  are fixed constants. 

C3. 1ˆ( )ynV N t  is bounded. 

C4. For any y  with bounded fourth moments, the replication variance estimator 
( ) 2

1
ˆ ˆ ˆ( ) ( )

L k
R y k y yk

v t c t t


   satisfies 

                                                 ( ) 2 2 2 2ˆ ˆ ˆ[{ ( ) } ] { ( )}k
k y y yE c t t KL V t   (4.2) 

for some ,K  uniformly in 1, , ,k L   

                                                                1max ( ),k
k

c O L   (4.3) 

and 

                                                      

2
ˆ( )

1 (1).
ˆ( )

R y

y

v t
E o

V t

          
 (4.4) 

Condition (4.2) ensures that no single replicate dominate the others. Condition (4.3) controls the 

order of the factor .kc  Condition (4.4) implies that ˆ( )R yv t  is a consistent estimator of ˆ( ).yV t  

Conditions (4.2) - (4.4) were also used in Kim, Navarro and Fuller (2006). 

Using the above regularity conditions, the following theorem proves the consistency of the 

replication variance estimator in the form of (4.1). 
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Theorem 2. Let ( )yf t   be the parameter of interest and ˆ ˆ( ),yf t   where ( )f   is a smooth 

function with derivative continuous at .yt  Under the regularity conditions described above, the 

variance estimator ˆ( )Rv   in (4.1) satisfies 

                                                              
ˆ( )

1 (1).
ˆ( )

R
p

v
o

V


 


 (4.5) 

Proof. See Appendix A. 
 

We now prove the validity of the improved variance estimator ˆ( )C yv t  proposed in 

Section 3.2. For simplicity, we assume that 1
ˆ( )yv t  is a fully efficient estimator of the variance 

ˆ( )yV t  for ˆ .y i ii
t w y


  

 We also assume that 0
ˆ( ),yv t  defined in (3.4), satisfies 

                                                             *
0 1

ˆ ˆ{ ( )} ( ),y yE v t v t  (4.6) 

where * ( )E   denotes expectation under the random selection of the 0L  replicates from the L  sets 

of fully efficient replication weights, as discussed in Section 3.1. If 1
ˆ( )yv t  is asymptotically 

unbiased, then 0
ˆ( )yv t  is also asymptotically unbiased by (4.6). For the delete-a-group jackknife, 

condition (4.6) can be understood as 0 1
ˆ ˆ{ ( )} { ( )}y yE v t E v t  and 0 1

ˆ ˆ{ ( )} { ( )}.y yV v t V v t  
 

Theorem 3. Assume that the initial variance estimator 0
ˆ( )yv t  defined in (3.4) satisfies (4.6). 

Assume that the improved variance estimator 0 ( ) 2
01

ˆ ˆ ˆ( ) ( )
L k

C y k yc yk
v t c t t


   is computed using 

the calibrated replication weights as described in Section 3.2, with the choice of i  satisfying 

ˆ ˆCov( , ) .et t 0z  By ignoring smaller order terms, we have 

                                                           1
ˆ ˆ{ ( )} { ( )}C y yE v t E v t  (4.7) 

and 

                                                1 0
ˆ ˆ ˆ{ ( )} { ( )} { ( )}.y C y yV v t V v t V v t   (4.8) 

Proof. See Appendix B. 
 

For a general parameter ( ),yf t   we let ( ) ( )ˆ ˆ( )k k
c ycf t   and compute ˆ( )Cv    

0 ( ) 2
01

ˆ ˆ( ) .
L k

k ck
c


    Validity of ˆ( )Cv   can be established by combining results from Theorem 2 

and Theorem 3. 
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5  Extension to some balanced sampling designs 
 

We now consider sampling designs which are balanced in ix  in the sense that t̂ x  

i ii
t


  xx


 holds exactly or nearly exactly, where ix  is a q- dimensional vector and 

ii
t


  x x  is known. We assume that the first element of ix  is equal to ,i  which implicitly 

assumes that the survey design has fixed sample size. Tillé (2006) provides a comprehensive 

account of balanced sampling designs. 

Deville and Tillé (2005) argue that ˆ
y i ii

t y


  
 under balanced sampling has a variance 

that can be approximated by its variance under conditional Poisson sampling. Breidt and Chauvet 

(2011) using the same approximation derived 

                                             

2

ˆ( ) (1 ) ,i i
y i

i i i

n y y
v t

n q 

 
       






 (5.1) 

where ˆ
i i Py  x  and   1

2 2ˆ (1 ) (1 ) .P i i i i i i i ii i
y

 
 

        
 x x x  Roughly 

speaking, the variance formula (5.1) can be interpreted as approximating ˆ
yt  under the balanced 

sampling design by a generalized regression estimator under Poisson sampling. That is, 

ˆ ˆ( ) ( ),y PV t V t  where ˆˆ ˆ ˆ( ) .P y Pt t t t    x x  For a formal justification on this approximation, 

see Fuller (2009b). 

The variance formula (5.1) can be used to derive replication weights. To see this, we 

re-express (5.1) as a jackknife replication variance estimator  

                                                       ( ) 2

1

ˆ ˆ( ) ( ) ,
n

k
J y k y y

k

v t c t t


    (5.2) 

where ( )

( ) ( ) ( ) ( ) ( ) ( ) 1ˆˆ ˆ ˆ ˆ( ) , ( , ) ( , ),k

k k k k k k
y y P y i i ii

t t t t t t y


     
x x x x


 

 ( ) ( )

1( ) 2 2ˆ (1 ) (1 ) ,
k k

k
P i i i i i i i i

i i

y
 

 

       x x x
 
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(1 ) / ( ),k kc n n q     and ( ) { }.k k  \  To show the asymptotic equivalence between 

(5.1) and (5.2), we first note that 

( ) ( ) ( ) ( ) ( )ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ).k k k k k
y y y y P P Pt t t t t t t t        

x x x x    

Under certain regularity conditions, we have ( ) 1ˆ ˆ ( )k
P P pO n     and ( )ˆ kt t x x  

1/ ( ).k k pO n N x  Here we used the condition ˆt tx x  under the balanced sampling design. 

It follows that ( ) 1 2ˆˆ ( ) ( ),k
y y k k k P pt t y O n N      x  and ˆ( )J yv t  in (5.2) is asymptotically 

equivalent to 2 2

1
( ) ,

n

k k k kk
c y y


    which equals ˆ( )yv t  given by (5.1). The variance formula 

(5.2) is quite useful because it makes the construction of the replication weights quite 

straightforward for balanced sampling designs. When n  is large, the number of replicates can be 

reduced by using the weight-calibration method described in Section 3.2. Simulation results 

based on the rejective Poisson sampling of Fuller (2009b), not reported here to save space, 

showed that the proposed replication variance estimator performs very well. 

 
6  Simulation study 
 

In this section we report results from a simulation study. We consider a synthetic finite 

population of size N  2,248 families using a real data set of Statistics Canada’s 2000 Family 

Expenditure Survey for the province of Ontario. For the thi  selected family, the data set contains 

observations on several variables, including 1:ix  the number of persons in the family; 2:ix  the 

number of children (age 315); :ix  the number of youths (age 15 - 24); 4:ix  the total annual 

income after taxes; 1:iy  the total annual expenditure; 2:iy  the annual expenditure on clothing; 

3:iy  the annual expenditure on furnishings and equipment. 

We consider three population parameters for comparing different versions of replication 

variance estimators. The first is the population total of overall annual expenditures, i.e., 

1 1 11
.

N

y ii
t y


     The second is the ratio of population totals of expenditures on clothing and 

on furnishings and equipment, i.e.,    2 2 3 2 31 1
/ .

N N

y y i ii i
t t y y

 
      Note that 

2 2 3/ .y y     The third is the population correlation coefficient 3 1 2( , )y y    between the 



110 Kim and Wu: Sparse and efficient replication variance estimation for complex surveys 
 

 
Statistics Canada, Catalogue No. 12-001-X 

overall annual expenditure 1( )y  and the annual expenditure on clothing 2( ).y  For each 

parameter, several replication variance estimators were evaluated through simulation. 

We investigate two approaches of replication variance estimation. For the first one, the initial 

L  sets of the replication weights are constructed using the general method described in Section 2. 

For the second one, the L n  sets of standard delete-1 jackknife replication weights are used to 

produce fully efficient variance estimators. 
 

Case I. Unequal probability samples are selected by the Rao-Sampford PPS sampling method 

(Rao 1965; Sampford 1967), with inclusion probabilities i  proportional to the total annual 

income 4 .ix  One of the attractive features of the Rao-Sampford method is that the second order 

inclusion probabilities ij  can be computed exactly. The general procedure described in 

Section 2 is used to create L n  sets of fully efficient replication weights, and the 

corresponding variance estimator is denoted as .Rv  Those weights are used as the basis to 

compute and compare different versions of variance estimators ( ) , 1, 2, 3, 4l
Rv l   described in 

Section 3.1, based on a smaller number 0L  sets of weights. We restrict 0L  to be 25 or 50. 

The calibrated replication variance estimator described in Section 3.2 is denoted as .Cv  The 

initial 0L  sets of weights are selected from the original L  sets of weights by simple random 

sampling, and 1 2 3 4 2 3( , , , , , )i i i i i i ix x x x y y z  is used as calibration variables. Under this setting, 

the first parameter 1  is not directly related to z  but the second parameter 2  is defined as a 

nonlinear but smooth function of .t z  The third parameter 1 2( , )y y  is more complex and 

involves population quantities not included in .t z  
 

Case II. The population of N  2,248 units is first duplicated 10 times, to create a larger 

population with 22,480 units. Simple random samples of n  100, 200 or 400 are selected from 

the population. The sampling fractions are less than 2%. Under such scenarios the standard n  

sets of delete-1 jackknife weights provide fully efficient variance estimator .Jv  Let (1)
Jv  be the 

variance estimator using 0L  sets of weights, randomly selected from the n  sets of jackknife 
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weights. Let ( )C
Jv  be the variance estimator using the 0L  sets of weights plus calibration over the 

z  variables. 
 

For each simulated sample of size n  and a particular population parameter ,  we compute 

design-based estimator ̂  and different versions of variance estimators. The process is repeated 

B  times, independently, with B  5,000 for Case I and B  10,000 for Case II. The true 

variance ˆ( )V V   is approximated by 1 2

1
ˆ( ) ,

B

bb
V B 


    where ˆ

b  is calculated from 

the thb  simulated sample, using another independent B  simulated samples. Simulation results 

show that the bias of ̂  is negligible for all three parameters. Performances of a variance 

estimator v  are measured by the simulated coverage probability of the 95% normal theory 

confidence interval, computed as 1 1/2 1/2

1
ˆ ˆCP [ 1.96( ) 1.96( ) ],

B

b b b bb
B I v v


         

the average length of the interval 1 1/2

1
AL 2 1.96( ) ,

B

bb
B v


   and the Relative Root Mean 

Square Error (RRMSE), computed as 1/2RRMSE {MSE( )} / ,v V  where bv  is the variance 

estimator v  computed from the thb  simulated sample, and 1 2

1
MSE( ) ( ) .

B

bb
v B v V


   

The simulated coverage probabilities are reported in Tables 6.1 and 6.2. The fully efficient 

variance estimator Rv  and Jv  provides good coverage for all scenarios except for 1 2( , )y y  with 

Case I where the coverage is a bit low. The variance estimators ( ) , 1, 2, 3, 4l
Rv l   and (1)

Jv  based 

on 0L  sets of weights seem to work for 1 ,  to certain degree for 2  as well, but none is working 

for 3 1 2( , ).y y    The calibrated estimator Cv  provides satisfactory coverage for all scenarios 

for Case I. As for the calibrated estimator ( )C
Jv  with Case II, it works very well for 1  and 2 ,  

but none are working well for 3 1 2( , ).y y    

It should be noted that the definition of 1 2( , )y y  involves population means over three 

derived variables 2 2
1 2,y y  and 1 2 .y y  When those three variables are also included at the 

calibration stage, in addition to ,z  the resulting variance estimator is denoted as ( )C
Jv   for 

Case II. It turns out that ( )C
Jv   provides much better results for 3  and also improved results for 

1  and 2 .  
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Also included in Tables 6.1 and 6.2 are the average length of the confidence intervals using 

( ), C
C Jv v  and ( ) .C

Jv   The results (AL, in parentheses) are relative to the length of the interval using 

Rv  (Table 6.1) or Jv  (Table 6.2), with a value (say) 1.05 indicating 5% increase in length. It can 

be seen that the calibrated variance estimators produce confidence intervals which are either 

comparable in length to the intervals using ( )R Jv v  or slightly wider, depending on the parameter 

and/or sample sizes. 

The relative root mean square errors (RRMSE) of variance estimators are presented in Tables 

6.3 and 6.4. The results seem to depend not only on the parameter and its estimator but also the 

sampling design and the replication method. For Case I, the variance estimator ,Cv  which is of 

primary interest, is more stable than Rv  for 1 ,  almost the same for 2 ,  and is less stable for 3.  

Because 1iy  is well explained by ,i Cvz  is quite efficient for estimating the variance of 1 1
ˆ ˆ .yt   

For Case II, ( )C
Jv  and ( )C

Jv   are similar to each other but both are less stable than .Jv  
 
 
 
Table 6.1 
Coverage probabilities of 95% confidence intervals (Case I) 
 

  0L  n  Rv  (1)
Rv  ( 2)

Rv  ( 3)
Rv  ( 4 )

Rv  (AL)Cv  

1yt  25 50 93.9 92.9 93.1 92.4 93.1 94.3 (1.03) 

  100 94.4 92.0 92.4 91.9 93.0 93.4 (1.01) 

  150 95.1 91.5 91.9 92.1 93.2 93.7 (0.99) 

 50 100 94.5 93.2 93.2 93.4 93.6 94.1 (1.01) 

  150 95.1 93.0 93.3 93.5 93.8 94.5 (0.99) 

2 3/y y   25 50 92.6 91.0 91.2 90.6 91.0 92.9 (1.02) 

  100 93.7 91.1 91.2 89.6 90.8 93.7 (1.01) 

  150 94.3 91.1 90.7 89.5 90.8 94.3 (1.00) 

 50 100 93.6 92.6 92.5 91.9 92.5 93.8 (1.01) 

  150 94.2 92.7 92.6 91.9 92.9 94.3 (1.00) 

1 2( , )y y  25 50 89.0 85.7 85.6 79.3 81.9 91.3 (1.14) 

  100 90.5 85.4 85.3 78.6 81.5 92.1 (1.17) 

  150 90.7 84.6 84.5 76.9 81.6 91.9 (1.17) 

 50 100 90.4 88.2 88.2 83.2 85.8 92.9 (1.18) 

  150 90.7 87.5 87.6 81.7 84.8 93.4 (1.18) 
 

:Rv  The fully efficient replication variance estimator (Section 2); ( ) ,l
Rv l  1, 2, 3, 4: replication variance estimators based on 0L  

sets of weights (Section 3.1); :Cv  replication variance estimator based on 0L  sets of calibrated weights (Section 3.2); AL:  
average length of the confidence interval relative to the one using .Rv  
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Table 6.2 
Coverage probabilities of 95% confidence intervals (Case II) 
 

  0L  n  Jv  (1)
Jv  ( ) (AL)C

Jv  ( ) (AL)C
Jv  

1yt  25 100 94.4 92.0 94.4 (1.02) 94.9 (1.07) 

  200 95.0 92.4 95.0 (1.01) 95.2 (1.03) 

  400 95.3 92.5 95.1 (0.99) 95.3 (1.01) 

 50 100 94.1 93.1 94.2 (1.02) 94.8 (1.07) 

  200 94.7 93.3 94.8 (1.01) 95.0 (1.04) 

  400 94.7 93.4 94.5 (0.99) 94.8 (1.02) 

2 3/y y   25 100 92.6 87.3 92.6 (1.05) 93.3 (1.11) 

  200 93.6 86.8 93.3 (1.02) 93.7 (1.07) 

  400 94.1 86.8 93.8 (0.99) 94.1 (1.04) 

 50 100 92.8 90.3 92.9 (1.06) 94.2 (1.11) 

  200 93.9 89.8 93.8 (1.03) 94.3 (1.08) 

  400 94.1 89.6 93.8 (1.00) 94.1 (1.05) 

1 2( , )y y  25 100 92.5 78.0 89.4 (1.06) 91.7 (1.09) 

  200 92.7 72.3 86.3 (1.00) 91.4 (1.05) 

  400 93.2 71.2 84.5 (0.95) 92.1 (1.04) 

 50 100 92.2 84.5 92.2 (1.09) 92.5 (1.11) 

  200 92.8 80.5 90.3 (1.05) 92.2 (1.08) 

  400 93.1 77.4 88.1 (1.00) 92.6 (1.06) 
 

:Jv  The delete-1 jackknife variance estimator; (1) :Jv  replication variance estimator based on 0L  sets of jackknife weights; ( ) :C
Jv  

replication variance estimator based on 0L  sets of calibrated jackknife weights; ( ) :C
Jv   replication variance estimator based 

on 0L  sets of calibrated jackknife weights, with added variables for weight-calibration; AL:  average length of the 
confidence interval relative to the one using .Jv  

 
 

Table 6.3 
Relative Root Mean Square Errors (RRMSE, Case I) 
 

  0L  n  Rv  (1)
Rv  ( 2)

Rv  ( 3)
Rv  ( 4 )

Rv  Cv  

1yt  25 50 1.84 2.76 2.24 1.99 1.86 1.43 

  100 1.32 2.34 1.67 1.89 1.40 0.83 

  150 1.19 1.99 1.34 1.37 1.46 0.87 

 50 100 1.32 1.91 1.69 1.63 1.35 0.92 

  150 1.19 1.81 1.50 1.62 1.24 0.73 

2 3/y y   25 50 0.72 0.89 0.88 1.07 0.89 0.74 

  100 0.45 0.78 0.77 0.99 0.72 0.46 

  150 0.41 0.93 0.87 1.01 0.74 0.41 

 50 100 0.46 0.60 0.60 0.77 0.56 0.46 

  150 0.41 0.70 0.68 0.70 0.54 0.41 

1 2( , )y y  25 50 0.65 0.79 0.83 1.45 1.26 0.96 

  100 0.65 1.12 1.16 2.20 1.37 1.24 

  150 0.59 1.29 1.34 2.27 1.43 1.50 

 50 100 0.65 0.84 0.88 1.63 0.95 1.03 

  150 0.59 0.88 0.94 1.48 1.05 1.12 
 

:Rv  The fully efficient replication variance estimator (Section 2); ( ) ,l
Rv l  1, 2, 3, 4: replication variance estimators based on 0L  

sets of weights (Section 3.1); :Cv  replication variance estimator based on 0L  sets of calibrated weights (Section 3.2). 
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Table 6.4 
Relative Root Mean Square Errors (RRMSE, Case II) 
 

  0L  n  Jv  (1)
Jv  ( )C

Jv  ( )C
Jv  

1yt  25 100 0.29 0.56 0.56 0.66 

  200 0.21 0.57 0.47 0.53 

  400 0.15 0.56 0.20 0.41 

 50 100 0.29 0.41 0.50 0.57 

  200 0.21 0.41 0.39 0.44 

  400 0.15 0.41 0.17 0.35 

2 3/y y   25 100 0.78 1.58 1.90 1.98 

  200 0.56 1.44 1.41 1.57 

  400 0.39 1.54 0.87 1.40 

 50 100 0.81 1.12 1.61 1.67 

  200 0.57 1.10 1.22 1.32 

  400 0.38 1.04 0.72 1.00 

1 2( , )y y  25 100 1.02 2.43 2.71 2.72 

  200 0.74 2.44 2.64 2.57 

  400 0.47 2.51 2.52 2.42 

 50 100 1.04 1.64 1.97 2.12 

  200 0.71 1.75 2.01 1.96 

  400 0.48 1.76 1.83 1.73 
 

:Jv  The delete-1 jackknife variance estimator; (1) :Jv  replication variance estimator based on 0L  sets of jackknife weights; ( ) :C
Jv  

replication variance estimator based on 0L  sets of calibrated jackknife weights; ( ) :C
Jv   replication variance estimator based 

on 0L  sets of calibrated jackknife weights, with added variables for weight-calibration. 

 
7  Some concluding remarks 
 

Replication methods offer an asymptotically equivalent alternative to linearization methods 

but are operationally more convenient and flexible. We focused on population parameters that are 

smooth functions of means or totals. Our theoretical results and limited simulation studies 

showed that the proposed strategies for constructing sparse and efficient replication weights work 

well for variance estimation and confidence intervals. Nevertheless, there are a number of issues 

which require further investigation. First, for complex parameters such as population correlation 

coefficients, sparse replication variance estimators are not very stable. Second, further evidences 

on the effectiveness of the proposed strategies for large complex surveys in conjunction to the use 

of general bootstrap or jackknife weights are needed. Third, it is not clear whether the sparse 

replication weights will be efficient for parameters that are not smooth functions of means or 
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totals, such as population quantiles, for which normal theory confidence intervals are known to 

be inefficient (Sitter and Wu 2001). 

Another important issue is the potential application of the proposed methods for parameters 

and estimators defined through estimating equations. Let   be defined as the solution to  

                                                     
1

( ) ( , ; ) .
N

N i i i
i

U u y


  0 x  (7.1) 

Let ̂  be obtained by solving a sample-based version of (7.1) given by 

                                                    ( ) ( , ; ) .n i i i i
i

U w u y


  0


 x  (7.2) 

Regression or logistic regression analyses using complex survey data can both be viewed special 

cases of the general forms given by (7.1) and (7.2). The usual sandwich-type variance of ̂  is 

given by 

                                     
1 1

( ) ( )ˆ( ) { ( )}N N
n

U U
V V U

 
    

       


 
 

 
 (7.3) 

A variance estimator ˆ( )v   can now be obtained if we substitute ( ) /NU    by ( ) /nU    

at ˆ    and estimate { ( )}nV U   by applying replication variance estimation method to 

ˆ
n i ii

U w


  
u  with ˆ( , ; ).i i i iu y u x  For detailed discussions on estimating equations and 

survey sampling, see, for instance, Binder (1983), Skinner (1989), and Godambe and Thompson 

(2009), among others. 

Achieving efficient variance estimation using a limited number of sets of replication weights 

is an important research problem with both theoretical and practical significance. The fully 

efficient replication weights constructed using the procedure described in Section 2 can be treated 

as initial sets of weights if the sample size n  is large. In principle, our proposed strategies in 

Section 3 for producing sparse and efficient replication weights can be combined with other 

initial sets of replication weights, including bootstrap weights (Shao 1996) or delete-a-group 
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jackknife (Kott 2001). One should also include as many relevant variables as possible in the 

calibration step, so that the final calibrated replication weights are not only sparse but also 

efficient in providing variance estimators for a large class of estimators. Extensions of the 

proposed methods to handle calibration weights or nonresponse adjustment are currently under 

investigation. 
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Appendix 
 

A  Proof of Theorem 2 
 

By assumption (4.2), we have 

( ) 2 1 1 2

1
ˆ ˆmax ( ) ( ),k

k y y p
k L

c t t O L n N 

 
   

which, combined with (4.3), implies that 

                                                         ( )

1
max( ) (1),ˆ ˆk

y y p
k L

o
 

     (A.1) 

where ( ) 1 ( )ˆˆ k k
y yN t   and 1ˆ .ˆ y yN t   Let ( ) ( ).y yg f N    We can write  

( ) ( ) ( ) ( )ˆ ˆ ( ) ( ) ( )( ) ( ),ˆ ˆ ˆ ˆ ˆ ˆ ˆk k k k
y y y y y nk y yg g g Q                 
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where *( ) ( ) / , ( ) ( ),ˆnk k yg g Q g g            and *
k  is an inner point on the line segment 

between ( )ˆ k  and .̂  By (A.1), we have 

                                                          *

1
max( ) (1).ˆk y p

k L
o

 
     (A.2) 

Define 

 * *max and max ( ) ( ) .k k
k k

D g g               

By construction, we have, for any 0  and 0,   

   * *max ( ) ( ) ( ) max .ˆ ˆ ˆk y y k y
k k

P g g P D P                

By the continuity of ( )g   at y    and the fact that (1),ˆ y y po     we have that, for any 

0,  there exists a ( ) 0     such that ( ) (1).ˆ yP D o    This, together with (A.2), 

implies that 

                                                    *max ( ) ( ) (1).ˆk y p
k

g g o      (A.3) 

Now, we have 

                                                 ( ) 2

1

ˆ ˆ( ) 2 ,
L

k
k n n n

k

c A B C


       (A.4) 

where 

( ) 2

1

( ) 2

1

( ) 2

1

{ ( )( )} ,ˆ ˆ ˆ

{ ( )} ,   andˆ ˆ

( )( ) .ˆ ˆ ˆ

L k
n k y y yk

L k
n k nk y yk

L k
n k y y y nkk

A c g

B c Q

C c g Q







    

   

    









 

Note that (4.4) implies 

                                              ( ) 2

1

( ) / ( ) 1 (1).ˆ ˆ ˆ
L

k
k y y y p

k

c V o


       (A.5) 

By standard linearization arguments, we have ˆ/ ( ) 1nA V    in probability. Furthermore, by 

(A.3) and (A.5), we have ˆ/ ( ) (1)n pB V o   and ˆ/ ( ) (1).n pC V o   This establishes (4.5). 
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B  Proof of Theorem 3 
 

Combining (3.10) and (3.11) and ignoring terms of smaller order, we have 

0 0 1 0 1
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) .y C yv t v t v t v t v t v t      z z z z         

where   is the probability limit of ˆ.  By (4.6), we have 

                                                             *
0 1

ˆ ˆ{ ( )} ( ),E v t v tz z  (B.1) 

where * ( )E   denotes expectation under random selection of the 0L  sets of weights conditional on 

the L  sets of weights. Similarly, by (3.11), we have 

1 1 0
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ).y C y e ev t v t v t v t   

By (4.6) again, we have 

                                                             *
0 1

ˆ ˆ{ ( )} ( ).e eE v t v t  (B.2) 

Let 1 1
ˆ ˆ ˆ( ) ( ),C y yd v t v t   we have 1

ˆ( ) 0E d   by (B.2), which proves (4.7). Furthermore, by 

(B.2) again, we have 1 1
ˆ ˆCov{ , ( )} 0.yd v t   Thus, we have 

                                        1 1 1
ˆˆ ˆ ˆ{ ( )} { ( )} ( ) { ( )}.C y y yV v t V v t V d V v t    (B.3) 

Similarly, we can also prove that 0
ˆ ˆ{ ( )} { ( )}.y C yV v t V v t  

 
References 

 

Binder, D.A. (1983). On the variances of asymptotically normal estimators from complex surveys. 
International Statistical Review, 51, 279-292. 

 
Breidt, F.J., and Chauvet, G. (2011). Improved variance estimation for balanced samples drawn via the 

cube method. Journal of Statistical Planning and Inference, 141, 411-425. 
 
Campbell, C. (1980). A different view of the finite population estimation. Proceedings of the Section on 

Survey Research Methods, American Statistical Association, 319-324. 
 
Deville, J.-C. (1999). Variance estimation for complex statistics and estimators: Linearization and residual 

techniques. Survey Methodology, 25, 2, 193-203. 
 



Survey Methodology, June 2013 119 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Deville, J.-C., and Tillé, Y. (2005). Variance approximation under balanced sampling. Journal of 
Statistical Planning and Inference, 128, 411-425. 

 
Dippo, C.S., Fay, R.E. and Morganstein, D.H. (1984). Computing variances from complex samples with 

replicate weights. Proceedings of the Section on Survey Research Methods, American Statistical 
Association, Washington, DC, 489-494. 

 
Fay, R.E. (1984). Some properties of estimators of variance based on replication methods. Proceedings of 

the Section on Survey Research Methods, American Statistical Association, Washington, DC, 495-500. 
 
Fay, R.E., and Dippo, C.S. (1989). Theory and application of replicate weighting for variance calculations. 

Proceedings of the Section on Survey Research Methods, American Statistical Association, 
Washington, DC, 212-217. 

 
Fuller, W.A. (1998). Replication variance estimation for two phase samples. Statistica Sinica, 8, 

1153-1164. 
 
Fuller, W.A. (2009a). Sampling Statistics. Hoboken, New Jersey: John Wiley & Sons, Inc. 
 
Fuller, W.A. (2009b). Some design properties of a rejective sampling procedure. Biometrika, 96, 933-944. 
 
Godambe, V.P., and Thompson, M.E. (2009). Estimating functions and survey sampling. In Handbook of 

Statistics, (Eds., D. Pfeffermann and C.R. Rao), Sample Surveys: Inference and Analysis, North 
Holland, Vol. 29B, 83-101. 

 
Gross, S. (1980). Median estimation in sample surveys. Proceedings of the Section on Survey Research 

Methods, American Statistical Association, Washington, DC, 181-184. 
 
Isaki, C.T., and Fuller, W.A. (1982). Survey design under the regression superpopulation model. Journal 

of the American Statistical Association, 77, 89-96. 
 
Jang, D., and Eltinge, J.L. (2009). Use of within-primary-sample-unit variances to assess the stability of a 

standard design-based variance estimator. Survey Methodology, 35, 2, 235-245. 
 
Kim, J.K., Navarro, A. and Fuller, W.A. (2006). Replication variance estimation for two-phase stratified 

sampling. Journal of the American Statistical Association, 101, 312-320. 
 
Kott, P.S. (2001). The delete-a-group jackknife. Journal of Official Statistics, 17, 521-526. 
 
Krewski, D., and Rao, J.N.K. (1981). Inference from stratified samples: Properties of the linearization, 

jackknife and balanced repeated replication methods. Annals of Statistics, 9, 1010-1019. 
 
Lu, W.W., Brick, J.M. and Sitter, R.R. (2006). Algorithms for constructing combining strata variance 

estimators. Journal of the American Statistical Association, 101, 1680-1692. 
 
Lu, W.W., and Sitter, R.R. (2008). Disclosure risk and replication-based variance estimation. Statistica 

Sinica, 18, 1669-1687. 
 
McCarthy, P.J., and Snowden, C.B. (1985). The Bootstrap and Finite Population Sampling. Vital and 

Health Statistics, Ser. 2, No. 95, Public Health Service Publication 85-1369, U.S. Government Printing 
Office, Washington, DC. 

 



120 Kim and Wu: Sparse and efficient replication variance estimation for complex surveys 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Preston, J. (2009). Rescaled bootstrap for stratified multistage sampling. Survey Methodology, 35, 2, 
227-234. 

 
Rao, J.N.K. (1965). On two simple schemes of unequal probability sampling without replacement. Journal 

of the Indian Statistical Association, 3, 173-180. 
 
Rao, J.N.K., and Wu, C.F.J. (1988). Resampling inference with complex survey data. Journal of the 

American Statistical Association, 83, 231-241. 
 
Rust, K.F., and Kalton, G. (1987). Strategies for collapsing strata for variance estimation. Journal of 

Official Statistics, 3, 69-81. 
 
Rust, K.F., and Rao, J.N.K. (1996). Variance estimation for complex surveys using replication techniques. 

Statistical Methods in Medical Research, 5, 283-310. 
 
Sampford, M.R. (1967). On sampling without replacement with unequal probabilities of selection. 

Biometrika, 54, 499-513. 
 
Shao, J. (1996). Resampling methods in sample surveys (with discussion). Statistics, 27, 203-254. 
 
Shao, J. (2003). Impact of the bootstrap on sample surveys. Statistical Science, 18, 191-198. 
 
Shao, J., and Tu, D. (1995). The Jackknife and Bootstrap. New York: Springer. 
 
Sitter, R.R. (1992). A resampling procedure for complex survey data. Journal of the American Statistical 

Association, 87, 755-765. 
 
Sitter, R.R., and Wu, C. (2001). A note on Woodruff confidence intervals for quantiles. Statistics and 

Probability Letters, 52, 353-358. 
 
Skinner, C.J. (1989). Domain means, regression and multivariate analysis. In Analysis of Complex 

Surveys, (Eds., C.J. Skinner, D. Holt and T.M. Smith), New York: John Wiley & Sons, Inc., 59-88. 
 
Tillé, Y. (2006). Sampling Algorithms. Springer Science + Business Media, Inc. 
 
Wolter, K.M. (2007). Introduction to Variance Estimation (2nd Edition). New York: Springer-Verlag. 
 
Wu, C. (2004). Some algorithmic aspects of the empirical likelihood method in survey sampling. 

Statistica Sinica, 14, 1057-1067. 
 
Wu, C. (2005). Algorithms and R codes for the pseudo empirical likelihood method in survey sampling. 

Survey Methodology, 31, 2, 239-243. 




