A note on Wilson coverage intervals for proportions estimated from complex samples
Section 3. The logistic transformation

The complex-sampling Wilson coverage interval turns out to be very similar to this two-sided coverage interval derived using a logistic transformation (see Brown et al., 2001):

f 1 { f ( p ) z 1 α / 2 var [ f ( p ) ] } P f 1 { f ( p ) + z 1 α / 2 var [ f ( p ) ] } , ( 3.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGMbWaaWbaaSqabeaacqGHsislca aIXaaaaOWaaiWaaeaacaWGMbWaaeWaaeaacaWGWbaacaGLOaGaayzk aaGaeyOeI0IaamOEamaaBaaaleaacaaIXaGaeyOeI0YaaSGbaeaacq aHXoqyaeaacaaIYaaaaaqabaGcdaGcaaqaaiaabAhacaqGHbGaaeOC amaadmaabaGaamOzamaabmaabaGaamiCaaGaayjkaiaawMcaaaGaay 5waiaaw2faaaWcbeaaaOGaay5Eaiaaw2haaiabgsMiJkaadcfacqGH KjYOcaWGMbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaiWaaeaaca WGMbWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGaey4kaSIaamOEamaa BaaaleaacaaIXaGaeyOeI0YaaSGbaeaacqaHXoqyaeaacaaIYaaaaa qabaGcdaGcaaqaaiaabAhacaqGHbGaaeOCamaadmaabaGaamOzamaa bmaabaGaamiCaaGaayjkaiaawMcaaaGaay5waiaaw2faaaWcbeaaaO Gaay5Eaiaaw2haaiaacYcacaaMf8UaaGzbVlaaywW7caaMf8Uaaiik aiaaiodacaGGUaGaaGymaiaacMcaaaa@6E3F@

where f ( p ) = log ( p ) log ( 1 p ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGMbWaaeWaaeaacaWGWbaacaGLOa GaayzkaaGaeyypa0JaciiBaiaac+gacaGGNbWaaeWaaeaacaWGWbaa caGLOaGaayzkaaGaeyOeI0IaciiBaiaac+gacaGGNbWaaeWaaeaaca aIXaGaeyOeI0IaamiCaaGaayjkaiaawMcaaiaacYcaaaa@440E@ and var [ f ( p ) ] = [ f ( p ) ] 2 var ( p ) = [ 1 / p + 1 / ( 1 p ) ] 2 p ( 1 p ) / n * = 1 / [ n * p ( 1 p ) ] . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaciGG2bGaaiyyaiaackhadaWadaqaai aadAgadaqadaqaaiaadchaaiaawIcacaGLPaaaaiaawUfacaGLDbaa cqGH9aqpdaWadaqaaiaadAgadaahaaWcbeqaaKqzGfGamai2gkdiIc aakmaabmaabaGaamiCaaGaayjkaiaawMcaaaGaay5waiaaw2faamaa CaaaleqabaGaaGOmaaaakiGacAhacaGGHbGaaiOCamaabmaabaGaam iCaaGaayjkaiaawMcaaiabg2da9maadmaabaWaaSGbaeaacaaIXaaa baGaamiCaaaacqGHRaWkdaWcgaqaaiaaigdaaeaadaqadaqaaiaaig dacqGHsislcaWGWbaacaGLOaGaayzkaaaaaaGaay5waiaaw2faamaa CaaaleqabaGaaGOmaaaakmaalyaabaGaamiCamaabmaabaGaaGymai abgkHiTiaadchaaiaawIcacaGLPaaaaeaacaWGUbGaaiOkaiabg2da 9maalyaabaGaaGymaaqaamaadmaabaGaamOBaiaacQcacaWGWbWaae WaaeaacaaIXaGaeyOeI0IaamiCaaGaayjkaiaawMcaaaGaay5waiaa w2faaaaaaaGaaiOlaaaa@6812@ The original rationale for this interval appears to be that it has this desirable property: it cannot contain values less than 0 or greater than 1, which would be nonsensical for a proportion.

The left-hand side of equation (3.1) can be rewritten as g ( x h ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGNbWaaeWaaeaacaWG4bGaeyOeI0 IaamiAaaGaayjkaiaawMcaaiaacYcaaaa@37BA@  where

g ( y ) = f 1 ( y ) = [ 1 + exp ( y ) ] 1 , x = f ( p ) = log ( p 1 p ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGNbWaaeWaaeaacaWG5baacaGLOa GaayzkaaGaeyypa0JaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaa kmaabmaabaGaamyEaaGaayjkaiaawMcaaiabg2da9maadmaabaGaaG ymaiabgUcaRiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0IaamyE aaGaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaeyOeI0 IaaGymaaaakiaaygW7caGGSaGaamiEaiabg2da9iaadAgadaqadaqa aiaadchaaiaawIcacaGLPaaacqGH9aqpciGGSbGaai4BaiaacEgada qadaqaamaalaaabaGaamiCaaqaaiaaigdacqGHsislcaWGWbaaaaGa ayjkaiaawMcaaiaacYcaaaa@59A1@

and

h = z 1 α / 2 n * p ( 1 p ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObGaeyypa0ZaaSaaaeaacaWG6b WaaSbaaSqaaiaaigdacqGHsisldaWcgaqaaiabeg7aHbqaaiaaikda aaaabeaaaOqaamaakaaabaGaamOBaiaacQcacaWGWbWaaeWaaeaaca aIXaGaeyOeI0IaamiCaaGaayjkaiaawMcaaaWcbeaaaaGccaGGUaaa aa@40A2@

The first and second derivatives of g ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGNbWaaeWaaeaacaWG5baacaGLOa Gaayzkaaaaaa@3531@ are g ( y ) = g ( y ) [ 1 g ( y ) ] , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGNbWaaWbaaSqabeaajugybiadaI THYaIOaaGcdaqadaqaaiaadMhaaiaawIcacaGLPaaacqGH9aqpcaWG NbWaaeWaaeaacaWG5baacaGLOaGaayzkaaWaamWaaeaacaaIXaGaey OeI0Iaam4zamaabmaabaGaamyEaaGaayjkaiaawMcaaaGaay5waiaa w2faaiaacYcaaaa@454D@ and g ( y )=g( y )[ 1g( y ) ][ 12g( y ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGNbWaaWbaaSqabeaajugybiadaI THYaIOaaGcdaahaaWcbeqaaKqzGfGamai2gkdiIcaakmaabmaabaGa amyEaaGaayjkaiaawMcaaiabg2da9iaadEgadaqadaqaaiaadMhaai aawIcacaGLPaaadaWadaqaaiaaigdacqGHsislcaWGNbWaaeWaaeaa caWG5baacaGLOaGaayzkaaaacaGLBbGaayzxaaWaamWaaeaacaaIXa GaeyOeI0IaaGOmaiaadEgadaqadaqaaiaadMhaaiaawIcacaGLPaaa aiaawUfacaGLDbaacaGGUaaaaa@50FD@ Invoking the mean value theorem, there is an h * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObGaaiOkaaaa@3359@ between 0 and h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObaaaa@32AB@ such that

g ( x h ) = g ( x ) g ( x ) h + 1 2 g ( x h * ) h 2 = p p ( 1 p ) z 1 α / 2 n * p ( 1 p ) + 1 2 [ 1 + ( 1 p p ) e h * ] 1 { 1 [ 1 + ( 1 p p ) e h * ] 1 } { 1 2 [ 1 + ( 1 p p ) e h * ] 1 } z 1 α / 2 2 n * p ( 1 p ) = p p ( 1 p ) z 1 α / 2 n * p ( 1 p ) + 1 2 p 1 + ( 1 p ) ( e h * 1 ) ( 1 p ) ( 1 p ) ( e h * 1 ) 1 + ( 1 p ) ( e h * 1 ) ( 1 2 p ) ( 1 p ) ( e h * 1 ) 1 + ( 1 p ) ( e h * 1 ) z 1 α / 2 2 n * p ( 1 p ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakqaabeqaauaabaqafiaaaaqaaiaadEgada qadaqaaiaadIhacqGHsislcaWGObaacaGLOaGaayzkaaaabaGaeyyp a0Jaam4zamaabmaabaGaamiEaaGaayjkaiaawMcaaiabgkHiTiaadE gadaahaaWcbeqaaKqzGfGamai2gkdiIcaakmaabmaabaGaamiEaaGa ayjkaiaawMcaaiaadIgacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYa aaaiaadEgadaahaaWcbeqaaKqzGfGamai2gkdiIkaaygW7cWaGyBOm GikaaOWaaeWaaeaacaWG4bGaeyOeI0IaamiAaiaacQcaaiaawIcaca GLPaaacaWGObWaaWbaaSqabeaacaaIYaaaaaGcbaaabaGaeyypa0Ja amiCaiaaykW7caaMc8UaeyOeI0IaamiCamaabmaabaGaaGymaiabgk HiTiaadchaaiaawIcacaGLPaaadaWcaaqaaiaadQhadaWgaaWcbaGa aGymaiabgkHiTmaalyaabaGaeqySdegabaGaaGOmaaaaaeqaaaGcba WaaOaaaeaacaWGUbGaaiOkaiaadchadaqadaqaaiaaigdacqGHsisl caWGWbaacaGLOaGaayzkaaaaleqaaaaaaOqaaaqaaiabgUcaRmaala aabaGaaGymaaqaaiaaikdaaaWaamWaaeaacaaIXaGaey4kaSYaaeWa aeaadaWcaaqaaiaaigdacqGHsislcaWGWbaabaGaamiCaaaaaiaawI cacaGLPaaacaWGLbWaaWbaaSqabeaacaWGObGaaiOkaaaaaOGaay5w aiaaw2faamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaacmaabaGaaG ymaiabgkHiTmaadmaabaGaaGymaiabgUcaRmaabmaabaWaaSaaaeaa caaIXaGaeyOeI0IaamiCaaqaaiaadchaaaaacaGLOaGaayzkaaGaam yzamaaCaaaleqabaGaamiAaiaacQcaaaaakiaawUfacaGLDbaadaah aaWcbeqaaiabgkHiTiaaigdaaaaakiaawUhacaGL9baadaGadaqaai aaigdacqGHsislcaaIYaWaamWaaeaacaaIXaGaey4kaSYaaeWaaeaa daWcaaqaaiaaigdacqGHsislcaWGWbaabaGaamiCaaaaaiaawIcaca GLPaaacaWGLbWaaWbaaSqabeaacaWGObGaaiOkaaaaaOGaay5waiaa w2faamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaay5Eaiaaw2haam aalaaabaGaamOEamaaDaaaleaacaaIXaGaeyOeI0YaaSGbaeaacqaH XoqyaeaacaaIYaaaaaqaaiaaikdaaaaakeaacaWGUbGaaiOkaiaadc hadaqadaqaaiaaigdacqGHsislcaWGWbaacaGLOaGaayzkaaaaaaqa aaqaaiabg2da9iaadchacqGHsislcaWGWbWaaeWaaeaacaaIXaGaey OeI0IaamiCaaGaayjkaiaawMcaamaalaaabaGaamOEamaaBaaaleaa caaIXaGaeyOeI0YaaSGbaeaacqaHXoqyaeaacaaIYaaaaaqabaaake aadaGcaaqaaiaad6gacaGGQaGaamiCamaabmaabaGaaGymaiabgkHi TiaadchaaiaawIcacaGLPaaaaSqabaaaaaGcbaaabaGaey4kaSYaaS aaaeaacaaIXaaabaGaaGOmaaaadaWcaaqaaiaadchaaeaacaaIXaGa ey4kaSYaaeWaaeaacaaIXaGaeyOeI0IaamiCaaGaayjkaiaawMcaam aabmaabaGaamyzamaaCaaaleqabaGaeyOeI0IaamiAaiaacQcaaaGc cqGHsislcaaIXaaacaGLOaGaayzkaaaaamaalaaabaWaaeWaaeaaca aIXaGaeyOeI0IaamiCaaGaayjkaiaawMcaaiabgkHiTmaabmaabaGa aGymaiabgkHiTiaadchaaiaawIcacaGLPaaadaqadaqaaiaadwgada ahaaWcbeqaaiaadIgacaGGQaaaaOGaeyOeI0IaaGymaaGaayjkaiaa wMcaaaqaaiaaigdacqGHRaWkdaqadaqaaiaaigdacqGHsislcaWGWb aacaGLOaGaayzkaaWaaeWaaeaacaWGLbWaaWbaaSqabeaacaWGObGa aiOkaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaaaaWaaSaaaeaada qadaqaaiaaigdacqGHsislcaaIYaGaamiCaaGaayjkaiaawMcaaiab gkHiTmaabmaabaGaaGymaiabgkHiTiaadchaaiaawIcacaGLPaaada qadaqaaiaadwgadaahaaWcbeqaaiaadIgacaGGQaaaaOGaeyOeI0Ia aGymaaGaayjkaiaawMcaaaqaaiaaigdacqGHRaWkdaqadaqaaiaaig dacqGHsislcaWGWbaacaGLOaGaayzkaaWaaeWaaeaacaWGLbWaaWba aSqabeaacaWGObGaaiOkaaaakiabgkHiTiaaigdaaiaawIcacaGLPa aaaaWaaSaaaeaacaWG6bWaa0baaSqaaiaaigdacqGHsisldaWcgaqa aiabeg7aHbqaaiaaikdaaaaabaGaaGOmaaaaaOqaaiaad6gacaGGQa GaamiCamaabmaabaGaaGymaiabgkHiTiaadchaaiaawIcacaGLPaaa aaGaaiilaaaaaeaacaaMb8UaaGzaVlaaygW7aaaa@1B64@

using

  [ 1 + ( 1 p p ) e h * ] 1 = p 1 + ( 1 p ) ( e h * 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGGaWaamWaaeaacaaIXaGaey4kaS YaaeWaaeaadaWcaaqaaiaaigdacqGHsislcaWGWbaabaGaamiCaaaa aiaawIcacaGLPaaacaWGLbWaaWbaaSqabeaacaWGObGaaiOkaaaaaO Gaay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da 9maalaaabaGaamiCaaqaaiaaigdacqGHRaWkdaqadaqaaiaaigdacq GHsislcaWGWbaacaGLOaGaayzkaaWaaeWaaeaacaWGLbWaaWbaaSqa beaacaWGObGaaiOkaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaaaa GaaiOlaaaa@4E22@

An analogous derivation can be made for the right-hand side of equation (3.1).

Consequently,

p + 1 2 p n * z 1 α / 2 2 2 z 1 α / 2 ( p ( 1 p ) n * ) 1 / 2 + o P ( 1 n * ) P p + 1 2 p n * z 1 α / 2 2 2 + z 1 α / 2 ( p ( 1 p ) n * ) 1 / 2 + o P ( 1 n * ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqaaeGabaaabaGaamiCaiabgUcaRm aalaaabaGaaGymaiabgkHiTiaaikdacaWGWbaabaGaamOBaiaacQca aaWaaSaaaeaacaWG6bWaa0baaSqaaiaaigdacqGHsisldaWcgaqaai abeg7aHbqaaiaaikdaaaaabaGaaGOmaaaaaOqaaiaaikdaaaGaeyOe I0IaamOEamaaBaaaleaacaaIXaGaeyOeI0YaaSGbaeaacqaHXoqyae aacaaIYaaaaaqabaGcdaqadaqaamaalaaabaGaamiCamaabmaabaGa aGymaiabgkHiTiaadchaaiaawIcacaGLPaaaaeaacaWGUbGaaiOkaa aaaiaawIcacaGLPaaadaahaaWcbeqaamaalyaabaGaaGymaaqaaiaa ikdaaaaaaOGaaGzaVlabgUcaRiaad+gadaWgaaWcbaGaamiuaaqaba GcdaqadaqaamaalaaabaGaaGymaaqaaiaad6gacaGGQaaaaaGaayjk aiaawMcaaiaaysW7cqGHKjYOcaaMe8UaamiuaaqaaiaaywW7caaMf8 UaaGzbVlaaywW7caaMf8UaeyizImQaaGjbVlaadchacqGHRaWkdaWc aaqaaiaaigdacqGHsislcaaIYaGaamiCaaqaaiaad6gacaGGQaaaam aalaaabaGaamOEamaaDaaaleaacaaIXaGaeyOeI0YaaSGbaeaacqaH XoqyaeaacaaIYaaaaaqaaiaaikdaaaaakeaacaaIYaaaaiabgUcaRi aadQhadaWgaaWcbaGaaGymaiabgkHiTmaalyaabaGaeqySdegabaGa aGOmaaaaaeqaaOWaaeWaaeaadaWcaaqaaiaadchadaqadaqaaiaaig dacqGHsislcaWGWbaacaGLOaGaayzkaaaabaGaamOBaiaacQcaaaaa caGLOaGaayzkaaWaaWbaaSqabeaadaWcgaqaaiaaigdaaeaacaaIYa aaaaaakiaaygW7cqGHRaWkcaWGVbWaaSbaaSqaaiaadcfaaeqaaOWa aeWaaeaadaWcaaqaaiaaigdaaeaacaWGUbGaaiOkaaaaaiaawIcaca GLPaaacaGGUaaaaaaa@8FF4@

After invoking the asymptotic equality in equation (2.3) and dropping o P ( 1 / n * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGVbWaaSbaaSqaaiaadcfaaeqaaO WaaeWaaeaadaWcgaqaaiaaigdaaeaacaWGUbGaaiOkaaaaaiaawIca caGLPaaaaaa@37B8@ terms, the last set of inequalities is equivalent to Wilson interval in equation (2.2) so long as n * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbGaaiOkaaaa@335F@ is sufficiently large and P ( 1 P ) > 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGqbWaaeWaaeaacaaIXaGaeyOeI0 IaamiuaaGaayjkaiaawMcaaiabg6da+iaaicdacaGGSaaaaa@390B@ the latter meaning that the true proportion is neither 0 or 1.


Date modified: