Multilevel time series modelling of antenatal care coverage in Bangladesh at disaggregated administrative levels
Section 3. Data sources and input estimates

3.1   Data sources

Since 1993-94 the BDHS has been conducted under the authority of the National Institute of Population Research and Training (NIPORT) of the Ministry of Health and Family Welfare (MOHFW) to evaluate existing health and social programs and to design new strategies for improving the health status of the country’s women and children. Until 2018, eight BDHS surveys have been conducted: in 1993-94, 1996-97, 2000, 2004, 2007, 2011, 2014 and 2017-18. In this study, the survey data over the period 1994-2014 have been used since the district level location of the surveyed clusters is not disclosed in the most recent BDHS 2017-18. Over the period of 1994-2014, three Population and Housing Censuses have been conducted, in 1991, 2001 and 2011. Full census data are not available, but only 10% of Census 1991 data, 10% of Census 2001 data and 5% of Census 2011 data are publicly available from IPUMS-International (https://international.ipums.org). A number of district-level contextual variables have been generated and used in the development of cross-sectional FH models to produce input estimates for the MTS models.

3.2   Direct estimates

The variables analysed in this paper are ANC0 and ANC4. Bangladesh is divided into 7 sub-national regions, called divisions. These divisions are further divided into 64 districts, which is the most detailed regional level considered in this study. As a first step, estimates and variance estimates of the two target variables at the district level are obtained from each survey year’s unit-level data using the standard design-based direct survey estimator (hereafter denoted by DIR), where the survey weights are used to account for the sampling design and for non-response.

In this study, reproductive age ever-married women who have given birth within the last three years before a survey year are considered as the target population. Since in the census population such pregnancy related information is not available, area-specific population size is estimated by the number of reproductive age ever-married women available in the three Censuses. This means that even though the area-specific sample sizes are based on a census, there is some uncertainty about them, which is ignored in the SAE models. See Das, van den Brakel, Boonstra and Haslett (2021) for more details about division and district specific population sizes.

The BDHS uses a two-stage stratified sample of households. The strata are formed from divisions and sub-divisions according to their urban-rural characterization. The primary sampling units (PSUs) are the enumeration areas of the Population and Housing Census created to have an average of about 120 households (slightly vary over census). In the first stage, PSUs are selected with probabilities proportional to PSU size, i.e., the number of households. In the second stage, a complete household listing is carried out in all selected PSUs and then about 30 households are selected from each PSU using systematic sampling. The response rates among eligible women have been over 95% in all BDHS years. Though the sample size of the ever-married women is greater than 10,000 in all the surveys, in this study only the ever-married women who had a child birth in the three years preceding the survey year are considered, and therefore sample sizes are smaller. At the district level, mean sample sizes vary between 60 and 114, with some districts having less than 10 or even no observed women.

Sampling weights are calculated based on selection probabilities. These weights are then adjusted for household and individual non-response. The direct estimate for the population proportion in a certain domain i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbaaaa@329B@  for survey year t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG0baaaa@32A6@  is computed as the sample mean 

Y ^ it = j s it w ijt y ijt j s it w ijt ,(3.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWGzbGbaKaadaWgaaWcbaGaamyAai aadshaaeqaaOGaaGjbVlaaysW7caaI9aGaaGjbVlaaysW7daWcaaqa amaaqababaGaaGPaVlaadEhadaWgaaWcbaGaamyAaiaadQgacaWG0b aabeaakiaadMhadaWgaaWcbaGaamyAaiaadQgacaWG0baabeaaaeaa caWGQbGaaGPaVlabgIGiolaaykW7caWGZbWaaSbaaWqaaiaadMgaca WG0baabeaaaSqab0GaeyyeIuoaaOqaamaaqababaGaaGPaVlaadEha daWgaaWcbaGaamyAaiaadQgacaWG0baabeaaaeaacaWGQbGaaGPaVl abgIGiolaaykW7caWGZbWaaSbaaWqaaiaadMgacaWG0baabeaaaSqa b0GaeyyeIuoaaaGccaaMi8UaaGilaiaaywW7caaMf8UaaGzbVlaayw W7caaMf8UaaiikaiaaiodacaGGUaGaaGymaiaacMcaaaa@6D72@

where y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG5baaaa@32AB@  is the response variable of interest, s it MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGZbWaaSbaaSqaaiaadMgacaWG0b aabeaaaaa@34B8@  is the set of ever-married women in domain i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbaaaa@329B@  for which y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG5baaaa@32AB@  is observed in year t, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG0bGaaiilaaaa@3356@  and w ijt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG3bWaaSbaaSqaaiaadMgacaWGQb GaamiDaaqabaaaaa@35AB@  is the survey weight for person j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGQbaaaa@329C@  living in area i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbaaaa@329B@  in year t. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG0bGaaiOlaaaa@3358@  Note that the weights w ijt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG3bWaaSbaaSqaaiaadMgacaWGQb GaamiDaaqabaaaaa@35AB@  are scaled such that the sum over the weights in the sample is equal to the net sample size. The corresponding variance estimates are approximated as 

var( Y ^ it )= 1 n it ( n it 1 ) j s it w ijt ( y ijt Y ^ it ) 2 ,(3.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqG2bGaaeyyaiaabkhacaaMc8UaaG ikaiqadMfagaqcamaaBaaaleaacaWGPbGaamiDaaqabaGccaaIPaGa aGjbVlaaysW7caaI9aGaaGjbVlaaysW7daWcaaqaaiaaigdaaeaaca WGUbWaaSbaaSqaaiaadMgacaWG0baabeaakiaaykW7daqadeqaaiaa d6gadaWgaaWcbaGaamyAaiaadshaaeqaaOGaaGjbVlabgkHiTiaays W7caaIXaaacaGLOaGaayzkaaaaamaaqafabeWcbaGaamOAaiaaykW7 cqGHiiIZcaaMc8Uaam4CamaaBaaameaacaWGPbGaamiDaaqabaaale qaniabggHiLdGccaaMc8Uaam4DamaaBaaaleaacaWGPbGaamOAaiaa dshaaeqaaOGaaGPaVpaabmqabaGaamyEamaaBaaaleaacaWGPbGaam OAaiaadshaaeqaaOGaaGjbVlabgkHiTiaaysW7ceWGzbGbaKaadaWg aaWcbaGaamyAaiaadshaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabe aacaaIYaaaaOGaaiilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Ua aiikaiaaiodacaGGUaGaaGOmaiaacMcaaaa@7BB5@

where n it MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbWaaSbaaSqaaiaadMgacaWG0b aabeaaaaa@34B3@  is the number of ever-married women observed in domain i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbaaaa@329B@  at the survey year t. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG0bGaaiOlaaaa@3358@  Initially, the variance was approximated by calculating the variance among the estimated PSU totals as if they were selected by using stratified sampling with replacement, known as the ultimate sampling unit variance approximation. This resulted in zero variance estimates for a few domains. Variance approximation (3.2) avoids these zero variance estimates, and otherwise results in variance estimates comparable with the initial approximation where PSUs were assumed to be selected with replacement. In the first MTS model, denoted by MTS-I, these direct estimates are used as the input series.

3.3   Cross-sectional Fay-Herriot estimates

An issue with the MTS-I model is the use of census data as auxiliary variables in the MTS model. Because the time gap between two subsequent censuses is 10 years whereas the BDHS is conducted every 3 or 4 years, the census covariates remain the same until the new census data are available. Including these census data as covariates in the MTS-I models will bias estimates of trends and period-to-period changes. One way to take advantage of the census information is to model the direct estimates at the district level in separate cross-sectional FH models using relevant contextual variables extracted from the census data. It is also expected that the use of on-time available census auxiliary variables in repetitive cross-sectional FH models may affect regression coefficients and the accuracy of model predictions of the dependent variable, but not the predictions of the dependent variable itself. Compared to the direct estimates used in MTS-I, these cross-sectional FH models also provide better estimates by already borrowing some strength over districts.

The cross-sectional FH estimates and their standard errors are used as input for a second model, denoted by MTS-II. The cross-sectional FH estimates are correlated due to their common fixed effect components, which is ignored in MTS-II. Therefore a third MTS model, denoted by MTS-III, is developed using cross-sectional FH estimates and their full covariance matrix as input.

The fixed and random effect components for the survey-specific cross-sectional FH models are shown in Appendix Tables A.2 and A.3. For all the models, random effects are assumed to follow a normal distribution. Non-normal models have been considered for the random effects (Laplace and horseshoe) and the sampling error (t-distribution) as alternatives for the normal distribution. This, however, did not improve the model fit.

3.4   Generalized variance functions

In the FH and MTS models, the variance estimates of the direct estimates are largely treated as fixed given quantities. Since these variance estimates can be very noisy, they are smoothed using a GVF before using them in the FH and MTS models. It is understood that a district without sample information is considered as missing and is therefore not considered in the model development approach. The cross-sectional FH model can produce estimates and standard errors for these out-of-sample domains. These synthetic estimates are, however, not used in the development of the MTS-II and MTS-III models to allow for a better comparison with the MTS-I model.

The GVFs are regression models that relate the variance estimates to predictors such as sample size, survey design variables, and point estimates (Wolter (2007), Chapter 7). For both ANC0 and ANC4, the following GVF is used: 

logse( Y ^ it )=α+βlog Y ˜ it +γlog( m it +1)+δDivision+ it ,(3.3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbGaaGPaVlaabohacaqGLbGaaGPaVlaaiIcaceWGzbGbaKaa daWgaaWcbaGaamyAaiaadshaaeqaaOGaaGykaiaaysW7caaMe8UaaG ypaiaaysW7caaMe8UaeqySdeMaaGjbVlaaykW7cqGHRaWkcaaMc8Ua aGjbVlabek7aIjGacYgacaGGVbGaai4zaiqadMfagaacamaaBaaale aacaWGPbGaamiDaaqabaGccaaMe8UaaGPaVlabgUcaRiaaykW7caaM e8Uaeq4SdCMaciiBaiaac+gacaGGNbGaaGPaVlaaiIcacaWGTbWaaS baaSqaaiaadMgacaWG0baabeaakiaaysW7cqGHRaWkcaaMe8UaaGym aiaaiMcacaaMc8UaaGjbVlabgUcaRiaaykW7caaMe8UaeqiTdqMaaG PaVlaabseacaqGPbGaaeODaiaabMgacaqGZbGaaeyAaiaab+gacaqG UbGaaGjbVlaaykW7cqGHRaWkcaaMe8UaaGjbVdbaaaaaaaaapeGaey icI48damaaBaaaleaapeGaamyAaiaadshaa8aabeaak8qacaGGSaWd aiaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaiodacaGGUa GaaG4maiaacMcaaaa@983C@

where se( Y ^ it ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGZbGaaeyzaiaaykW7caaIOaGabm ywayaajaWaaSbaaSqaaiaadMgacaWG0baabeaakiaaiMcaaaa@3986@  is the standard error of Y ^ it MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWGzbGbaKaadaWgaaWcbaGaamyAai aadshaaeqaaaaa@34AE@  in (3.1), m it MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbWaaSbaaSqaaiaadMgacaWG0b aabeaaaaa@34B2@  the number of sampling units contributing to district i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbaaaa@329B@  in year t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG0baaaa@32A6@  and Division MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGebGaaeyAaiaabAhacaqGPbGaae 4CaiaabMgacaqGVbGaaeOBaaaa@390A@  is a categorical variable with 7 levels. Since we cannot trust the direct estimates for very small m it , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbWaaSbaaSqaaiaadMgacaWG0b aabeaakiaacYcaaaa@356C@  the Y ˜ it MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWGzbGbaGaadaWgaaWcbaGaamyAai aadshaaeqaaaaa@34AD@  on the right hand side of (3.3) are simple smoothed estimates 

Y ˜ it = λ it Y ^ it +(1 λ it ) Y ¯ d[i]t , λ it = m it m it +1 , (3.4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGaaiaadaaakeaafaqaaeGacaaabaGabmywayaaiaWaaS baaSqaaiaadMgacaWG0baabeaaaOqaaiaai2dacaaMe8UaaGjbVlab eU7aSnaaBaaaleaacaWGPbGaamiDaaqabaGcceWGzbGbaKaadaWgaa WcbaGaamyAaiaadshaaeqaaOGaaGjbVlaaykW7cqGHRaWkcaaMc8Ua aGjbVlaaiIcacaaIXaGaaGjbVlabgkHiTiaaysW7cqaH7oaBdaWgaa WcbaGaamyAaiaadshaaeqaaOGaaGykaiaaysW7ceWGzbGbaebadaWg aaWcbaGaamizaiaaykW7caaIBbGaamyAaiaai2facaaMc8UaamiDaa qabaGccaaMi8UaaGilaaqaaiabeU7aSnaaBaaaleaacaWGPbGaamiD aaqabaaakeaacaaI9aGaaGjbVlaaysW7daWcaaqaaiaad2gadaWgaa WcbaGaamyAaiaadshaaeqaaaGcbaGaamyBamaaBaaaleaacaWGPbGa amiDaaqabaGccaaMe8Uaey4kaSIaaGjbVlaaigdaaaGaaGjcVlaaiY caaaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaa c6cacaaI0aGaaiykaaaa@7F97@

where Y ¯ d[i]t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWGzbGbaebadaWgaaWcbaGaamizai aaykW7caaIBbGaamyAaiaai2facaaMc8UaamiDaaqabaaaaa@3A81@  denotes the mean for division d(d=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGKbGaaGjbVlaacIcacaWGKbGaaG jbVlabg2da9iaaysW7caaIXaaaaa@3A93@  to 7) to which district i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbaaaa@329B@  belongs, in year t. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG0bGaaiOlaaaa@3358@  As mentioned by a referee, a composite regression estimator can be used as an alternative for (3.4).

The regression errors it , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqGHiiIZpaWaaSbaaSqaa8qacaWGPbGaamiDaaWdaeqaaOWdbiaa cYcaaaa@3A95@  are assumed to be independent and normally distributed with a common variance parameter σ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaahaaWcbeqaaiaaikdaaa GccaGGUaaaaa@3515@  The GVFs are fitted only to districts with non-zero standard errors of the direct estimates. The predicted (smoothed) standard errors based on the fitted models are 

se pred ( Y ^ it )=exp( α ^ + β ^ log Y ˜ it + γ ^ log( m it +1)+ δ ^ Division+ σ ^ 2 /2 ),(3.5) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGZbGaaeyzamaaBaaaleaacaqGWb GaaeOCaiaabwgacaqGKbaabeaakiaaiIcaceWGzbGbaKaadaWgaaWc baGaamyAaiaadshaaeqaaOGaaGykaiaaysW7caaMe8UaaGypaiaays W7caaMe8UaciyzaiaacIhacaGGWbGaaGPaVpaabmaabaGafqySdeMb aKaacaaMe8UaaGPaVlabgUcaRiaaysW7caaMc8UafqOSdiMbaKaaci GGSbGaai4BaiaacEgaceWGzbGbaGaadaWgaaWcbaGaamyAaiaadsha aeqaaOGaaGjbVlaaykW7cqGHRaWkcaaMe8UaaGPaVlqbeo7aNzaaja GaciiBaiaac+gacaGGNbGaaGPaVlaaiIcacaWGTbWaaSbaaSqaaiaa dMgacaWG0baabeaakiaaysW7cqGHRaWkcaaMe8UaaGymaiaaiMcaca aMe8UaaGPaVlabgUcaRiaaykW7caaMe8UafqiTdqMbaKaacaaMc8Ua aeiraiaabMgacaqG2bGaaeyAaiaabohacaqGPbGaae4Baiaab6gaca aMe8UaaGPaVlabgUcaRiaaysW7daWcgaqaaiaaykW7cuaHdpWCgaqc amaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdaaaaacaGLOaGaayzkaa GaaGilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaaioda caGGUaGaaGynaiaacMcaaaa@97C8@

where σ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaHdpWCgaqcaaaa@3380@  is 0.03 for ANC0 and 0.003 for ANC4, respectively. The R-squared values for both models are quite high 0.79 for ANC0 and 0.99 for ANC4. Note that the exponential back-transformation in (3.5) includes a bias correction, which in this case has only a small effect. This approach is used to get smoothed standard errors for the cross-sectional FH models and MTS-I model.

3.5   Transformations of input series

Square root, log and log-ratio transformation are considered as a variance stabilizing transformation, see Sakia (1992). The square root transformation is applied to ANC4 data (the MTS models and the cross-sectional FH models) since this transformation reduces the correlation between point estimates and their standard errors of the input series, reduces heterogeneity, improves the convergence of the MCMC simulation, and reduces the skewness of proportion data if they take values close to the lower boundary of zero. For ANC0, the square root transformation is only used for the year specific cross-sectional FH models in 2011 and 2014 only. In the other years, no transformation is applied. In all three MTS models, no transformation is applied for ANC0 since the square root transformation for the input series increases the dependency between direct estimates and standard errors.

Let Y ^ it = ( Y ^ it +ε) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaatCvAUfKttLearyat1nwAKfgidfgBSL 2zYfgCOLhaiqGacuWFzbqwgaqcamaaBaaaleaacaWGPbGaamiDaaqa baGccaaMe8UaaGypaiaaysW7daGcaaqaaiaaykW7caaIOaGabmyway aajaWaaSbaaSqaaiaadMgacaWG0baabeaakiaaysW7cqGHRaWkcaaM e8UaeqyTduMaaGykaaWcbeaaaaa@4E1D@  denote the square root transformed direct estimates, where ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH1oqzaaa@3354@  is a small number (0.005), necessary because for some districts direct estimates equal zero. Using a first order Taylor approximation it can be shown that se( Y ^ it ) se( Y ^ it )/ ( 2 Y ^ it +ε ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGZbGaaeyzaiaaykW7caaIOaWexL MBb50ujbqegWuDJLgzHbYqHXgBPDMCHbhA5baceiGaf8xwaKLbaKaa daWgaaWcbaGaamyAaiaadshaaeqaaOGaaGykaiaaysW7cqGHijYUca aMe8+aaSGbaeaacaqGZbGaaeyzaiaaykW7caaIOaGabmywayaajaWa aSbaaSqaaiaadMgacaWG0baabeaakiaaiMcacaaMc8oabaGaaGPaVp aabmqabaGaaGOmaiaaykW7daGcaaqaaiqadMfagaqcamaaBaaaleaa caWGPbGaamiDaaqabaGccaaMe8Uaey4kaSIaaGjbVlabew7aLbWcbe aaaOGaayjkaiaawMcaaaaacaGGUaaaaa@6078@

If the GVF (3.3) is applied to the standard errors of the untransformed direct estimates, then the standard errors for domains with a very small number of sampling units can become unreasonably large due to the linearisation approximation. This issue is avoided by applying the GVF to the standard errors of the transformed estimates, i.e., se( Y ^ it ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGZbGaaeyzaiaaykW7caaIOaWexL MBb50ujbqegWuDJLgzHbYqHXgBPDMCHbhA5baceiGaf8xwaKLbaKaa daWgaaWcbaGaamyAaiaadshaaeqaaOGaaGykaiaac6caaaa@4404@


Date modified: