Coordination of spatially balanced samples
Section 5. Empirical results

5.1  Overlap performance

Monte Carlo simulation was used to study the overlap performance of the proposed methods. A number of m= 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqabeqadaaabaGaamyBaiabg2da9i aaigdacaaIWaWaaWbaaSqabeaacaaI0aaaaaGcbaaabaaaaaaa@3661@ runs were considered for each of the four settings described below. In each run, samples were drawn using the proposed methods. The same permanent random numbers were employed for all methods. The Euclidean distance between units was used for all spatial sampling designs. In each run, for LPM with PRNs, a matrix of dimension N × N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGobGaey41aqRaamOtaaaa@35AE@ of PRNs was randomly generated; the diagonal elements of this matrix were used as PRNs for Poisson, SCPS and the transformed SCPS with PRNs. All sampling schemes were applied for positive and negative coordination, respectively, using in each run the same PRNs and the same matrix of distances. Samples s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@33D0@ and s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdaaeqaaa aa@33D1@ of following types were drawn in each run: 

Three measures were used to quantify the performance of the proposed methods, for positive and negative coordination, respectively: 

E sim ( c ) = 1 m l = 1 m c l 1, 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaacaaMe8Ua aGjbVlaai2dacaaMe8UaaGjbVpaalaaabaGaaGymaaqaaiaad2gaaa GaaGjbVpaaqahabaGaaGjcVlaadogadaqhaaWcbaGaeS4eHWgabaGa aGymaiaaiYcacaaMe8UaaGOmaaaaaeaacqWItecBcaaI9aGaaGymaa qaaiaad2gaa0GaeyyeIuoakiaaiYcaaaa@50A5@

V sim ( c ) = 1 m 1 l = 1 m ( c l 1, 2 E sim ( c ) ) 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaacaaMe8Ua aGjbVlaai2dacaaMe8UaaGjbVpaalaaabaGaaGymaaqaaiaad2gacq GHsislcaaIXaaaaiaaysW7daaeWbqaaiaaysW7daqadaqaaiaadoga daqhaaWcbaGaeS4eHWgabaGaaGymaiaaiYcacaaMe8UaaGOmaaaaki aaysW7cqGHsislcaaMe8UaamyramaaBaaaleaacaqGZbGaaeyAaiaa b2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaacaGLOaGaay zkaaWaaWbaaSqabeaacaaIYaaaaaqaaiabloriSjaai2dacaaIXaaa baGaamyBaaqdcqGHris5aOGaaGzaVlaaiUdaaaa@60B9@

CV sim ( c ) = V sim ( c ) E sim ( c ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaGa aGjbVlaaysW7caaI9aGaaGjbVlaaysW7daWcaaqaamaakaaabaGaam OvamaaBaaaleaacaqGZbGaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWG JbaacaGLOaGaayzkaaaaleqaaaGcbaGaamyramaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaa aiaai6caaaa@4D87@

The correlation between π 1 = ( π 1 i ) i = 1, , N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHapWaaSbaaSqaaiaaigdaaeqaaO GaaGypamaabmaabaGaeqiWda3aaSbaaSqaaiaaigdacaWGPbaabeaa aOGaayjkaiaawMcaamaaBaaaleaacaWGPbGaaGypaiaaigdacaaISa GaaGjbVlablAciljaaiYcacaaMe8UaamOtaaqabaaaaa@4331@    and π 2 = ( π 2 i ) i = 1, , N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHapWaaSbaaSqaaiaaikdaaeqaaO GaaGypamaabmaabaGaeqiWda3aaSbaaSqaaiaaikdacaWGPbaabeaa aOGaayjkaiaawMcaamaaBaaaleaacaWGPbGaaGypaiaaigdacaaISa GaaGjbVlablAciljaaiYcacaaMe8UaamOtaaqabaaaaa@4333@    is an important factor of the sample coordination degree. This correlation varies and takes extreme values in the following four settings used to study the performance of the proposed methods: 

A number of 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaaIXaGaaGimamaaCaaaleqabaGaaG inaaaaaaa@3451@ simulation runs was used to compute the Monte Carlo overlap measures using the nine methods in each setting. Tables 5.1, 5.2, 5.3, and 5.4 provide the results of the Monte Carlo studies based on the previous four settings. For TSCPS 1 and 2, the value of α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqyaaa@3390@ is also specified in these tables.

Table 5.1
The static MU284 population, N = 48, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGobGaaGypaiaaisdacaaI4aGaaG ilaaaa@3586@ expected sample sizes n 1 = 10, n 2 = 6, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaigdacaaIWaGaaGilaiaad6gadaWgaaWcbaGaaGOmaaqa baGccaaI9aGaaGOnaiaaiYcaaaa@3AAE@ π i 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacqaHapaCdaWgaaWcbaGaamyAaiaaig daaeqaaaaa@3548@ are computed using the variable P75 (population in 1975 in thousands), and π i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacqaHapaCdaWgaaWcbaGaamyAaiaaik daaeqaaaaa@3549@ using the variable P85 (population in 1985 in thousands). The distance matrix was artificially generated. The values of AUB and ALB are 6 and 1.96, respectively
Table summary
This table displays the results of The static MU284 population. The information is grouped by Method (appearing as row headers), independent, positive and negative (appearing as column headers).
Method independent positive negative
E sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A2C@ V sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A3D@ CV sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaa aa@3B01@ E sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A2C@ V sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A3D@ CV sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaa aa@3B01@ E sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A2C@ V sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A3D@ CV sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaa aa@3B01@
Poisson 3.04 1.89 0.45 6.03 4.06 0.33 1.96 1.13 0.54
LPM 3.03 1.22 0.36 5.10 0.71 0.17 2.64 1.20 0.41
SCPS 3.06 1.21 0.36 4.91 0.85 0.19 2.33 1.06 0.44
TSCPS 1 α= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 3.06 1.28 0.37 5.84 0.93 0.17 2.09 1.13 0.51
α= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 3.04 1.27 0.37 5.54 0.79 0.16 2.21 1.10 0.47
α= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 3.06 1.25 0.37 5.20 0.80 0.17 2.27 1.06 0.45
TSCPS 2 α= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 3.07 1.67 0.42 5.75 2.40 0.27 1.97 1.13 0.54
α= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 3.06 1.45 0.39 5.40 1.57 0.23 2.05 1.10 0.51
α= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 3.04 1.27 0.37 5.13 1.10 0.20 2.18 1.04 0.47
Table 5.2
Baltimore data, N = 211, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGobGaaGypaiaaikdacaaIXaGaaG ymaiaaiYcaaaa@3637@ expected sample sizes n 1 = 25, n 2 = 25, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaikdacaaI1aGaaGilaiaad6gadaWgaaWcbaGaaGOmaaqa baGccaaI9aGaaGOmaiaaiwdacaaISaaaaa@3B6E@ π i 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacqaHapaCdaWgaaWcbaGaamyAaiaaig daaeqaaaaa@3547@ are computed using the variable AGE and π i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacqaHapaCdaWgaaWcbaGaamyAaiaaik daaeqaaaaa@3548@ using AGE+5. The distance matrix uses real data. The values of AUB and ALB are 24.20 and 0.10, respectively
Table summary
This table displays the results of Baltimore data. The information is grouped by Method (appearing as row headers), independent, positive and negative (appearing as column headers).
Method independent positive negative
E sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A2C@ V sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A3D@ CV sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaa aa@3B01@ E sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A2C@ V sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A3D@ CV sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaa aa@3B01@ E sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A2C@ V sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A3D@ CV sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaa aa@3B01@
Poisson 4.08 3.93 0.49 24.20 20.63 0.19 0.10 0.09 3.00
LPM 4.09 3.15 0.43 21.50 2.86 0.08 1.76 1.51 0.70
SCPS 4.01 3.22 0.45 22.20 3.14 0.08 0.76 0.70 1.10
TSCPS 1 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 4.05 3.02 0.43 23.10 2.60 0.07 0.26 0.26 1.96
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 4.06 3.06 0.43 22.50 2.93 0.08 0.45 0.43 1.46
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 4.05 3.22 0.44 22.30 3.10 0.08 0.57 0.55 1.30
TSCPS 2 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 4.07 3.56 0.46 23.70 11.75 0.14 0.10 0.09 3.00
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 4.07 3.37 0.45 23.20 6.35 0.11 0.29 0.27 1.79
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 4.04 3.31 0.45 22.70 3.84 0.09 0.58 0.52 1.24
Table 5.3
The dynamic MU284 population MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Jc9qqqrpepC0xbbL8F4rqqrFfFv0dg9Wqpe0dar pepeuf0xe9q8qiYRWFGCk9vi=dbvc9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbeqcLbuaqa aaaaaaaaWdbiaa=nbiaaa@3673@ region 2 from the MU284 population, where 50% of the units are new in the second occasion (“births”), and 50% of the units change the stratum (“deaths”), N = 72, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGobGaaGypaiaaiEdacaaIYaGaaG ilaaaa@3582@ expected sample sizes n 1 = 10, n 2 = 6. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaigdacaaIWaGaaGilaiaad6gadaWgaaWcbaGaaGOmaaqa baGccaaI9aGaaGOnaiaac6caaaa@3AA9@ The distance matrix was artificially generated. The values of AUB and ALB are 3.56 and 1.33, respectively
Table summary
This table displays the results of The dynamic MU284 population – region 2 from the MU284 population. The information is grouped by Method (appearing as row headers), independent, positive and negative (appearing as column headers).
Method independent positive negative
E sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A2C@ V sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A3D@ CV sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaa aa@3B01@ E sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A2C@ V sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A3D@ CV sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaa aa@3B01@ E sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A2C@ V sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A3D@ CV sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaa aa@3B01@
Poisson 2.02 1.20 0.54 3.56 2.35 0.43 1.32 0.71 0.64
LPM 2.03 0.95 0.48 2.37 1.00 0.42 1.87 0.89 0.50
SCPS 2.02 1.02 0.50 3.01 1.19 0.36 1.54 0.79 0.58
TSCPS 1 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 2.02 0.94 0.48 3.42 1.31 0.33 1.39 0.70 0.60
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 2.03 1.02 0.50 3.27 1.33 0.35 1.42 0.79 0.63
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 2.02 1.02 0.50 3.16 1.26 0.36 1.47 0.80 0.61
TSCPS 2 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 2.02 1.04 0.50 3.36 1.67 0.38 1.33 0.64 0.60
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 2.02 0.96 0.49 3.20 1.37 0.37 1.41 0.66 0.58
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 2.02 0.94 0.48 3.10 1.24 0.36 1.50 0.71 0.56
Table 5.4
Artificial data, N = 100, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGobGaaGypaiaaigdacaaIWaGaaG imaiaaiYcaaaa@3634@ expected sample sizes n 1 = 10, n 2 = 25, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaigdacaaIWaGaaGilaiaad6gadaWgaaWcbaGaaGOmaaqa baGccaaI9aGaaGOmaiaaiwdacaaISaaaaa@3B68@ π i 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacqaHapaCdaWgaaWcbaGaamyAaiaaig daaeqaaaaa@3547@ and π i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacqaHapaCdaWgaaWcbaGaamyAaiaaik daaeqaaaaa@3548@ randomly generated, uncorrelated. The distance matrix was artificially generated. The values of AUB and ALB are 9.11 and 0, respectively
Table summary
This table displays the results of Artificial data. The information is grouped by Method (appearing as row headers), independent, positive and negative (appearing as column headers).
Method independent positive negative
E sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A2C@ V sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A3D@ CV sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaa aa@3B01@ E sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A2C@ V sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A3D@ CV sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaa aa@3B01@ E sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A2C@ V sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3A3D@ CV sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaa aa@3B01@
Poisson 2.44 2.34 0.63 9.11 8.08 0.31 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWF8i IocaaIWaaaaa@3A51@ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWF8i IocaaIWaaaaa@3A51@ This is an empty cell
LPM 2.45 1.82 0.55 5.42 2.35 0.28 1.03 0.91 0.93
SCPS 2.42 1.82 0.56 6.94 2.07 0.21 0.45 0.42 1.44
TSCPS 1 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 2.44 1.76 0.54 8.53 2.05 0.17 0.06 0.07 4.41
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 2.46 1.79 0.54 7.95 1.90 0.17 0.21 0.22 2.23
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 2.43 1.80 0.55 7.40 1.97 0.19 0.31 0.31 1.80
TSCPS 2 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 2.43 2.09 0.59 8.53 4.86 0.26 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWF8i IocaaIWaaaaa@3A50@ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWF8i IocaaIWaaaaa@3A50@ This is an empty cell
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 2.45 1.91 0.56 7.90 3.32 0.23 0.11 0.10 2.87
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 2.44 1.83 0.55 7.34 2.51 0.22 0.28 0.26 1.82

Following the results given in Tables 5.1, 5.2, 5.3, and 5.4, SCPS shows in general better performance than LPM in terms of E sim ( c ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaacaaISaaa aa@38EA@ V sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3845@ and CV sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaa aa@3909@ for both types of coordination; an exception is the case of the static MU284 population and positive coordination. In this setting, the pairs used for the selection of s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@33D0@ are also used for the selection of s 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdaaeqaaO GaaGilaaaa@3491@ since deaths or births are not assumed. Without such changes in population, LPM may perform better than SCPS in terms of E sim ( c ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaacaaISaaa aa@38EA@ but also in terms of V sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3845@ and CV sim ( c ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaGa aGOlaaaa@39C1@

As expected, Poisson sampling achieves the AUB and ALB (minor differences are due to the sampling error) in all settings, but the overlap variance is very high in positive coordination. This is mainly due to the random sizes of s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@33D0@ and s 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdaaeqaaO GaaGOlaaaa@3493@ The large values of V sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3845@ impact the values of CV sim ( c ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaGa aGOlaaaa@39C1@ In all the examples shown, the latter is in general larger than the values of CV sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaa aa@3909@ provided by the other sampling schemes.

Results in Tables 5.1, 5.2, 5.3, and 5.4 confirm that the value of α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqyaaa@3390@ in the transformed SCPS determines the coordination degree; a smaller value of α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqyaaa@3390@ provides a better coordination degree, since one gets closer to Poisson sampling (we remind that α = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aGaaGimaaaa@3511@ in the TSCPS designs leads to Poisson sampling).

For a given α , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaGGSaaaaa@3440@ the new strategies presented in Section 4.2 yield similar values of E sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3834@ in positive coordination, but TSCPS 2 gives larger values of V sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3845@ and CV sim ( c ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaGa aGOlaaaa@39C1@ For all α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqyaaa@3390@ used, both TSCPS 1 and TSCPS 2 provides similar values of CV sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaa aa@3909@ in positive and negative coordination in our examples, excepting TSCPS 2 with α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3457@ 0.25. The latter performs very close to Poisson sampling in negative coordination as the results in Tables 5.1, 5.2, 5.3, and 5.4 show.

An interesting result for Poisson sampling arises from Tables 5.1, 5.2, 5.3, and 5.4 in terms of CV sim ( c ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaGa aGOlaaaa@39C1@ While the values of V sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@3845@ are large for positive coordination compared to LPM and SCPS, it is not the case for negative coordination. However, in the latter case, if E sim ( c ) V sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaarqqr1ngB PrgifHhDYfgaiqaacqWF8iIocaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadogaaiaawIcacaGLPaaaaaa@4440@ and both are small as in Table 5.2, the corresponding value of CV sim ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGdbGaaeOvamaaBaaaleaacaqGZb GaaeyAaiaab2gaaeqaaOWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaa aa@3909@ becomes very large. As we mentioned, that can also be the case for the TSCPS designs with small values of α . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaIUaaaaa@3448@ The improvement of introducing this new family of designs compared to Poisson sampling is measured for these situations in terms of spatial balance degree as shown in the next section.

5.2  Spatial balance and variance of sample size

The transformed SCPS is compared to the other sampling designs in terms of degree of spatial balance using Monte-Carlo simulation. The degree of spatial balance is measured using the B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGcbaaaa@32B8@ measure shown in expression (3.3). For the transformed SCPS the two strategies presented in Section 4.2 are used, and the four previous settings are employed. The B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGcbaaaa@32B8@ measure was computed on the same samples s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@33D0@ used to obtain the outcomes given in Tables 5.1, 5.2, 5.3, and 5.4, respectively. The following overall measure was used for each type of sample

E sim ( B ) = 1 m l = 1 m B l , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadkeaaiaawIcacaGLPaaacaaMe8Ua aGjbVlaai2dacaaMe8UaaGjbVpaalaaabaGaaGymaaqaaiaad2gaaa GaaGjbVpaaqahabaGaaGjcVlaadkeadaWgaaWcbaGaeS4eHWgabeaa aeaacqWItecBcaaI9aGaaGymaaqaaiaad2gaa0GaeyyeIuoakiaaiY caaaa@4CA8@

where B l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGcbWaaSbaaSqaaiabloriSbqaba aaaa@3415@ represents the B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGcbaaaa@32B8@ measure computed on a realised sample in the l th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqWItecBdaahaaWcbeqaaiaabshaca qGObaaaaaa@3531@ run. For comparison, the average of the B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGcbaaaa@32B8@ measures computed over the Monte-Carlo runs for Poisson sampling and LPM were also reported.

TSCPS is also compared with Poisson sampling in terms of variance of sample size computed over the Monte-Carlo runs using:

V sim ( size ) = 1 m 1 l = 1 m ( | s l | | s ¯ | ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaabohacaqGPbGaaeOEaiaabwgaaiaa wIcacaGLPaaacaaMe8UaaGjbVlaai2dacaaMe8UaaGjbVpaalaaaba GaaGymaaqaaiaad2gacqGHsislcaaIXaaaaiaaysW7daaeWbqaaiaa ykW7daqadaqaaiaaykW7daabdaqaaiaaykW7caWGZbWaaSbaaSqaai abloriSbqabaGccaaMc8oacaGLhWUaayjcSdGaeyOeI0YaaqWaaeaa caaMc8Uabm4CayaaraGaaGPaVdGaay5bSlaawIa7aiaaykW7aiaawI cacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaaMb8oaleaacqWItecB caaI9aGaaGymaaqaaiaad2gaa0GaeyyeIuoakiaaiYcaaaa@672A@

where | s l | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaabdaqaaiaaykW7caWGZbWaaSbaaS qaaiabloriSbqabaGccaaMc8oacaGLhWUaayjcSdaaaa@3A88@ represents the sample size of a realised sample s l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiabloriSbqaba aaaa@3446@ in the l th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqWItecBdaahaaWcbeqaaiaabshaca qGObaaaaaa@3531@ run and | s ¯ | = 1 m l = 1 m | s l | . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaabdaqaaiaaykW7ceWGZbGbaebaca aMc8oacaGLhWUaayjcSdGaaGypamaaleaaleaacaaIXaaabaGaamyB aaaakmaaqadabaWaaqWaaeaacaaMc8Uaam4CamaaBaaaleaacqWIte cBaeqaaOGaaGPaVdGaay5bSlaawIa7aaWcbaGaeS4eHWMaaGypaiaa igdaaeaacaWGTbaaniabggHiLdGccaaIUaaaaa@4AD3@

Tables 5.5, 5.6, 5.7 and 5.8 provide the results. Following these results, we note that the choice of α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqyaaa@3390@ determines the performance of the transformed SCPS in terms of averaged B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGcbaaaa@32B8@ measure: a larger value of α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqyaaa@3390@ results in a better spatial balance degree. However, in all settings, the resulting spatial balance degree is worse than for LPM and SCPS, but better than for Poisson sampling as expected, since the latter is not a spatial balanced sampling.

For all four settings, the variance of sample size is much higher for Poisson sampling than for TSCPS 1 and TSCPS 2, for all values of α . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaGGUaaaaa@3442@ While TSCPS 2 with α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3457@ 0.25 performs very close to Poisson sampling in the examples shown in Section 5.1 for negative coordination, we note however that the corresponding values of V sim ( size ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaabohacaqGPbGaaeOEaiaabwgaaiaa wIcacaGLPaaaaaa@3B24@ for the former method are much smaller than those provided by Poisson sampling.

As underlined in Section 4.2, TSCPS 1 shows smaller sample size variance than TSCPS 2 for the same α . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaIUaaaaa@3448@ The results in our settings confirm for both TSCPS 1 and TSCPS 2 that the variance of sample size decreases when α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqyaaa@3390@ increases.

Table 5.5
The static MU284 population, N = 48, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGobGaaGypaiaaisdacaaI4aGaaG ilaaaa@3586@ expected sample size 10, the inclusion prob. are computed using the variable P75 (population in 1975 in thousands). The distance matrix was artificially generated
Table summary
This table displays the results of The static MU284 population. The information is grouped by Design (appearing as row headers), (équation) (appearing as column headers).
Design E sim ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadkeaaiaawIcacaGLPaaaaaa@3A0B@ V sim ( size ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaabohacaqGPbGaaeOEaiaabwgaaiaa wIcacaGLPaaaaaa@3D1C@
Poisson 0.301 4.806
LPM 0.124 0
SCPS 0.131 0
TSCPS 1 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 0.209 0.727
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 0.177 0.405
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 0.146 0.187
TSCPS 2 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 0.215 2.692
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 0.159 1.211
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 0.134 0.399
Table 5.6
Baltimore data, N = 211, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGobGaaGypaiaaikdacaaIXaGaaG ymaiaaiYcaaaa@3638@ expected sample size 25, the inclusion prob. are computed using the variable AGE. The distance matrix uses real data
Table summary
This table displays the results of Baltimore data. The information is grouped by Design (appearing as row headers), E sim ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadkeaaiaawIcacaGLPaaaaaa@3A0B@ and V sim ( size ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaabohacaqGPbGaaeOEaiaabwgaaiaa wIcacaGLPaaaaaa@3D1C@ (appearing as column headers).
Design E sim ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadkeaaiaawIcacaGLPaaaaaa@3A0B@ V sim ( size ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaabohacaqGPbGaaeOEaiaabwgaaiaa wIcacaGLPaaaaaa@3D1C@
Poisson 0.416 21.107
LPM 0.137 0
SCPS 0.137 0
TSCPS 1 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 0.256 0.909
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 0.198 0.449
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 0.162 0.222
TSCPS 2 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 0.282 11.382
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 0.195 4.811
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 0.148 1.227
Table 5.7
The dynamic MU284 population, N = 48, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGobGaaGypaiaaisdacaaI4aGaaG ilaaaa@3586@ expected sample size 10, the inclusion prob. are computed using the variable P75 (population in 1975 in thousands). The distance matrix was artificially generated
Table summary
This table displays the results of The dynamic MU284 population. The information is grouped by Design (appearing as row headers), E sim ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadkeaaiaawIcacaGLPaaaaaa@3A0B@ and V sim ( size ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaabohacaqGPbGaaeOEaiaabwgaaiaa wIcacaGLPaaaaaa@3D1C@ (appearing as column headers).
Design E sim ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadkeaaiaawIcacaGLPaaaaaa@3A0B@ V sim ( size ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaabohacaqGPbGaaeOEaiaabwgaaiaa wIcacaGLPaaaaaa@3D1C@
Poisson 0.422 5.683
LPM 0.202 0
SCPS 0.210 0
TSCPS 1 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 0.306 0.798
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 0.255 0.427
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 0.224 0.231
TSCPS 2 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 0.315 3.128
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 0.252 1.370
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 0.213 0.446
Table 5.8
Artificial data, N = 100, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGobGaaGypaiaaigdacaaIWaGaaG imaiaaiYcaaaa@3635@ expected sample size 10, the inclusion prob. are randomly generated. The distance matrix was artificially generated
Table summary
This table displays the results of Artificial data. The information is grouped by Design (appearing as row headers), E sim ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadkeaaiaawIcacaGLPaaaaaa@3A0B@ and V sim ( size ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaabohacaqGPbGaaeOEaiaabwgaaiaa wIcacaGLPaaaaaa@3D1C@ (appearing as column headers).
Design E sim ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaadkeaaiaawIcacaGLPaaaaaa@3A0B@ V sim ( size ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGwbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiaabohacaqGPbGaaeOEaiaabwgaaiaa wIcacaGLPaaaaaa@3D1C@
Poisson 0.485 8.892
LPM 0.134 0
SCPS 0.133 0
TSCPS 1 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 0.286 0.938
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 0.213 0.446
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 0.167 0.230
TSCPS 2 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 0.313 4.854
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 0.204 2.121
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 0.149 0.632

5.3  Variance estimation

In repeated surveys, estimates of net variation, period averages and gross change are of interest. Our proposed methods are suitable to estimate such parameters. Their variance estimation is, however, intractable for our methods and is not addressed here. We study only empirically the impact that each coordinated spatial balancing method has on the quality of the estimates of two of the above parameters. Note that there exist approximative variance estimators for state that can be used for LPM and SCPS (Grafström and Schelin, 2014), but further research is needed to derive an approximative estimator for the covariance between successive state estimators under coordination.

Consider a repeated survey over two time occasions. Let y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5baaaa@32EF@ be the variable of interest, measured in the first and second time occasion, respectively. We denote by y i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bWaaSbaaSqaaiaadMgacaWG0b aabeaaaaa@3502@ the value of this variable taken by the unit i U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaeyicI4Saamyvaaaa@353D@ on the time occasion t , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bGaaiilaaaa@339A@ with t { 1, 2 } . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bGaeyicI48aaiWaaeaacaaIXa GaaGilaiaaysW7caaIYaaacaGL7bGaayzFaaGaaGOlaaaa@3B11@ Let x i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG4bWaaSbaaSqaaiaadMgacaWG0b aabeaaaaa@3501@ be the value of an auxiliary variable taken by the unit i U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaeyicI4Saamyvaaaa@353D@ at occasion t ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bGaai4oaaaa@33A9@ the variable x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG4baaaa@32EE@ is well correlated with y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bGaaGilaaaa@33A5@ and available for all units i U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaeyicI4Saamyvaaaa@353D@ in both time occasions. It is assumed that x i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG4bWaaSbaaSqaaiaadMgacaWG0b aabeaaaaa@3501@ is known for all i U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaeyicI4Saamyvaaaa@353D@ from a previous census or that a two-phase sampling is used: in the first phase the value of x i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG4bWaaSbaaSqaaiaadMgacaWG0b aabeaaaaa@3501@ is obtained, while the coordination process is addressed in the second phase of the sampling. The notation E M ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaad2eaaeqaaO WaaeWaaeaacaaIUaaacaGLOaGaayzkaaaaaa@3604@ and var M ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqG2bGaaeyyaiaabkhadaWgaaWcba GaamytaaqabaGcdaqadaqaaiaai6caaiaawIcacaGLPaaaaaa@380C@ indicate the expectation and variance under a model. We borrow from Grafström and Tillé (2013) the following cross-sectional superpopulation model with spatial correlation

y i , t 1 = β 0 + x i , t 1 β 1 + ε i , t 1 , ( 5.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bWaaSbaaSqaaiaadMgacaaISa GaaGjbVlaadshacqGHsislcaaIXaaabeaakiaaysW7caaMe8UaaGyp aiaaysW7caaMe8UaeqOSdi2aaSbaaSqaaiaaicdaaeqaaOGaey4kaS IaamiEamaaBaaaleaacaWGPbGaaGilaiaaysW7caWG0bGaeyOeI0Ia aGymaaqabaGccqaHYoGydaWgaaWcbaGaaGymaaqabaGccqGHRaWkcq aH1oqzdaWgaaWcbaGaamyAaiaaiYcacaaMe8UaamiDaiabgkHiTiaa igdaaeqaaOGaaGilaiaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG ynaiaac6cacaaIXaGaaiykaaaa@5FFF@

where β 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHYoGydaWgaaWcbaGaaGimaaqaba aaaa@3477@ and β 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHYoGydaWgaaWcbaGaaGymaaqaba aaaa@3478@ are parameters, where ε i , t 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH1oqzdaWgaaWcbaGaamyAaiaaiY cacaaMe8UaamiDaiabgkHiTiaaigdaaeqaaaaa@3996@ are random variables, with E M ( ε i , t 1 ) = 0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaad2eaaeqaaO WaaeWaaeaacqaH1oqzdaWgaaWcbaGaamyAaiaaiYcacaaMe8UaamiD aiabgkHiTiaaigdaaeqaaaGccaGLOaGaayzkaaGaaGypaiaaicdaca aISaaaaa@3F32@ var M ( ε i , t 1 ) = σ i 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqG2bGaaeyyaiaabkhadaWgaaWcba GaamytaaqabaGcdaqadaqaaiabew7aLnaaBaaaleaacaWGPbGaaGil aiaaysW7caWG0bGaeyOeI0IaaGymaaqabaaakiaawIcacaGLPaaaca aI9aGaeq4Wdm3aa0baaSqaaiaadMgaaeaacaaIYaaaaOGaaGzaVlaa iYcaaaa@45AE@ cov M ( ε i , ε j ) = σ i σ j ρ d ( i , j ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGJbGaae4BaiaabAhadaWgaaWcba GaamytaaqabaGcdaqadaqaaiabew7aLnaaBaaaleaacaWGPbaabeaa kiaaygW7caaISaGaaGjbVlabew7aLnaaBaaaleaacaWGQbaabeaaaO GaayjkaiaawMcaaiaai2dacqaHdpWCdaWgaaWcbaGaamyAaaqabaGc cqaHdpWCdaWgaaWcbaGaamOAaaqabaGccqaHbpGCdaahaaWcbeqaai aadsgadaqadaqaaiaadMgacaaISaGaaGjbVlaadQgaaiaawIcacaGL PaaaaaGccaaMb8UaaGilaaaa@5216@ where d ( i , j ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbWaaeWaaeaacaWGPbGaaGilai aaysW7caWGQbaacaGLOaGaayzkaaaaaa@3883@ represents the distance between the units i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbaaaa@32DF@ and j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGQbGaaGilaaaa@3396@ for i , j U . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaaGilaiaaysW7caWGQbGaey icI4Saamyvaiaai6caaaa@3927@ The particular form of cov M ( ε i , ε j ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGJbGaae4BaiaabAhadaWgaaWcba GaamytaaqabaGcdaqadaqaaiabew7aLnaaBaaaleaacaWGPbaabeaa kiaaygW7caaISaGaaGjbVlabew7aLnaaBaaaleaacaWGQbaabeaaaO GaayjkaiaawMcaaaaa@40B7@ in model (5.1) underlines a decreasing function of the distance between i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbaaaa@32DF@ and j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGQbGaaGilaaaa@3396@ reflecting that the proximity of units implies a larger spatial correlation. The following autoregressive model is considered

y i t = δ 0 + δ 1 y i , t 1 + γ i t , ( 5.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bWaaSbaaSqaaiaadMgacaWG0b aabeaakiaaysW7caaMe8UaaGypaiaaysW7caaMe8UaeqiTdq2aaSba aSqaaiaaicdaaeqaaOGaey4kaSIaeqiTdq2aaSbaaSqaaiaaigdaae qaaOGaamyEamaaBaaaleaacaWGPbGaaGilaiaaysW7caWG0bGaeyOe I0IaaGymaaqabaGccqGHRaWkcqaHZoWzdaWgaaWcbaGaamyAaiaads haaeqaaOGaaGzaVlaaiYcacaaMf8UaaGzbVlaaywW7caaMf8Uaaiik aiaaiwdacaGGUaGaaGOmaiaacMcaaaa@59BD@

with δ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH0oazdaWgaaWcbaGaaGimaaqaba aaaa@347B@ and δ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH0oazdaWgaaWcbaGaaGymaaqaba aaaa@347C@ being parameters, and with γ i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHZoWzdaWgaaWcbaGaamyAaiaads haaeqaaaaa@35AB@ being independent random variables, with E M ( γ i t ) = 0, var M ( γ i t ) = u 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaad2eaaeqaaO WaaeWaaeaacqaHZoWzdaWgaaWcbaGaamyAaiaadshaaeqaaaGccaGL OaGaayzkaaGaaGypaiaaicdacaaISaGaaGjbVlaabAhacaqGHbGaae OCamaaBaaaleaacaWGnbaabeaakmaabmaabaGaeq4SdC2aaSbaaSqa aiaadMgacaWG0baabeaaaOGaayjkaiaawMcaaiaai2dacaWG1bWaaW baaSqabeaacaaIYaaaaOGaaGzaVlaai6caaaa@4AF1@ The following model is also assumed

x i t = α 0 + α 1 x i , t 1 + γ ˜ i t , ( 5.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG4bWaaSbaaSqaaiaadMgacaWG0b aabeaakiaaysW7caaMe8UaaGypaiaaysW7caaMe8UaeqySde2aaSba aSqaaiaaicdaaeqaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaigdaae qaaOGaamiEamaaBaaaleaacaWGPbGaaGilaiaaysW7caWG0bGaeyOe I0IaaGymaaqabaGccqGHRaWkcuaHZoWzgaacamaaBaaaleaacaWGPb GaamiDaaqabaGccaaMb8UaaGilaiaaywW7caaMf8UaaGzbVlaaywW7 caGGOaGaaGynaiaac6cacaaIZaGaaiykaaaa@59BF@

where α 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqydaWgaaWcbaGaaGimaaqaba aaaa@3475@ and α 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqydaWgaaWcbaGaaGymaaqaba aaaa@3476@ are parameters, where γ ˜ i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaHZoWzgaacamaaBaaaleaacaWGPb GaamiDaaqabaaaaa@35BA@ are independent random variables, with E M ( γ ˜ i t ) = 0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaad2eaaeqaaO WaaeWaaeaacuaHZoWzgaacamaaBaaaleaacaWGPbGaamiDaaqabaaa kiaawIcacaGLPaaacaaI9aGaaGimaiaaiYcaaaa@3B56@ var M ( γ ˜ i t ) = u ˜ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqG2bGaaeyyaiaabkhadaWgaaWcba GaamytaaqabaGcdaqadaqaaiqbeo7aNzaaiaWaaSbaaSqaaiaadMga caWG0baabeaaaOGaayjkaiaawMcaaiaai2daceWG1bGbaGaadaahaa WcbeqaaiaaikdaaaGccaaMb8UaaGOlaaaa@402C@ We obtain thus a spatial-temporal dependence of the data through models (5.1), (5.2) and (5.3).

We consider that π i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHapaCdaWgaaWcbaGaamyAaiaads haaeqaaaaa@35C1@ are constructed using the expression

π i t = n t x i t j U x j t , t { 1, 2 } , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHapaCdaWgaaWcbaGaamyAaiaads haaeqaaOGaaGjbVlaaysW7caaI9aGaaGjbVlaaysW7daWcaaqaaiaa d6gadaWgaaWcbaGaamiDaaqabaGccaWG4bWaaSbaaSqaaiaadMgaca WG0baabeaaaOqaamaaqababaGaamiEamaaBaaaleaacaWGQbGaamiD aaqabaaabaGaamOAaiabgIGiolaadwfaaeqaniabggHiLdaaaOGaaG ilaiaaykW7caaMe8UaamiDaiabgIGiopaacmaabaGaaGymaiaaiYca caaMe8UaaGOmaaGaay5Eaiaaw2haaiaaiYcaaaa@573D@

that leads to a correlation between π t 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHapWaaSbaaSqaaiaadshacqGHsi slcaaIXaaabeaaaaa@360A@ and π t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHapWaaSbaaSqaaiaadshaaeqaaa aa@3462@ due to model (5.3).

The following parameters of interest are considered: the one period change D = i U 1 y i 1 i U 2 y i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGebGaaGypamaaqababaGaamyEam aaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaeaacaWG PbGaeyicI4SaamyvamaaBaaameaacaaIXaaabeaaaSqab0GaeyyeIu oakiabgkHiTmaaqababaGaamyEamaaBaaaleaacaWGPbGaaGOmaaqa baaabaGaamyAaiabgIGiolaadwfadaWgaaadbaGaaGOmaaqabaaale qaniabggHiLdaaaa@4686@ and the average over two periods A = 1 2 ( i U 1 y i 1 + i U 2 y i 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGbbGaaGypamaaleaaleaacaaIXa aabaGaaGOmaaaakmaabmaabaWaaabeaeaacaWG5bWaaSbaaSqaaiaa dMgadaWgaaadbaGaaGymaaqabaaaleqaaaqaaiaadMgacqGHiiIZca WGvbWaaSbaaWqaaiaaigdaaeqaaaWcbeqdcqGHris5aOGaey4kaSYa aabeaeaacaWG5bWaaSbaaSqaaiaadMgacaaIYaaabeaaaeaacaWGPb GaeyicI4SaamyvamaaBaaameaacaaIYaaabeaaaSqab0GaeyyeIuoa aOGaayjkaiaawMcaaiaai6caaaa@4A60@ The two parameters are estimated by

D ^ = i s 1 y i 1 π i 1 i s 2 y i 2 π i 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGebGbaKaacaaMe8UaaGjbVlaai2 dacaaMe8UaaGjbVpaaqafabeWcbaGaamyAaiabgIGiolaadohadaWg aaadbaGaaGymaaqabaaaleqaniabggHiLdGccaaMe8+aaSaaaeaaca WG5bWaaSbaaSqaaiaadMgadaWgaaadbaGaaGymaaqabaaaleqaaaGc baGaeqiWda3aaSbaaSqaaiaadMgacaaIXaaabeaaaaGccqGHsislda aeqbqabSqaaiaadMgacqGHiiIZcaWGZbWaaSbaaWqaaiaaikdaaeqa aaWcbeqdcqGHris5aOGaaGjbVpaalaaabaGaamyEamaaBaaaleaaca WGPbGaaGOmaaqabaaakeaacqaHapaCdaWgaaWcbaGaamyAaiaaikda aeqaaaaakiaaiYcaaaa@58E4@

and

A ^ = 1 2 ( i s 1 y i 1 π i 1 + i s 2 y i 2 π i 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGbbGbaKaacaaMe8UaaGjbVlaai2 dacaaMe8UaaGjbVpaalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaa daaeqbqabSqaaiaadMgacqGHiiIZcaWGZbWaaSbaaWqaaiaaigdaae qaaaWcbeqdcqGHris5aOGaaGjbVpaalaaabaGaamyEamaaBaaaleaa caWGPbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOqaaiabec8aWnaaBa aaleaacaWGPbGaaGymaaqabaaaaOGaaGjbVlaaysW7cqGHRaWkcaaM e8UaaGjbVpaaqafabeWcbaGaamyAaiabgIGiolaadohadaWgaaadba GaaGOmaaqabaaaleqaniabggHiLdGccaaMe8+aaSaaaeaacaWG5bWa aSbaaSqaaiaadMgacaaIYaaabeaaaOqaaiabec8aWnaaBaaaleaaca WGPbGaaGOmaaqabaaaaaGccaGLOaGaayzkaaGaaGilaaaa@621A@

respectively. We have

var ( D ^ ) = var ( i s 1 y i 1 π i 1 ) + var ( i s 2 y i 2 π i 2 ) 2 cov ( i s 1 y i 1 π i 1 , i s 2 y i 2 π i 2 ) , ( 5.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqG2bGaaeyyaiaabkhadaqadaqaai qadseagaqcaaGaayjkaiaawMcaaiaaysW7caaMe8UaaGypaiaaysW7 caaMe8UaaeODaiaabggacaqGYbWaaeWaaeaadaaeqbqabSqaaiaadM gacqGHiiIZcaWGZbWaaSbaaWqaaiaaigdaaeqaaaWcbeqdcqGHris5 aOGaaGjbVpaalaaabaGaamyEamaaBaaaleaacaWGPbWaaSbaaWqaai aaigdaaeqaaaWcbeaaaOqaaiabec8aWnaaBaaaleaacaWGPbGaaGym aaqabaaaaaGccaGLOaGaayzkaaGaaGjbVlaaysW7cqGHRaWkcaaMe8 UaaGjbVlaabAhacaqGHbGaaeOCamaabmaabaWaaabuaeqaleaacaWG PbGaeyicI4Saam4CamaaBaaameaacaaIYaaabeaaaSqab0GaeyyeIu oakiaaysW7daWcaaqaaiaadMhadaWgaaWcbaGaamyAaiaaikdaaeqa aaGcbaGaeqiWda3aaSbaaSqaaiaadMgacaaIYaaabeaaaaaakiaawI cacaGLPaaacaaMe8UaaGjbVlabgkHiTiaaysW7caaMe8UaaGOmaiaa bogacaqGVbGaaeODamaabmaabaWaaabuaeqaleaacaWGPbGaeyicI4 Saam4CamaaBaaameaacaaIXaaabeaaaSqab0GaeyyeIuoakiaaysW7 daWcaaqaaiaadMhadaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabe aaaSqabaaakeaacqaHapaCdaWgaaWcbaGaamyAaiaaigdaaeqaaaaa kiaaiYcacaaMe8+aaabuaeqaleaacaWGPbGaeyicI4Saam4CamaaBa aameaacaaIYaaabeaaaSqab0GaeyyeIuoakiaaysW7daWcaaqaaiaa dMhadaWgaaWcbaGaamyAaiaaikdaaeqaaaGcbaGaeqiWda3aaSbaaS qaaiaadMgacaaIYaaabeaaaaaakiaawIcacaGLPaaacaaISaGaaGzb VlaaywW7caaMf8UaaGzbVlaacIcacaaI1aGaaiOlaiaaisdacaGGPa aaaa@A1D5@

var ( A ^ ) = 1 4 var ( i s 1 y i 1 π i 1 ) + 1 4 var ( i s 2 y i 2 π i 2 ) + 1 2 cov ( i s 1 y i 1 π i 1 , i s 2 y i 2 π i 2 ) , ( 5.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqG2bGaaeyyaiaabkhadaqadaqaai qadgeagaqcaaGaayjkaiaawMcaaiaaysW7caaMe8UaaGypaiaaysW7 caaMe8+aaSaaaeaacaaIXaaabaGaaGinaaaacaqG2bGaaeyyaiaabk hadaqadaqaamaaqafabeWcbaGaamyAaiabgIGiolaadohadaWgaaad baGaaGymaaqabaaaleqaniabggHiLdGcdaWcaaqaaiaadMhadaWgaa WcbaGaamyAamaaBaaameaacaaIXaaabeaaaSqabaaakeaacqaHapaC daWgaaWcbaGaamyAaiaaigdaaeqaaaaaaOGaayjkaiaawMcaaiaays W7caaMe8Uaey4kaSIaaGjbVlaaysW7daWcaaqaaiaaigdaaeaacaaI 0aaaaiaabAhacaqGHbGaaeOCamaabmaabaWaaabuaeqaleaacaWGPb GaeyicI4Saam4CamaaBaaameaacaaIYaaabeaaaSqab0GaeyyeIuoa kmaalaaabaGaamyEamaaBaaaleaacaWGPbGaaGOmaaqabaaakeaacq aHapaCdaWgaaWcbaGaamyAaiaaikdaaeqaaaaaaOGaayjkaiaawMca aiaaysW7caaMe8Uaey4kaSIaaGjbVlaaysW7daWcaaqaaiaaigdaae aacaaIYaaaaiaabogacaqGVbGaaeODamaabmaabaWaaabuaeqaleaa caWGPbGaeyicI4Saam4CamaaBaaameaacaaIXaaabeaaaSqab0Gaey yeIuoakmaalaaabaGaamyEamaaBaaaleaacaWGPbWaaSbaaWqaaiaa igdaaeqaaaWcbeaaaOqaaiabec8aWnaaBaaaleaacaWGPbGaaGymaa qabaaaaOGaaGilaiaaysW7daaeqbqabSqaaiaadMgacqGHiiIZcaWG ZbWaaSbaaWqaaiaaikdaaeqaaaWcbeqdcqGHris5aOWaaSaaaeaaca WG5bWaaSbaaSqaaiaadMgacaaIYaaabeaaaOqaaiabec8aWnaaBaaa leaacaWGPbGaaGOmaaqabaaaaaGccaGLOaGaayzkaaGaaGilaiaayw W7caaMf8UaaGzbVlaaywW7caGGOaGaaGynaiaac6cacaaI1aGaaiyk aaaa@9F71@

where var ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqG2bGaaeyyaiaabkhadaqadaqaai aai6caaiaawIcacaGLPaaaaaa@3704@ and cov ( .,. ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGJbGaae4BaiaabAhadaqadaqaai aai6cacaaISaGaaGOlaaGaayjkaiaawMcaaaaa@3871@ represent the variance and the covariance operators, respectively.

Following expression (5.4), if s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@33D0@ and s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdaaeqaaa aa@33D1@ are positively coordinated, the variance of D ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGebGbaKaaaaa@32CA@ is reduced in general through sample overlap, since a positive covariance between i s 1 y i 1 / π i 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaaeqaqaamaalyaabaGaamyEamaaBa aaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOqaaiabec8a WnaaBaaaleaacaWGPbGaaGymaaqabaaaaaqaaiaadMgacqGHiiIZca WGZbWaaSbaaWqaaiaaigdaaeqaaaWcbeqdcqGHris5aaaa@3EE3@ and i s 2 y i 2 / π i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaaeqaqaamaalyaabaGaamyEamaaBa aaleaacaWGPbGaaGOmaaqabaaakeaacqaHapaCdaWgaaWcbaGaamyA aiaaikdaaeqaaaaaaeaacaWGPbGaeyicI4Saam4CamaaBaaameaaca aIYaaabeaaaSqab0GaeyyeIuoaaaa@3EAE@ is achieved compared to independent samples’ selection. Similarly, from expression (5.5), independent samples’ selection reduces the variance of A ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGbbGbaKaaaaa@32C7@ compared to positively coordinated samples because this covariance is zero. Negative coordination of samples can lead to a negative covariance between i s 1 y i 1 / π i 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaaeqaqaamaalyaabaGaamyEamaaBa aaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOqaaiabec8a WnaaBaaaleaacaWGPbGaaGymaaqabaaaaaqaaiaadMgacqGHiiIZca WGZbWaaSbaaWqaaiaaigdaaeqaaaWcbeqdcqGHris5aaaa@3EE3@ and i s 2 y i 2 / π i 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaaeqaqaamaalyaabaGaamyEamaaBa aaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaOqaaiabec8a WnaaBaaaleaacaWGPbGaaGOmaaqabaaaaaqaaiaadMgacqGHiiIZca WGZbWaaSbaaWqaaiaaikdaaeqaaaWcbeqdcqGHris5aOGaaiilaaaa @3FA0@ and the variance of A ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGbbGbaKaaaaa@32C7@ can diminish compared to independent samples’ selection.

A population of size N = 100 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGobGaaGypaiaaigdacaaIWaGaaG imaaaa@35BA@ was created using models (5.1), (5.2), and (5.3). No births or deaths were considered in the population. The distance matrix was artificially generated using absolute values of independent runs from the N ( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGobWaaeWaaeaacaaIWaGaaGilai aaigdaaiaawIcacaGLPaaaaaa@3678@ distribution. We set β 0 = 4, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHYoGydaWgaaWcbaGaaGimaaqaba GccaaI9aGaaGinaiaaiYcaaaa@36BD@ β 1 = 2, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHYoGydaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGOmaiaaiYcaaaa@36BC@ ρ = 0 .9 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHbpGCcaaI9aGaaeimaiaab6caca qG5aGaaGilaaaa@374D@ δ 0 = 0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH0oazdaWgaaWcbaGaaGimaaqaba GccaaI9aGaaGimaiaaiYcaaaa@36BD@ δ 1 = 1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH0oazdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGymaiaaiYcaaaa@36BF@ α 0 = 0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqydaWgaaWcbaGaaGimaaqaba GccaaI9aGaaGimaiaaiYcaaaa@36B7@ α 1 = 1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqydaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGymaiaaiYcaaaa@36B9@ γ ˜ i N ( 0,1 ) , i = 1, , N , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaHZoWzgaacamaaBaaaleaacaWGPb aabeaarqqr1ngBPrgifHhDYfgaiqaakiab=XJi6iaad6eadaqadaqa aiaaicdacaaISaGaaGymaaGaayjkaiaawMcaaiaaiYcacaaMe8Uaam yAaiaai2dacaaIXaGaaGilaiaaysW7cqWIMaYscaGGSaGaaGjbVlaa d6eacaaISaaaaa@4AE8@ iid and γ i = β 1 γ ˜ i , i = 1, , N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHZoWzdaWgaaWcbaGaamyAaaqaba GccaaI9aGaeqOSdi2aaSbaaSqaaiaaigdaaeqaaOGafq4SdCMbaGaa daWgaaWcbaGaamyAaaqabaGccaaMb8UaaGilaiaaysW7caWGPbGaaG ypaiaaigdacaaISaGaaGjbVlablAciljaaiYcacaaMe8UaamOtaiaa i6caaaa@485F@ We also generated artificially x i 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG4bWaaSbaaSqaaiaadMgacaaIXa aabeaaaaa@34C3@ as independent random draws from the N ( 4,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGobWaaeWaaeaacaaI0aGaaGilai aaigdaaiaawIcacaGLPaaaaaa@367C@ distribution. The correlation between y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaa aa@33D6@ and y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaikdaaeqaaa aa@33D7@ was approximately 0.72, while between y t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bWaaSbaaSqaaiaadshaaeqaaa aa@3414@ and x t , t = 1, 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG4bWaaSbaaSqaaiaadshaaeqaaO GaaGzaVlaaiYcacaaMe8UaamiDaiaai2dacaaIXaGaaGilaiaaysW7 caaIYaaaaa@3D64@ was approximately 0.9. Based on this population, two different settings were created, by varying n 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaa aa@33CB@ and n 2 : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaikdaaeqaaO GaaGjcVlaaiQdaaaa@362B@ in the first setting n 1 = 10, n 2 = 25, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaigdacaaIWaGaaGilaiaaysW7caWGUbWaaSbaaSqaaiaa ikdaaeqaaOGaaGypaiaaikdacaaI1aGaaGilaaaa@3D31@ while in the second one n 1 = n 2 = 50. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaad6gadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaaGynaiaa icdacaaIUaaaaa@3979@ The correlation between π 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHapWaaSbaaSqaaiaaigdaaeqaaa aa@3424@ and π 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHapWaaSbaaSqaaiaaikdaaeqaaa aa@3425@ was approximately 0.7 in both settings.

Monte Carlo simulation was used to study empirically the impact that each proposed method has on var ( D ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqG2bGaaeyyaiaabkhadaqadaqaai qadseagaqcaaGaayjkaiaawMcaaaaa@3725@ and var ( A ^ ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqG2bGaaeyyaiaabkhadaqadaqaai qadgeagaqcaaGaayjkaiaawMcaaiaai6caaaa@37DA@ For each setting, m= 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqabeqadaaabaGaamyBaiabg2da9i aaigdacaaIWaWaaWbaaSqabeaacaaI0aaaaaGcbaaabaaaaaaa@3661@ samples were drawn as described in the beginning of Section 5.1. Figures 5.1 and 5.2 show boxplots corresponding to the D ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGebGbaKaaaaa@32CA@ values obtained through Monte Carlo simulation, for both settings. The white boxplots correspond to the D ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGebGbaKaaaaa@32CA@ values obtained from independent samples s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@33D0@ and s 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdaaeqaaO GaaGilaaaa@3491@ while the grey ones to positively coordinated samples s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@33D0@ and s 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdaaeqaaO GaaGOlaaaa@3493@ The sampling design is specified below each boxplot (for example, TSCPS 1_indep_0.25 indicates TSCPS 1 with independent samples’ selection and α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3457@ 0.25 for both selections, while TSCPS 1_pos_0.25 indicates TSCPS 1 with positively coordinated samples and α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3457@ 0.25 for both selections).

Similarly, Figures 5.3 and 5.4 show boxplots corresponding to the A ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGbbGbaKaaaaa@32C7@ values obtained through Monte Carlo simulation, for both settings, respectively. The white boxplots correspond to the A ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGbbGbaKaaaaa@32C7@ values obtained from independent samples s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@33D0@ and s 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdaaeqaaO GaaGilaaaa@3491@ while the grey ones to negatively coordinated samples s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@33D0@ and s 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdaaeqaaO GaaGOlaaaa@3493@ In all figures, LPM with PRNs as well SCPS with PRNs show smaller spread of the D ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGebGbaKaaaaa@32CA@ values and A ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGbbGbaKaaaaa@32C7@ values compared to Poisson sampling designs since both provide fixed sample sizes and are able to manage the spatial correlation of the data.

Figures 5.1 and 5.2 show a similar pattern of the boxplots: a larger overlap between s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@33D0@ and s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdaaeqaaa aa@33D1@ leads to a smaller spread of the D ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGebGbaKaaaaa@32CA@ values. As expected, the spread of the D ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGebGbaKaaaaa@32CA@ values is reduced for each type of positively coordinated samples compared to independent samples’ selection. For LPM and SCPS designs this reduction is, however, less important. This fact can be explained by the smaller overlap between positively coordinated samples in LPM and SCPS designs compared to the other ones, as the examples in Section 5.1 show it. The larger sample sizes in the second setting reduce the spread of the D ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGebGbaKaaaaa@32CA@ values in the case of positively coordinated samples (grey boxplots) compared to the independent sample selection (white boxplots). In Figures 5.3 and 5.4, negative coordination reduces in general the spread of the A ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGbbGbaKaaaaa@32C7@ values compared to independent sample selection. As in Figures 5.1 and 5.2, this reduction is less important for LPM and SCPS compared for example to Poisson sampling and TSCPS 2.

Figure 5-1 for article 54953 issue 2018002

Description for Figure 5.1

Figure showing the boxplots corresponding to the D ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGebGbaKaaaaa@32CA@ values obtained through Monte Carlo simulation, for the first setting, n 1 =10, n 2 =25. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaigdacaaIWaGaaGilaiaaysW7caWGUbWaaSbaaSqaaiaa ikdaaeqaaOGaaGypaiaaikdacaaI1aGaaiOlaaaa@3D2D@ The boxplots are presented for each sampling design, i.e. Poisson, LPM, SCPS, TSCPS 1 with α=0.25, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaIYaGaaGynaiaacYcaaaa@3C23@ TSCPS 1 with α=0.50, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaI1aGaaGimaiaacYcaaaa@3C21@ TSCPS 1 with α=0.75, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaI3aGaaGynaiaacYcaaaa@3C28@ TSCPS 2 with α=0.25, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaIYaGaaGynaiaacYcaaaa@3C23@ TSCPS 2 with α=0.50 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaI1aGaaGimaaaa@3B71@ and TSCPS 2 with α=0.75, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaI3aGaaGynaiaacYcaaaa@3C28@ for independent sample selection positively coordinated samples. Values for D ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGebGbaKaaaaa@32CA@ are on the y-axis, ranging from -1 000 to 1 000. The spread of the D ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGebGbaKaaaaa@32CA@ values is reduced for each type of positively coordinated samples compared to independent samples’ selection. For LPM and SCPS designs this reduction is, however, less important. The spread is larger for Poisson and TSCPS 2 samples, but it’s reduced more by the positive coordination.

Figure 5-2 for article 54953 issue 2018002

Description for Figure 5.2

Figure showing the boxplots corresponding to the D ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGebGbaKaaaaa@32CA@ values obtained through Monte Carlo simulation, for the second setting, n 1 =50, n 2 =50. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaiwdacaaIWaGaaGilaiaaysW7caWGUbWaaSbaaSqaaiaa ikdaaeqaaOGaaGypaiaaiwdacaaIWaGaaiOlaaaa@3D2F@ The boxplots are presented for each sampling design, i.e. Poisson, LPM, SCPS, TSCPS 1 with α=0.25, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaIYaGaaGynaiaacYcaaaa@3C23@ TSCPS 1 with α=0.50, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaI1aGaaGimaiaacYcaaaa@3C21@ TSCPS 1 with α=0.75, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaI3aGaaGynaiaacYcaaaa@3C28@ TSCPS 2 with α=0.25, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaIYaGaaGynaiaacYcaaaa@3C23@ TSCPS 2 with α=0.50 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaI1aGaaGimaaaa@3B71@ and TSCPS 2 with α=0.75, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaI3aGaaGynaiaacYcaaaa@3C28@ for independent sample selection positively coordinated samples. Values for D ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGebGbaKaaaaa@32CA@ are on the y-axis, ranging from -600 to 600. The spread of the D ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGebGbaKaaaaa@32CA@ values is reduced for each type of positively coordinated samples compared to independent samples’ selection. For LPM and SCPS designs this reduction is, however, less important. The spread is larger for Poisson and TSCPS 2 samples, but it’s reduced more by the positive coordination. The larger sample sizes in this second setting reduce the spread of the D ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGebGbaKaaaaa@32CA@ values in the case of positively coordinated samples compared to the independent sample selection.

Figure 5-3 for article 54953 issue 2018002

Description for Figure 5.3

Figure showing the boxplots corresponding to the A ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGbbGbaKaaaaa@32C7@ values obtained through Monte Carlo simulation, for the first setting, n 1 =10, n 2 =25. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaigdacaaIWaGaaGilaiaaysW7caWGUbWaaSbaaSqaaiaa ikdaaeqaaOGaaGypaiaaikdacaaI1aGaaiOlaaaa@3D2D@ The boxplots are presented for each sampling design, i.e. Poisson, LPM, SCPS, TSCPS 1 with α=0.25, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaIYaGaaGynaiaacYcaaaa@3C23@ TSCPS 1 with α=0.50, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaI1aGaaGimaiaacYcaaaa@3C21@ TSCPS 1 with α=0.75, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaI3aGaaGynaiaacYcaaaa@3C28@ TSCPS 2 with α=0.25, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaIYaGaaGynaiaacYcaaaa@3C23@ TSCPS 2 with α=0.50 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaI1aGaaGimaaaa@3B71@ and TSCPS 2 with α=0.75, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaI3aGaaGynaiaacYcaaaa@3C28@ for independent sample selection negatively coordinated samples. Values for A ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGbbGbaKaaaaa@32C7@ are on the y-axis, ranging from 500 to 2,000. Negative coordination reduces in general the spread of the A ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGbbGbaKaaaaa@32C7@ values compared to independent sample selection. This reduction is less important for LPM and SCPS compared for example to Poisson sampling and TSCPS 2.

Figure 5-4 for article 54953 issue 2018002

Description for Figure 5.4

Figure showing the boxplots corresponding to the A ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGbbGbaKaaaaa@32C7@ values obtained through Monte Carlo simulation, for the second setting, n 1 =50, n 2 =50. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaiwdacaaIWaGaaGilaiaaysW7caWGUbWaaSbaaSqaaiaa ikdaaeqaaOGaaGypaiaaiwdacaaIWaGaaiOlaaaa@3D2F@ The boxplots are presented for each sampling design, i.e. Poisson, LPM, SCPS, TSCPS 1 with α=0.25, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaIYaGaaGynaiaacYcaaaa@3C23@ TSCPS 1 with α=0.50, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaI1aGaaGimaiaacYcaaaa@3C21@ TSCPS 1 with α=0.75, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaI3aGaaGynaiaacYcaaaa@3C28@ TSCPS 2 with α=0.25, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaIYaGaaGynaiaacYcaaaa@3C23@ TSCPS 2 with α=0.50 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaI1aGaaGimaaaa@3B71@ and TSCPS 2 with α=0.75, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaI3aGaaGynaiaacYcaaaa@3C28@ for independent sample selection negatively coordinated samples. Values for A ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGbbGbaKaaaaa@32C7@ are on the y-axis, ranging from 1,000 to 1,400. Negative coordination reduces in general the spread of the A ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGbbGbaKaaaaa@32C7@ values compared to independent sample selection. This reduction is less important for LPM and SCPS compared for example to Poisson sampling and TSCPS 2. Largest sample sizes seem to reduce the spread of the A ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGbbGbaKaaaaa@32C7@ values, especially for negatively coordinated samples.

To quantify the performance of the proposed methods, for positive and negative coordination, respectively, the Monte Carlo variance was used

Var MC ( θ ) = 1 m 1 l = 1 m ( θ l E sim ( θ ) ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGwbGaaeyyaiaabkhadaWgaaWcba GaaeytaiaaboeaaeqaaOWaaeWaaeaacqaH4oqCaiaawIcacaGLPaaa caaMe8UaaGjbVlaai2dacaaMe8UaaGjbVpaalaaabaGaaGymaaqaai aad2gacqGHsislcaaIXaaaamaaqahabeWcbaGaeS4eHWMaaGypaiaa igdaaeaacaWGTbaaniabggHiLdGccaaMe8+aaeWaaeaacqaH4oqCda WgaaWcbaGaeS4eHWgabeaakiabgkHiTiaadweadaWgaaWcbaGaae4C aiaabMgacaqGTbaabeaakmaabmaabaGaeqiUdehacaGLOaGaayzkaa aacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaaGilaaaa@59D9@

where θ l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH4oqCdaWgaaWcbaGaeS4eHWgabe aaaaa@3504@ is the value of D ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGebGbaKaaaaa@32CA@ or A ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGbbGbaKaaaaa@32C7@ obtained in the l th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqWItecBdaahaaWcbeqaaiaabshaca qGObaaaaaa@3531@ run and E sim ( θ ) = 1 m j = 1 m θ j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaabohacaqGPb GaaeyBaaqabaGcdaqadaqaaiabeI7aXbGaayjkaiaawMcaaiaaysW7 caaMe8UaaGypaiaaysW7caaMe8+aaSqaaSqaaiaaigdaaeaacaWGTb aaaOWaaabmaeaacqaH4oqCdaWgaaWcbaGaamOAaaqabaaabaGaamOA aiaai2dacaaIXaaabaGaamyBaaqdcqGHris5aOGaaGOlaaaa@4ABD@ The reduction in variance estimation through overlapped samples of D ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGebGbaKaaaaa@32CA@ is summarized in Table 5.9. The table shows the values of the ratio between var MC ( D ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqG2bGaaeyyaiaabkhadaWgaaWcba GaaeytaiaaboeaaeqaaOWaaeWaaeaaceWGebGbaKaaaiaawIcacaGL Paaaaaa@38F1@ obtained using positively coordinated samples and var MC ( D ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqG2bGaaeyyaiaabkhadaWgaaWcba GaaeytaiaaboeaaeqaaOWaaeWaaeaaceWGebGbaKaaaiaawIcacaGL Paaaaaa@38F1@ using independent samples for both settings. We note that for all sampling designs this ratio is less than 1, indicating a variance reduction through sample overlap. Table 5.10 shows the values of the ratio between var MC ( A ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqG2bGaaeyyaiaabkhadaWgaaWcba GaaeytaiaaboeaaeqaaOWaaeWaaeaaceWGbbGbaKaaaiaawIcacaGL Paaaaaa@38EE@ obtained using negatively coordinated samples and var MC ( A ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqG2bGaaeyyaiaabkhadaWgaaWcba GaaeytaiaaboeaaeqaaOWaaeWaaeaaceWGbbGbaKaaaiaawIcacaGL Paaaaaa@38EE@ using independent samples for both settings. For the first setting, except for Poisson sampling, the ratio is close to 1, showing negligible improvement of the negatively coordinated samples compared to independent selections. Using larger sample sizes, the second setting shows an important improvement for TSCPS 2, but not for LPM and SCPS.

Table 5.9
Ratio between var MC ( D ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqG2bGaaeyyaiaabkhadaWgaaWcba GaaeytaiaaboeaaeqaaOWaaeWaaeaaceWGebGbaKaaaiaawIcacaGL Paaaaaa@38B6@ obtained using positively coordinate samples and var MC ( D ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqG2bGaaeyyaiaabkhadaWgaaWcba GaaeytaiaaboeaaeqaaOWaaeWaaeaaceWGebGbaKaaaiaawIcacaGL Paaaaaa@38B6@ using independent samples
Table summary
This table displays the results of Ratio between var MC ( D ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqG2bGaaeyyaiaabkhadaWgaaWcba GaaeytaiaaboeaaeqaaOWaaeWaaeaaceWGebGbaKaaaiaawIcacaGL Paaaaaa@38B6@ obtained using positively coordinate samples and var MC ( D ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqG2bGaaeyyaiaabkhadaWgaaWcba GaaeytaiaaboeaaeqaaOWaaeWaaeaaceWGebGbaKaaaiaawIcacaGL Paaaaaa@38B6@ using independent samples. The information is grouped by Design (appearing as row headers), n 1 = 10, n 2 = 25 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaigdacaaIWaGaaGilaiaad6gadaWgaaWcbaGaaGOmaaqa baGccaaI9aGaaGOmaiaaiwdaaaa@3CE6@
Ratio and n 1 = 50, n 2 = 50 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaiwdacaaIWaGaaGilaiaad6gadaWgaaWcbaGaaGOmaaqa baGccaaI9aGaaGynaiaaicdaaaa@3CE8@ Ration (appearing as column headers).
Design n 1 = 10, n 2 = 25 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaigdacaaIWaGaaGilaiaad6gadaWgaaWcbaGaaGOmaaqa baGccaaI9aGaaGOmaiaaiwdaaaa@3CE6@
Ratio
n 1 = 50, n 2 = 50 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaiwdacaaIWaGaaGilaiaad6gadaWgaaWcbaGaaGOmaaqa baGccaaI9aGaaGynaiaaicdaaaa@3CE8@
Ratio
Poisson 0.481 0.178
LPM 0.759 0.679
SCPS 0.760 0.778
TSCPS 1 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 0.695 0.545
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 0.739 0.700
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 0.806 0.752
TSCPS 2 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 0.513 0.217
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 0.571 0.319
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 0.634 0.491
Table 5.10
Ratio between var MC ( A ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqG2bGaaeyyaiaabkhadaWgaaWcba GaaeytaiaaboeaaeqaaOWaaeWaaeaaceWGbbGbaKaaaiaawIcacaGL Paaaaaa@38B3@ obtained using negatively coordinate samples and var MC ( A ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqG2bGaaeyyaiaabkhadaWgaaWcba GaaeytaiaaboeaaeqaaOWaaeWaaeaaceWGbbGbaKaaaiaawIcacaGL Paaaaaa@38B3@ using independent samples
Table summary
This table displays the results of Ratio between var MC ( A ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqG2bGaaeyyaiaabkhadaWgaaWcba GaaeytaiaaboeaaeqaaOWaaeWaaeaaceWGbbGbaKaaaiaawIcacaGL Paaaaaa@38B3@ obtained using negatively coordinate samples and var MC ( A ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaqG2bGaaeyyaiaabkhadaWgaaWcba GaaeytaiaaboeaaeqaaOWaaeWaaeaaceWGbbGbaKaaaiaawIcacaGL Paaaaaa@38B3@ using independent samples. The information is grouped by Design (appearing as row headers), n 1 = 10, n 2 = 25 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaigdacaaIWaGaaGilaiaad6gadaWgaaWcbaGaaGOmaaqa baGccaaI9aGaaGOmaiaaiwdaaaa@3CE6@
Ratio and n 1 = 50, n 2 = 50 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaiwdacaaIWaGaaGilaiaad6gadaWgaaWcbaGaaGOmaaqa baGccaaI9aGaaGynaiaaicdaaaa@3CE8@
Ratio (appearing as column headers).
Design n 1 = 10, n 2 = 25 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaigdacaaIWaGaaGilaiaad6gadaWgaaWcbaGaaGOmaaqa baGccaaI9aGaaGOmaiaaiwdaaaa@3CE6@
Ratio
n 1 = 50, n 2 = 50 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeqabeqadiWa ceGabeqabeqabeqadeaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaiwdacaaIWaGaaGilaiaad6gadaWgaaWcbaGaaGOmaaqa baGccaaI9aGaaGynaiaaicdaaaa@3CE8@
Ratio
Poisson 0.792 0.324
LPM 0.941 0.949
SCPS 0.921 0.901
TSCPS 1 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 0.932 0.679
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 0.950 0.840
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 0.953 0.876
TSCPS 2 α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.25 0.828 0.387
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.50 0.834 0.463
α = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaI9aaaaa@3645@ 0.75 0.919 0.597

In summary, LPM with PRNs, SCPS with PRNs and the TSCPS family reduce the Monte-Carlo variance of the differences through sample overlap compared to independent samples’ selection in both settings. For the independent samples’ selection, these methods are more precise than Poisson sampling because they are able to manage the spatial trend present in the variable of interest, and the sample sizes are fixed (for LPM and SCPS using the “maximal weight strategy”) or less variable than for Poisson sampling. The Monte-Carlo variance of the averages is negligibly reduced by LPM and SCPS using negatively coordinated samples compared to independent samples in both settings. The transformed SCPS family shows a real improvement in the second setting, when n 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaa aa@33CB@ and n 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaikdaaeqaaa aa@33CC@ are relatively large, for all α . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaIUaaaaa@3448@


Date modified: