Coordination of spatially balanced samples
Section 6. Application to Swiss establishments

We illustrate the application of the proposed methods on real data. The data that we used was collected by the Swiss Federal Statistical Office and can be downloaded for free (https://www.bfs.admin.ch/ bfs/fr/home/services/geostat/geodonnees-statistique-federale/etablissements-emplois/statistique-structurel-entreprises-statent-depuis-2011.assetdetail.3303058.html). It contains census data from 2013 and 2015 on Swiss establishments. Data for all establishments are aggregated at the hectare level. The geographical coordinates are proper to each hectare, and not to establishments. Each hectare can contain several establishments. The statistical unit was in this application an hectare, and not an establishment. We considered only hectares containing establishments from the economic activity 1 (agriculture, hunting, forestry, fisheries and aquaculture), and having in total at least 3 full-time equivalent employees. The years 2013 and 2015 were considered the two time occasions. In 2013, a number of 7,057 units were available, while in 2015 this number was 7,104. The overall population was of size N = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGobGaaGypaaaa@338B@ 9,478. The difference in the sizes between the two time occasions was due to the 2,374 deaths and 2,421 births in 2015 compared to 2013. Figure 6.1 shows the geographical location of the units from the overall population. The parts inside of the figure with less locations correspond in majority to the Swiss Alps.

The data can be used with two main purposes: 

We used the values of the expected sample sizes n 1 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaaaa@349C@ 1,000 and n 2 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaaaa@349D@ 800, while π i , 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHapaCdaWgaaWcbaGaamyAaiaaiY cacaaMe8UaaGymaaqabaaaaa@37C6@ and π i , 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHapaCdaWgaaWcbaGaamyAaiaaiY cacaaMe8UaaGOmaaqabaaaaa@37C7@ were computed proportional to the same variable measured in 2013 and 2015, respectively. This variables was the total number of full-time equivalent employees of all establishments inside of a hectar. A matrix of size N × N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGobGaey41aqRaamOtaaaa@35AE@ of PRNs was generated for the LPM. For the other methods, the vector of PRNs was taken to be the main diagonal of this matrix. In both time occasions respectively, we selected samples s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@33D0@ and s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdaaeqaaa aa@33D1@ using Poisson sampling with PRNs, LPM with PRNs, SCPS with PRNs, TSCPS 1 with PRNs ( α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaGGOaGaeqySdeMaaGypaaaa@3503@ 0.25, 0.50, 0.75), and TSCPS 2 with PRNs ( α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaGGOaGaeqySdeMaaGypaaaa@3503@ 0.25, 0.50, 0.75). The Euclidean distance between locations was used in all methods, excepting Poisson sampling.

Figure 6.1 for article 54953 issue 2018002

Description for Figure 6.1

Geographical map of Switzerland showing the spatial distribution of the units in the overall population based on the census in 2013 and 2015. Locations are less numerous in the Swiss Alps zone.

We analyzed the selected samples in terms of realised overlap and B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGcbaaaa@32B8@ measure. To achieve this, positive and negative coordinations with PRNs were respectively applied. Table 6.1 shows the realised sample sizes as well as the overlap between different samples in both types of coordination. For the samples drawn in the first time occasion, the B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGcbaaaa@32B8@ measure given in expression (3.3) is also indicated. Poisson sampling presents the highest overlap in positive coordination (560, when AUB = 538.022), while LPM the smallest one. Due to the important changes in the population from 2013 to 2015, SCPS performs better than LPM, with an overlap of 329, but worse than Poisson sampling. All the members of the TSCPS family perform intermediately between Poisson sampling and SCPS, in function of the value of α . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaIUaaaaa@3448@ Negative coordination shows the same superiority of Poisson sampling, while the other designs exhibit smaller values of the realised overlap, with SCPS performing again better than LPM. Moving now to the spatial balancing feature, Poisson sampling yields the largest realised B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGcbaaaa@32B8@ measure, while LPM and SCPS as expected indicate the smallest ones. As in the results shown in Section 5.2, the members of the TSCPS family exhibit smaller realised B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGcbaaaa@32B8@ measure than Poisson sampling, but larger than SCPS. The application of the proposed methods on these real data indicates similar behavior of them with the simulation results shown in Sections 5.1 and 5.2.

Table 6.1
Swiss establishments aggregated data. N = 9,478 , n 1 = 1,000 , n 2 = 800, AUB = 538 .022 , ALB = 45 .908 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGobGaaGypaiaabMdacaqGSaGaae inaiaabEdacaqG4aGaaGilaiaad6gadaWgaaWcbaGaaGymaaqabaGc caaI9aGaaeymaiaabYcacaqGWaGaaeimaiaabcdacaaISaGaamOBam aaBaaaleaacaaIYaaabeaakiaai2dacaaI4aGaaGimaiaaicdacaaI SaGaaeyqaiaabwfacaqGcbGaaGypaiaabwdacaqGZaGaaeioaiaab6 cacaqGWaGaaeOmaiaabkdacaaISaGaaeyqaiaabYeacaqGcbGaaGyp aiaabsdacaqG1aGaaeOlaiaabMdacaqGWaGaaeioaiaai6caaaa@5508@ Realised sample sizes, overlap between s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@3395@ and s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGZbWaaSbaaSqaaiaaikdaaeqaaa aa@3396@ in both types of coordination, and the B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGcbaaaa@327D@ measure for s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@3395@
Table summary
This table displays the results of Swiss establishments aggregated data. N = 9,478 , n 1 = 1,000 , n 2 = 800, AUB = 538 .022 , ALB = 45 .908 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGobGaaGypaiaabMdacaqGSaGaae inaiaabEdacaqG4aGaaGilaiaad6gadaWgaaWcbaGaaGymaaqabaGc caaI9aGaaeymaiaabYcacaqGWaGaaeimaiaabcdacaaISaGaamOBam aaBaaaleaacaaIYaaabeaakiaai2dacaaI4aGaaGimaiaaicdacaaI SaGaaeyqaiaabwfacaqGcbGaaGypaiaabwdacaqGZaGaaeioaiaab6 cacaqGWaGaaeOmaiaabkdacaaISaGaaeyqaiaabYeacaqGcbGaaGyp aiaabsdacaqG1aGaaeOlaiaabMdacaqGWaGaaeioaiaai6caaaa@5508@ Realised sample sizes. The information is grouped by Design (appearing as row headers), size of s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@35C8@ , Positive coord., Negative coord. and s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@35C8@ (appearing as column headers).
Design size of s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@35C8@ Positive coord. Negative coord. B s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGcbWaaSbaaSqaaiaadohadaWgaa adbaGaaGymaaqabaaaleqaaaaa@36C7@
size of s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@35C8@ overlap size of s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@35C8@ overlap
Poisson 1,010 840 560 779 46 0.387
LPM 1,000 800 270 800 93 0.161
SCPS 1,000 800 329 800 70 0.151
TSCPS 1 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 999 799 459 800 64 0.178
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 1,000 799 420 800 66 0.217
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 1,000 800 366 800 67 0.178
TSCPS 2 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 1,012 830 469 808 49 0.275
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 1,020 828 409 799 58 0.194
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 1,010 816 377 797 66 0.153

Date modified: