A note on Wilson coverage intervals for proportions estimated from complex samples
Section 2. The extension

It is not hard to generalize Wilson coverage intervals (also called “score intervals”) to complex survey data. See, for example, Kott and Carr (1997). As with the Wilson itself, one simply solves this equation for the true proportion P : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGqbGaaiOoaaaa@3351@

( p P ) 2 [ P ( 1 P ) n * ] z 1 α / 2 2 , ( 2.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcaaqaamaabmaabaGaamiCaiabgk HiTiaadcfaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakeaa daWadaqaamaalaaabaGaamiuaiaacIcacaaIXaGaeyOeI0Iaamiuai aacMcaaeaacaWGUbGaaiOkaaaaaiaawUfacaGLDbaaaaGaeyizImQa amOEamaaDaaaleaacaaIXaGaeyOeI0YaaSGbaeaacqaHXoqyaeaaca aIYaaaaaqaaiaaikdaaaGccaGGSaGaaGzbVlaaywW7caaMf8UaaGzb VlaaywW7caGGOaGaaGOmaiaac6cacaaIXaGaaiykaaaa@5306@

where p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbaaaa@32B3@ is a consistent estimator for P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGqbaaaa@3293@ under probability-sampling theory, and z 1 α / 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG6bWaaSbaaSqaaiaaigdacqGHsi sldaWcgaqaaiabeg7aHbqaaiaaikdaaaaabeaaaaa@3702@ is the Normal z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG6bGaeyOeI0caaa@33AA@ score for ( 1 α / 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaaigdacqGHsisldaWcga qaaiabeg7aHbqaaiaaikdaaaaacaGLOaGaayzkaaaaaa@3760@ given the goal is to produce a ( 1 α ) % MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaaigdacqGHsislcqaHXo qyaiaawIcacaGLPaaacaGGLaaaaa@3737@ coverage interval ( α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaGGOaGaeqySdegaaa@3409@ is often set at 0.05). The missing piece to equation (2.1) is n * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbGaaiOkaiaacYcaaaa@340F@ the so-called “effective sample size”, which in the standard Wilson formulation is the sample size n . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbGaaiOlaaaa@3363@ In our more general context, n * = p ( 1 p ) / var ( p ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbGaaiOkaiabg2da9maalyaaba GaamiCamaabmaabaGaaGymaiabgkHiTiaadchaaiaawIcacaGLPaaa aeaaciGG2bGaaiyyaiaackhadaqadaqaaiaadchaaiaawIcacaGLPa aaaaGaaiilaaaa@3F9B@ where var ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaciGG2bGaaiyyaiaackhadaqadaqaai aadchaaiaawIcacaGLPaaaaaa@3713@ is a consistent estimator for the variance of p , Var ( p ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbGaaiilaiaabAfacaqGHbGaae OCamaabmaabaGaamiCaaGaayjkaiaawMcaaiaac6caaaa@3945@

In order to calculate n * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbGaaiOkaiaacYcaaaa@340F@ we need both p ( 1 p ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbWaaeWaaeaacaaIXaGaeyOeI0 IaamiCaaGaayjkaiaawMcaaiaacYcaaaa@3789@ and var ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqG2bGaaeyyaiaabkhadaqadaqaai aadchaaiaawIcacaGLPaaaaaa@370E@ to be positive. In addition, let us assume that 1 / n * = O P ( 1 / n a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaaigdaaeaacaWGUbGaai Okaiabg2da9iaad+eadaWgaaWcbaGaamiuaaqabaGcdaqadaqaamaa lyaabaGaaGymaaqaaiaad6gadaahaaWcbeqaaiaadggaaaaaaaGcca GLOaGaayzkaaaaaaaa@3B7F@ for some positive a 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGHbGaeyizImQaaGymaiaacYcaaa a@35C4@ p P = O P ( 1 / n * ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbGaeyOeI0Iaamiuaiabg2da9i aad+eadaWgaaWcbaGaamiuaaqabaGcdaqadaqaamaalyaabaGaaGym aaqaamaakaaabaGaamOBaiaacQcaaSqabaaaaaGccaGLOaGaayzkaa Gaaiilaaaa@3C2A@ 0 < Var ( p ) = O ( 1 / n * ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaaIWaGaeyipaWJaaeOvaiaabggaca qGYbWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGaeyypa0Jaam4tamaa bmaabaWaaSGbaeaacaaIXaaabaGaamOBaiaacQcaaaaacaGLOaGaay zkaaGaaiilaaaa@3F31@ and var ( p ) / Var ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiGacAhacaGGHbGaaiOCam aabmaabaGaamiCaaGaayjkaiaawMcaaaqaaiaabAfacaqGHbGaaeOC amaabmaabaGaamiCaaGaayjkaiaawMcaaaaaaaa@3C59@ is 1 + O P ( 1 / n * ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaaIXaGaey4kaSIaam4tamaaBaaale aacaWGqbaabeaakmaabmaabaWaaSGbaeaacaaIXaaabaWaaOaaaeaa caWGUbGaaiOkaaWcbeaaaaaakiaawIcacaGLPaaacaGGUaaaaa@3A0C@ Note that the last three are always true under simple random sampling with replacement so long as P ( 1 P ) B > 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGqbWaaeWaaeaacaaIXaGaeyOeI0 IaamiuaaGaayjkaiaawMcaaiabgwMiZkaadkeacqGH+aGpcaaIWaGa aiOlaaaa@3B9A@

Dropping O P ( 1 / [ n * ] 3 / 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGpbWaaSbaaSqaaiaadcfaaeqaaO WaaeWaaeaadaWcgaqaaiaaigdaaeaadaWadaqaaiaad6gacaGGQaaa caGLBbGaayzxaaWaaWbaaSqabeaadaWcgaqaaiaaiodaaeaacaaIYa aaaaaaaaaakiaawIcacaGLPaaaaaa@3B50@ terms, but allowing p ( 1 p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbWaaeWaaeaacaaIXaGaeyOeI0 IaamiCaaGaayjkaiaawMcaaaaa@36D9@ to be small (effectively o p ( 1 ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGVbWaaSbaaSqaaiaadchaaeqaaO GaaiikaiaaigdacaGGPaGaaiykaiaacYcaaaa@374E@ one can derive this Wilson-like interval for P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGqbaaaa@3293@ from equation (2.1):

p + 1 2 p n * z 1 α / 2 2 2 z 1 α / 2 ( p ( 1 p ) n * + z 1 α / 2 2 4 ( n * ) 2 ) 1 / 2 P p + 1 2 p n * z 1 α / 2 2 2 + z 1 α / 2 ( p ( 1 p ) n * + z 1 α / 2 2 4 ( n * ) 2 ) 1 / 2 . ( 2.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqaaeGabaaabaGaamiCaiabgUcaRm aalaaabaGaaGymaiabgkHiTiaaikdacaWGWbaabaGaamOBaiaacQca aaWaaSaaaeaacaWG6bWaa0baaSqaaiaaigdacqGHsisldaWcgaqaai abeg7aHbqaaiaaikdaaaaabaGaaGOmaaaaaOqaaiaaikdaaaGaeyOe I0IaamOEamaaBaaaleaacaaIXaGaeyOeI0YaaSGbaeaacqaHXoqyae aacaaIYaaaaaqabaGcdaqadaqaamaalaaabaGaamiCamaabmaabaGa aGymaiabgkHiTiaadchaaiaawIcacaGLPaaaaeaacaWGUbGaaiOkaa aacqGHRaWkdaWcaaqaaiaadQhadaqhaaWcbaGaaGymaiabgkHiTmaa lyaabaGaeqySdegabaGaaGOmaaaaaeaacaaIYaaaaaGcbaGaaGinam aabmaabaGaamOBaiaacQcaaiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWcgaqaaiaaig daaeaacaaIYaaaaaaakiabgsMiJkaadcfaaeaacaaMf8UaaGzbVlaa ywW7caaMf8UaaGzbVlabgsMiJkaadchacqGHRaWkdaWcaaqaaiaaig dacqGHsislcaaIYaGaamiCaaqaaiaad6gacaGGQaaaamaalaaabaGa amOEamaaDaaaleaacaaIXaGaeyOeI0YaaSGbaeaacqaHXoqyaeaaca aIYaaaaaqaaiaaikdaaaaakeaacaaIYaaaaiabgUcaRiaadQhadaWg aaWcbaGaaGymaiabgkHiTmaalyaabaGaeqySdegabaGaaGOmaaaaae qaaOWaaeWaaeaadaWcaaqaaiaadchadaqadaqaaiaaigdacqGHsisl caWGWbaacaGLOaGaayzkaaaabaGaamOBaiaacQcaaaGaey4kaSYaaS aaaeaacaWG6bWaa0baaSqaaiaaigdacqGHsisldaWcgaqaaiabeg7a HbqaaiaaikdaaaaabaGaaGOmaaaaaOqaaiaaisdadaqadaqaaiaad6 gacaGGQaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaOGa ayjkaiaawMcaamaaCaaaleqabaWaaSGbaeaacaaIXaaabaGaaGOmaa aaaaGccaGGUaGaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYaGa aiOlaiaaikdacaGGPaaaaaaa@9BF8@

We can call this the “complex-sampling Wilson coverage interval”. WesVar (2007) computes a variant of this interval that does not drop O P ( 1 / [ n * ] 3 / 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGpbWaaSbaaSqaaiaadcfaaeqaaO WaaeWaaeaadaWcgaqaaiaaigdaaeaadaWadaqaaiaad6gacaGGQaaa caGLBbGaayzxaaaaamaaCaaaleqabaWaaSGbaeaacaaIZaaabaGaaG OmaaaaaaaakiaawIcacaGLPaaaaaa@3B50@ terms. It is dropped here because other terms of that size will be dropped later in this note.

If it is reasonable to drop O P ( 1 / [ n * ] 3 / 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGpbWaaSbaaSqaaiaadcfaaeqaaO WaaeWaaeaadaWcgaqaaiaaigdaaeaadaWadaqaaiaad6gacaGGQaaa caGLBbGaayzxaaaaamaaCaaaleqabaWaaSGbaeaacaaIZaaabaGaaG OmaaaaaaaakiaawIcacaGLPaaaaaa@3B50@ terms in deriving equation (2.2), one can also safely ignore the difference between 1 / n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaaigdaaeaacaWGUbaaaa aa@3382@ and 1 / ( n 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaaigdaaeaadaqadaqaai aad6gacqGHsislcaaIXaaacaGLOaGaayzkaaGaaiOlaaaaaaa@3765@ Under simple random sampling without replacement, n * = n / ( 1 f ) ( or ( n 1 ) / ( 1 f ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbGaaiOkaiabg2da9maalyaaba GaamOBaaqaamaabmaabaGaaGymaiabgkHiTiaadAgaaiaawIcacaGL Paaadaqadaqaaiaab+gacaqGYbGaaGjbVpaalyaabaWaaeWaaeaaca WGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaaaqaamaabmaabaGaaGym aiabgkHiTiaadAgaaiaawIcacaGLPaaaaaaacaGLOaGaayzkaaaaaa aa@46DD@ where f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGMbaaaa@32A9@ is the sampling fraction. When f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGMbaaaa@32A9@ is very small, the distinction between with and without replacement sampling can be ignored.

Observe that under simple random sampling with replacement, the denominator of the pivotal appearing on the left-hand side of equation (2.1) has no variance at all. By contrast, the denominator in the traditional Wald pivotal, var ( p ) = p ( 1 p ) / ( n 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaciGG2bGaaiyyaiaackhadaqadaqaai aadchaaiaawIcacaGLPaaacqGH9aqpdaWcgaqaaiaadchadaqadaqa aiaaigdacqGHsislcaWGWbaacaGLOaGaayzkaaaabaWaaeWaaeaaca WGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaacaGGSaaaaa@421E@ can have considerable variance, especially when p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbaaaa@32B3@ or 1 p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaaIXaGaeyOeI0IaamiCaaaa@345B@ is small. That is why Wilson intervals have superior performance under simple random sampling, whether with or without replacement.

That superiority carries over to complex sampling (see, for example, Kott, Andersson and Nerman, 2001), where the pivotal’s denominator is

P ( 1 P ) n * = var ( p ) P ( 1 P ) p ( 1 p ) = var ( p ) [ 1 ( p P ) ( p 2 P 2 ) p ( 1 p ) ] = var ( p ) [ 1 ( p P ) ( p P ) ( p + P ) p ( 1 p ) ] = var ( p ) 1 2 P n * ( p P ) + O P ( 1 / [ n * ] 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqaaeWacaaabaWaaSaaaeaacaWGqb WaaeWaaeaacaaIXaGaeyOeI0IaamiuaaGaayjkaiaawMcaaaqaaiaa d6gacaGGQaaaaiabg2da9iaabAhacaqGHbGaaeOCamaabmaabaGaam iCaaGaayjkaiaawMcaamaalaaabaGaamiuamaabmaabaGaaGymaiab gkHiTiaadcfaaiaawIcacaGLPaaaaeaacaWGWbWaaeWaaeaacaaIXa GaeyOeI0IaamiCaaGaayjkaiaawMcaaaaaaeaacqGH9aqpcaqG2bGa aeyyaiaabkhadaqadaqaaiaadchaaiaawIcacaGLPaaadaWadaqaai aaigdacqGHsisldaWcaaqaamaabmaabaGaamiCaiabgkHiTiaadcfa aiaawIcacaGLPaaacqGHsisldaqadaqaaiaadchadaahaaWcbeqaai aaikdaaaGccqGHsislcaWGqbWaaWbaaSqabeaacaaIYaaaaaGccaGL OaGaayzkaaaabaGaamiCamaabmaabaGaaGymaiabgkHiTiaadchaai aawIcacaGLPaaaaaaacaGLBbGaayzxaaaabaaabaGaeyypa0JaaeOD aiaabggacaqGYbWaaeWaaeaacaWGWbaacaGLOaGaayzkaaWaamWaae aacaaIXaGaeyOeI0YaaSaaaeaadaqadaqaaiaadchacqGHsislcaWG qbaacaGLOaGaayzkaaGaeyOeI0YaaeWaaeaacaWGWbGaeyOeI0Iaam iuaaGaayjkaiaawMcaamaabmaabaGaamiCaiabgUcaRiaadcfaaiaa wIcacaGLPaaaaeaacaWGWbWaaeWaaeaacaaIXaGaeyOeI0IaamiCaa GaayjkaiaawMcaaaaaaiaawUfacaGLDbaaaeaaaeaacqGH9aqpcaqG 2bGaaeyyaiaabkhadaqadaqaaiaadchaaiaawIcacaGLPaaacqGHsi sldaWcaaqaaiaaigdacqGHsislcaaIYaGaamiuaaqaaiaad6gacaGG QaaaamaabmaabaGaamiCaiabgkHiTiaadcfaaiaawIcacaGLPaaacq GHRaWkcaqGpbWaaSbaaSqaaiaadcfaaeqaaOWaaeWaaeaadaWcgaqa aiaaigdaaeaadaWadaqaaiaad6gacaGGQaaacaGLBbGaayzxaaWaaW baaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiaacYcaaaaaaa@9A9E@

which is likely to have less variance than var ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaciGG2bGaaiyyaiaackhadaqadaqaai aadchaaiaawIcacaGLPaaaaaa@3713@ in most applications. For an intuition into why this is so, observe that a putative variance estimator of the form var 1 ( p ) = var ( p ) b ( p P ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaciGG2bGaaiyyaiaackhadaWgaaWcba GaaGymaaqabaGcdaqadaqaaiaadchaaiaawIcacaGLPaaacqGH9aqp ciGG2bGaaiyyaiaackhadaqadaqaaiaadchaaiaawIcacaGLPaaacq GHsislcaWGIbWaaeWaaeaacaWGWbGaeyOeI0IaamiuaaGaayjkaiaa wMcaaaaa@4473@ is minimized when b = Cov [ var ( p ) , p ] / Var ( p ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGIbGaeyypa0ZaaSGbaeaacaqGdb Gaae4BaiaabAhadaWadaqaaiGacAhacaGGHbGaaiOCamaabmaabaGa amiCaaGaayjkaiaawMcaaiaacYcacaWGWbaacaGLBbGaayzxaaaaba GaaeOvaiaabggacaqGYbWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaa aiaac6caaaa@4540@ Under simple random sampling, whether with or without replacement, b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGIbaaaa@32A5@ is exactly ( 1 2 P ) / n * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaamaabmaabaGaaGymaiabgk HiTiaaikdacaWGqbaacaGLOaGaayzkaaaabaGaamOBaiaacQcaaaGa aGzaVlaac6caaaa@3A73@

Although the minimizing b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGIbaaaa@32A5@  is not exactly equal to ( 1 2 P ) / n * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaamaabmaabaGaaGymaiabgk HiTiaaikdacaWGqbaacaGLOaGaayzkaaaabaGaamOBaiaacQcaaaGa aGzaVlaacYcaaaa@3A71@ under more complex sampling designs, the optimal b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGIbaaaa@32A5@ is likely to be closer to ( 1 2 P ) / n * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaamaabmaabaGaaGymaiabgk HiTiaaikdacaWGqbaacaGLOaGaayzkaaaabaGaamOBaiaacQcaaaaa aa@3837@ than to 0. It is thus not surprising that the variance of var ( p ) [ ( 1 2 P ) / n * ] ( p P ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaciGG2bGaaiyyaiaackhadaqadaqaai aadchaaiaawIcacaGLPaaacqGHsisldaWadaqaamaalyaabaWaaeWa aeaacaaIXaGaeyOeI0IaaGOmaiaadcfaaiaawIcacaGLPaaaaeaaca WGUbGaaiOkaaaaaiaawUfacaGLDbaadaqadaqaaiaadchacqGHsisl caWGqbaacaGLOaGaayzkaaaaaa@44AB@ will usually be less than the variance of var ( p ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaciGG2bGaaiyyaiaackhadaqadaqaai aadchaaiaawIcacaGLPaaacaGGUaaaaa@37C5@ Nevertheless, a slight improvement on the complex-sampling Wilson coverage interval can be made by replacing n * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbGaaiOkaaaa@335F@ in equation (2.2) by

n ˜ = [ ( 1 2 p ) var ( p ) ] / cov [ var ( p ) , p ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGUbGbaGaacqGH9aqpdaWcgaqaam aadmaabaWaaeWaaeaacaaIXaGaeyOeI0IaaGOmaiaadchaaiaawIca caGLPaaaciGG2bGaaiyyaiaackhadaqadaqaaiaadchaaiaawIcaca GLPaaaaiaawUfacaGLDbaaaeaaciGGJbGaai4BaiaacAhadaWadaqa aiGacAhacaGGHbGaaiOCamaabmaabaGaamiCaaGaayjkaiaawMcaai aacYcacaWGWbaacaGLBbGaayzxaaaaaaaa@4BC6@

when cov [ var ( p ) , p ] , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaciGGJbGaai4BaiaacAhadaWadaqaai GacAhacaGGHbGaaiOCamaabmaabaGaamiCaaGaayjkaiaawMcaaiaa cYcacaWGWbaacaGLBbGaayzxaaGaaiilaaaa@3E30@ a consistent estimator for Cov [ var ( p ) , p ] , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGdbGaae4BaiaabAhadaWadaqaai GacAhacaGGHbGaaiOCamaabmaabaGaamiCaaGaayjkaiaawMcaaiaa cYcacaWGWbaacaGLBbGaayzxaaGaaiilaaaa@3E0B@ exists (see Kott et al., 2001).

As with the standard Wilson, the center of the complex-sample Wilson interval in equation (2.2) is slightly different from p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbaaaa@32B3@ when p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbaaaa@32B3@  is not 1 2 : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcdaWcbaGaaGymaaqaaiaaikdaaa GccaGG6aaaaa@341B@

C = p + 1 2 p n * z 1 α / 2 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGdbGaeyypa0JaamiCaiabgUcaRm aalaaabaGaaGymaiabgkHiTiaaikdacaWGWbaabaGaamOBaiaacQca aaWaaSaaaeaacaWG6bWaaSbaaSqaaiaaigdacqGHsisldaWcgaqaai abeg7aHbqaaiaaikdaaaaabeaaaOqaaiaaikdaaaGaaiOlaaaa@4138@

Its length L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGmbaaaa@328F@ appears longer than the Wald’s:

L = z 1 α / 2 ( p ( 1 p ) n * + z 1 α / 2 2 4 ( n * ) 2 ) 1 / 2 > z 1 α / 2 ( p ( 1 p ) n * ) 1 / 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGmbGaeyypa0JaamOEamaaBaaale aacaaIXaGaeyOeI0YaaSGbaeaacqaHXoqyaeaacaaIYaaaaaqabaGc daqadaqaamaalaaabaGaamiCamaabmaabaGaaGymaiabgkHiTiaadc haaiaawIcacaGLPaaaaeaacaWGUbGaaiOkaaaacqGHRaWkdaWcaaqa aiaadQhadaqhaaWcbaGaaGymaiabgkHiTmaalyaabaGaeqySdegaba GaaGOmaaaaaeaacaaIYaaaaaGcbaGaaGinamaabmaabaGaamOBaiaa cQcaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOa GaayzkaaWaaWbaaSqabeaadaWcgaqaaiaaigdaaeaacaaIYaaaaaaa kiabg6da+iaadQhadaWgaaWcbaGaaGymaiabgkHiTmaalyaabaGaeq ySdegabaGaaGOmaaaaaeqaaOWaaeWaaeaadaWcaaqaaiaadchadaqa daqaaiaaigdacqGHsislcaWGWbaacaGLOaGaayzkaaaabaGaamOBai aacQcaaaaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcgaqaaiaaigda aeaacaaIYaaaaaaakiaaygW7caGGUaaaaa@617E@

When P ( 1 P ) B > 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGqbWaaeWaaeaacaaIXaGaeyOeI0 IaamiuaaGaayjkaiaawMcaaiabgwMiZkaadkeacqGH+aGpcaaIWaGa aiilaaaa@3B98@ however,

( p ( 1 p ) n * + z 1 α / 2 2 4 ( n * ) 2 ) 1 / 2 = ( p ( 1 p ) n * ) 1 / 2 ( 1 + 1 4 z 1 α / 2 2 n * p ( 1 p ) ) 1 / 2 = ( p ( 1 p ) n * ) 1 / 2 + o p ( 1 n * ) . ( 2.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFn0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0dYddrpe0db9Wqpepic9qr=xfr=xfr=xmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqaaeGacaaabaWaaeWaaeaadaWcaa qaaiaadchadaqadaqaaiaaigdacqGHsislcaWGWbaacaGLOaGaayzk aaaabaGaamOBaiaacQcaaaGaey4kaSYaaSaaaeaacaWG6bWaa0baaS qaaiaaigdacqGHsisldaWcgaqaaiabeg7aHbqaaiaaikdaaaaabaGa aGOmaaaaaOqaaiaaisdadaqadaqaaiaad6gacaGGQaaacaGLOaGaay zkaaWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaamaaCaaa leqabaWaaSGbaeaacaaIXaaabaGaaGOmaaaaaaaakeaacqGH9aqpda qadaqaamaalaaabaGaamiCamaabmaabaGaaGymaiabgkHiTiaadcha aiaawIcacaGLPaaaaeaacaWGUbGaaiOkaaaaaiaawIcacaGLPaaada ahaaWcbeqaamaalyaabaGaaGymaaqaaiaaikdaaaaaaOWaaeWaaeaa caaIXaGaey4kaSYaaSaaaeaadaWcbaWcbaGaaGymaaqaaiaaisdaaa GccaWG6bWaa0baaSqaaiaaigdacqGHsisldaWcgaqaaiabeg7aHbqa aiaaikdaaaaabaGaaGOmaaaaaOqaaiaad6gacaGGQaGaamiCamaabm aabaGaaGymaiabgkHiTiaadchaaiaawIcacaGLPaaaaaaacaGLOaGa ayzkaaWaaWbaaSqabeaadaWcgaqaaiaaigdaaeaacaaIYaaaaaaaaO qaaaqaaiabg2da9maabmaabaWaaSaaaeaacaWGWbWaaeWaaeaacaaI XaGaeyOeI0IaamiCaaGaayjkaiaawMcaaaqaaiaad6gacaGGQaaaaa GaayjkaiaawMcaamaaCaaaleqabaWaaSGbaeaacaaIXaaabaGaaGOm aaaaaaGccqGHRaWkcaqGVbWaaSbaaSqaaiaadchaaeqaaOWaaeWaae aadaWcaaqaaiaaigdaaeaacaWGUbGaaiOkaaaaaiaawIcacaGLPaaa caGGUaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVl aacIcacaaIYaGaaiOlaiaaiodacaGGPaaaaaaa@8767@


Date modified: