A note on Wilson coverage intervals for proportions estimated from complex samples
Section 4. Some concluding remarks

The asymptotic equivalence of a coverage interval based on a logistic transformation to the theoretically grounded Wilson interval is the main contribution of this paper. Although in the asymptotic framework, P ( 1 P ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGqbWaaeWaaeaacaaIXaGaeyOeI0 IaamiuaaGaayjkaiaawMcaaaaa@3699@ is fixed and positive as n * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbGaaiOkaaaa@335F@ grows large, in practice it is the size of p ( 1 p ) n * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbWaaeWaaeaacaaIXaGaeyOeI0 IaamiCaaGaayjkaiaawMcaaiaad6gacaGGQaaaaa@387A@ that matters when comparing the Wilson-type and logistic-transformation intervals. This requires that P ( 1 P ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGqbWaaeWaaeaacaaIXaGaeyOeI0 IaamiuaaGaayjkaiaawMcaaaaa@3699@ not be too small.

Brown et al. (2001) show empirically that under simple random sampling (with n = 50 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbGaeyypa0JaaGynaiaaicdaca GGPaGaaiilaaaa@368D@ coverage intervals derived from the logistic transformation tend to be larger than corresponding Wilson intervals for small values of P ( 1 P ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGqbWaaeWaaeaacaaIXaGaeyOeI0 IaamiuaaGaayjkaiaawMcaaiaac6caaaa@374B@ Kott and Liu (2009) make the same observation for one-sided intervals based on complex samples, supporting the notion that it is a better choice.

The asymptotic equivalence of the logistic-transformation interval with the Wilson interval explains the former’s empirical superiority in the literature (e.g., in Brown et al., 2001) to an analogous interval constructed using an arcsine transformation. Because arcsin ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaadchaaiaawIcacaGLPa aaaaa@343C@ has a constant large-sample variance under simple random sampling no matter the true value of P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGqbaaaa@3293@ (so long as P ( 1 P ) > 0 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGqbWaaeWaaeaacaaIXaGaeyOeI0 IaamiuaaGaayjkaiaawMcaaiabg6da+iaaicdacaGGPaGaaiilaaaa @39B8@ it has been hoped that the arcsine transformation would be ideal for interval construction.

Better than a Wilson interval, but not yet incorporated into any software package I know of, is the one-sided coverage intervals for P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGqbaaaa@3293@ derived using an Edgeworth expansion on p P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbGaeyOeI0Iaamiuaaaa@3475@ in Kott and Liu (2009). That method produces this two-sided interval:

p + 1 2 p n ˜ ( 1 6 + z 1 α / 2 2 3 ) z 1 α / 2 ( var ( p ) + [ 1 2 p n ˜ ( 1 6 + z 1 α / 2 2 3 ) ] 2 ) 1 / 2 P p + 1 2 p n ˜ ( 1 6 + z 1 α / 2 2 3 ) + z 1 α / 2 ( var ( p ) + [ 1 2 p n ˜ ( 1 6 + z 1 α / 2 2 3 ) ] 2 ) 1 / 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqaaeGabaaabaGaamiCaiabgUcaRm aalaaabaGaaGymaiabgkHiTiaaikdacaWGWbaabaGabmOBayaaiaaa amaabmaabaWaaSaaaeaacaaIXaaabaGaaGOnaaaacqGHRaWkdaWcaa qaaiaadQhadaqhaaWcbaGaaGymaiabgkHiTmaalyaabaGaeqySdega baGaaGOmaaaaaeaacaaIYaaaaaGcbaGaaG4maaaaaiaawIcacaGLPa aacqGHsislcaWG6bWaaSbaaSqaaiaaigdacqGHsisldaWcgaqaaiab eg7aHbqaaiaaikdaaaaabeaakmaabmaabaGaciODaiaacggacaGGYb WaaeWaaeaacaWGWbaacaGLOaGaayzkaaGaey4kaSYaamWaaeaadaWc aaqaaiaaigdacqGHsislcaaIYaGaamiCaaqaaiqad6gagaacaaaada qadaqaamaalaaabaGaaGymaaqaaiaaiAdaaaGaey4kaSYaaSaaaeaa caWG6bWaa0baaSqaaiaaigdacqGHsisldaWcgaqaaiabeg7aHbqaai aaikdaaaaabaGaaGOmaaaaaOqaaiaaiodaaaaacaGLOaGaayzkaaaa caGLBbGaayzxaaWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaa WaaWbaaSqabeaadaWcgaqaaiaaigdaaeaacaaIYaaaaaaakiaaygW7 cqGHKjYOcaaMe8UaamiuaaqaaiaaywW7caaMf8UaaGzbVlaaywW7ca aMf8UaeyizImQaaGjbVlaadchacqGHRaWkdaWcaaqaaiaaigdacqGH sislcaaIYaGaamiCaaqaaiqad6gagaacaaaadaqadaqaamaalaaaba GaaGymaaqaaiaaiAdaaaGaey4kaSYaaSaaaeaacaWG6bWaa0baaSqa aiaaigdacqGHsisldaWcgaqaaiabeg7aHbqaaiaaikdaaaaabaGaaG OmaaaaaOqaaiaaiodaaaaacaGLOaGaayzkaaGaey4kaSIaamOEamaa BaaaleaacaaIXaGaeyOeI0YaaSGbaeaacqaHXoqyaeaacaaIYaaaaa qabaGcdaqadaqaaiGacAhacaGGHbGaaiOCamaabmaabaGaamiCaaGa ayjkaiaawMcaaiabgUcaRmaadmaabaWaaSaaaeaacaaIXaGaeyOeI0 IaaGOmaiaadchaaeaaceWGUbGbaGaaaaWaaeWaaeaadaWcaaqaaiaa igdaaeaacaaI2aaaaiabgUcaRmaalaaabaGaamOEamaaDaaaleaaca aIXaGaeyOeI0YaaSGbaeaacqaHXoqyaeaacaaIYaaaaaqaaiaaikda aaaakeaacaaIZaaaaaGaayjkaiaawMcaaaGaay5waiaaw2faamaaCa aaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaWaaSGb aeaacaaIXaaabaGaaGOmaaaaaaGccaaMb8Uaaiilaaaaaaa@AA7B@

where n ˜ = [ ( 1 2 p ) var ( p ) ] / cov [ var ( p ) , p ] , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGUbGbaGaacqGH9aqpdaWcgaqaam aadmaabaWaaeWaaeaacaaIXaGaeyOeI0IaaGOmaiaadchaaiaawIca caGLPaaaciGG2bGaaiyyaiaackhadaqadaqaaiaadchaaiaawIcaca GLPaaaaiaawUfacaGLDbaacaaMc8oabaGaaGPaVlGacogacaGGVbGa aiODamaadmaabaGaciODaiaacggacaGGYbWaaeWaaeaacaWGWbaaca GLOaGaayzkaaGaaiilaiaadchaaiaawUfacaGLDbaacaGGSaaaaaaa @4F8D@ and cov [ var ( p ) , p ] , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaciGGJbGaai4BaiaacAhadaWadaqaai GacAhacaGGHbGaaiOCamaabmaabaGaamiCaaGaayjkaiaawMcaaiaa cYcacaWGWbaacaGLBbGaayzxaaGaaiilaaaa@3E30@ a consistent estimator for Cov [ var ( p ) , p ] , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGdbGaae4BaiaabAhadaWadaqaai GacAhacaGGHbGaaiOCamaabmaabaGaamiCaaGaayjkaiaawMcaaiaa cYcacaWGWbaacaGLBbGaayzxaaGaaiilaaaa@3E0B@ exists and equals a consistent estimator for the third moment of p . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbGaaiOlaaaa@3365@ Note that cov [ var ( p ) , p ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaciGGJbGaai4BaiaacAhadaWadaqaai GacAhacaGGHbGaaiOCamaabmaabaGaamiCaaGaayjkaiaawMcaaiaa cYcacaWGWbaacaGLBbGaayzxaaaaaa@3D80@ doesn’t exist for designs with only two primary sampling units per stratum. Moreover, it is not a consistent estimator for the third moment of p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbaaaa@32B3@ when finite population correction matters.

Observe that n ˜ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGUbGbaGaaaaa@32C0@ again replaces n * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbGaaiOkaiaac6caaaa@3411@ In addition, 1 / 6 + z 1 α / 2 / 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaaigdaaeaacaaI2aaaai abgUcaRmaalyaabaGaamOEamaaBaaaleaacaaIXaGaeyOeI0YaaSGb aeaacqaHXoqyaeaacaaIYaaaaaqabaaakeaacaaIZaaaaaaa@3A52@ replaces z 1 α / 2 / 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaadQhadaWgaaWcbaGaaG ymaiabgkHiTmaalyaabaGaeqySdegabaGaaGOmaaaaaeqaaaGcbaGa aGOmaaaacaGGSaaaaa@388E@ which means that the center will often be closer to the p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbaaaa@32B3@ using this interval rather than the Wilson. The good coverage properties of this interval, like the Wilson, breaks down when the skewness coefficient of p ( E [ ( p P ) 3 ] / [ Var ( p ) ] 3 / 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbWaaeWaaeaadaWcgaqaaiaabw eadaWadaqaamaabmaabaGaamiCaiabgkHiTiaadcfaaiaawIcacaGL PaaadaahaaWcbeqaaiaaiodaaaaakiaawUfacaGLDbaacaaMc8oaba GaaGPaVpaadmaabaGaaeOvaiaabggacaqGYbWaaeWaaeaacaWGWbaa caGLOaGaayzkaaaacaGLBbGaayzxaaaaamaaCaaaleqabaWaaSGbae aacaaIZaaabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaaa@483E@ gets too large in absolute value, how large has yet to be determined.

Finally, SAS/STAT (SAS Institute Inc., 2010) offers a Wilson coverage interval for estimated proportions in its SURVEYFREQ procedure. The procedure’s method of adjusting the effective sample size, which can MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfFv0dg9Wqpe0dar pepeuf0xe9q8qiYRWFGCk9vi=dbvc9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeaaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@38D5@ and should MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfFv0dg9Wqpe0dar pepeuf0xe9q8qiYRWFGCk9vi=dbvc9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeaaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@38D5@ be turned off, is not related to the n ˜ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGUbGbaGaaaaa@32C0@ discussed here. Instead, it is based on an ad-hoc t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bGaeyOeI0caaa@33A4@ adjustment that sadly is not related to the variance of the denominator variance of the Wilson pivotal.

Acknowledgements

The author thanks Per Gösta Andersson for introducing me to this area of research and an anonymous referee for correcting errors in a previous version of the manuscript. Remaining errors are my own.

References

Brown, L.D., Cai, T. and Dasgupta, A. (2001). Interval estimation for a binomial proportion. Statistical Science, 16, 101-133.

Kott, P.S., and Carr, D.A. (1997). Developing an estimation strategy for a pesticide data program. Journal of Official Statistics, 13, 367-383.

Kott, P.S., and Liu, Y.K. (2009). One-sided coverage intervals for a proportion estimated from a stratified simple random sample. International Statistical Review/Revue Internationale de Statistique, 77, 251-265.

Kott, P.S., Andersson, P.G. and Nerman, O. (2001). Two-sided coverage intervals for small proportion based on survey data. Presented at Federal Committee on Statistical Methodology Research Conference, Washington, DC. http://fcsm.sites.usa.gov/files/2014/05/2001FCSM_Kott.pdf.

SAS Institute Inc. (2010). SAS/STAT® 9.22 User’s Guide. Cary, NC: SAS Institute Inc. http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_surveyfreq_a0000000252.htm.

WesVar (2007). WesVar® 4.3 Users’ Guide, B28-B29.

Wilson, E.B. (1927). Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association, 22, 209-212.


Date modified: