Unequal probability inverse sampling Section 6. Unequal probability sampling without replacement

6.1 Sequential sampling without replacement

For the draw without replacement, the first problem is determining the design. One option is to use the method by Ohlsson (1995) called sequential Poisson sampling. This method involves generating M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@34F9@ uniform random variables in the interval [ 0,1 ] , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca aIWaGaaGilaiaaigdaaiaawUfacaGLDbaacaGGSaaaaa@38F4@ denoted u i k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGPbGaam4AaaqabaGccaGGUaaaaa@37E7@ Next, we select the n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@351A@ units corresponding to the smallest values of u i k / π k | i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca WG1bWaaSbaaSqaaiaadMgacaWGRbaabeaaaOqaaiabec8aWnaaBaaa leaacaWGRbGaaGiFaiaadMgaaeqaaaaakiaai6caaaa@3CDA@ This method has the advantage of being usable for any sample size and providing a sequence of samples that are included in each other. Unfortunately, it only satisfies approximately the fixed inclusion probabilities. However, the approximations are very accurate according to the simulations given in Ohlsson (1995).

Methods have also been proposed by Sampford (1962) and Pathak (1964). We propose an exact solution to the problem in the sense that the inclusion probabilities are exactly satisfied. We begin by calculating the inclusion probabilities for a design of fixed size n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@351A@ with inclusion probabilities proportional to a strictly positive auxiliary variable b k , k L . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGRbaabeaakiaaiYcacaWGRbGaeyicI4Saamitaiaai6ca aaa@3AE7@ The probabilities are determined by

π k | i ( n ) = min ( 1, C n b k l L b l ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa beaakmaabmaabaGaamOBaaGaayjkaiaawMcaaiaai2daciGGTbGaai yAaiaac6gadaqadaqaaiaaigdacaaISaGaam4qamaaBaaaleaacaWG UbaabeaakmaalaaabaGaamOyamaaBaaaleaacaWGRbaabeaaaOqaam aaqafabeWcbaGaeS4eHWMaeyicI4Saamitaaqab0GaeyyeIuoakiaa ykW7caWGIbWaaSbaaSqaaiabloriSbqabaaaaaGccaGLOaGaayzkaa GaaGilaaaa@5403@

where C n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGUbaabeaaaaa@360E@ is determined such that

k L π k | i ( n ) = k L min ( 1, C n b k l L b l ) = n . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale aacaWGRbGaeyicI4Saamitaaqab0GaeyyeIuoakiaaykW7cqaHapaC daWgaaWcbaWaaqGaaeaacaWGRbGaaGPaVdGaayjcSdGaaGPaVlaadM gaaeqaaOWaaeWaaeaacaWGUbaacaGLOaGaayzkaaGaaGypamaaqafa beWcbaGaam4AaiabgIGiolaadYeaaeqaniabggHiLdGcciGGTbGaai yAaiaac6gadaqadaqaaiaaigdacaaISaGaam4qamaaBaaaleaacaWG UbaabeaakmaalaaabaGaamOyamaaBaaaleaacaWGRbaabeaaaOqaam aaqafabeWcbaGaeS4eHWMaeyicI4Saamitaaqab0GaeyyeIuoakiaa ykW7caWGIbWaaSbaaSqaaiabloriSbqabaaaaaGccaGLOaGaayzkaa GaaGypaiaad6gacaaIUaaaaa@6230@

A simple algorithm for calculating these probabilities is described in Tillé (2006, page 19), among others. The probabilities can be calculated simply using the function inclusionprobabilities in the R sampling package.

A sequential selection method must therefore select a sample of size n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@351A@ with inclusion probabilities π k | i ( n ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa beaakmaabmaabaGaamOBaaGaayjkaiaawMcaaiaai6caaaa@3FD8@ It must then make it possible to go from size n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@351A@ to size n + 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgU caRiaaigdaaaa@36B7@ by simply selecting an additional unit such that the completed sample has an inclusion probability of π k | i ( n + 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa beaakmaabmaabaGaamOBaiabgUcaRiaaigdaaiaawIcacaGLPaaaca aIUaaaaa@4175@ It appears that the only method that allows that to be achieved is the elimination method (Tillé 1996). This method starts with the entire population (the list of occupations) and eliminates one unit in each step. In step j = 1, , N , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiaai2 dacaaIXaGaaGilaiablAciljaaiYcacaWGobGaaGilaaaa@3AAF@ the unit is eliminated from among the remaining units with the probability

1 π k | i ( N j ) π k | i ( N j + 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTmaalaaabaGaeqiWda3aaSbaaSqaamaaeiaabaGaam4AaiaaykW7 aiaawIa7aiaaykW7caWGPbaabeaakmaabmaabaGaamOtaiabgkHiTi aadQgaaiaawIcacaGLPaaaaeaacqaHapaCdaWgaaWcbaWaaqGaaeaa caWGRbGaaGPaVdGaayjcSdGaaGPaVlaadMgaaeqaaOWaaeWaaeaaca WGobGaeyOeI0IaamOAaiabgUcaRiaaigdaaiaawIcacaGLPaaaaaGa aGOlaaaa@519D@

This method can thus be used to create a sequence of samples included in each other that verify the inclusion probabilities in relation to their size.

Therefore, we can simply apply the elimination method for sample size n = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaaaaa@369C@ so that the algorithm successively eliminates all the units. Taking them in the reverse order of elimination, we obtain a sequence of units. The first n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@351A@ units of the sequence are selected with inclusion probability π k | i ( n ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaamaaeiaabaGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaa beaakmaabmaabaGaamOBaaGaayjkaiaawMcaaiaai6caaaa@3FD8@ The appendix contains a function written in R that can be used to generate this sequence. The code is executed in a simulation that shows that the probabilities obtained through simulations by applying this function are equal to the fixed inclusion probabilities for all sample sizes.

6.2 Inverse or negative design with unequal probabilities

Now that the design is defined, the inverse design can be defined. The units in the list of occupations are taken using the elimination method until r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@351E@ occupations in the enterprise are selected. In this case, the probability distribution of the number of failures X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaWGPbaabeaaaaa@361E@ seems impossible to calculate. Calculating the conditional inclusion probability E ( A i k | X i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyramaabm aabaWaaqGaaeaacaWGbbWaaSbaaSqaaiaadMgacaWGRbaabeaakiaa ykW7aiaawIa7aiaaykW7caWGybWaaSbaaSqaaiaadMgaaeqaaaGcca GLOaGaayzkaaaaaa@3FFF@ is also problematic.

However, we can proceed by analogy and estimate the inclusion probabilities on the basis of expression (5.1) developed for the case with replacement, where p i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaam4Aaaqabaaaaa@3726@ can simply be replaced by

π k | i ( r + X i ) r + X i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq aHapaCdaWgaaWcbaWaaqGaaeaacaWGRbGaaGPaVdGaayjcSdGaaGPa VlaadMgaaeqaaOWaaeWaaeaacaWGYbGaey4kaSIaamiwamaaBaaale aacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiaadkhacqGHRaWkcaWG ybWaaSbaaSqaaiaadMgaaeqaaaaakiaai6caaaa@46A8@

Therefore, we obtain

1 / π k | i ^ = { ( r 1 ) ( r + X i ) r ( X i + r 1 ) π k | i ( r + X i ) if k F i r + X i ( X i + r 1 ) π k | i ( r + X i ) if k D i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipC0xd9Wqpe0dd9 qqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9Ff0dfrpm0dXdHqps0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaada WcgaqaaiaaigdaaeaacqaHapaCdaWgaaWcbaWaaqGaaeaacaWGRbGa aGPaVdGaayjcSdGaaGPaVlaadMgaaeqaaaaaaOGaayPadaGaaGypam aaceaabaqbaeaabiGaaaqaamaalaaabaWaaeWaaeaacaWGYbGaeyOe I0IaaGymaaGaayjkaiaawMcaamaabmaabaGaamOCaiabgUcaRiaadI fadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaeaacaWGYbWa aeWaaeaacaWGybWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamOCai abgkHiTiaaigdaaiaawIcacaGLPaaacqaHapaCdaWgaaWcbaWaaqGa aeaacaWGRbGaaGPaVdGaayjcSdGaaGPaVlaadMgaaeqaaOWaaeWaae aacaWGYbGaey4kaSIaamiwamaaBaaaleaacaWGPbaabeaaaOGaayjk aiaawMcaaaaaaeaacaqGPbGaaeOzaiaaysW7caaMe8Uaam4AaiabgI GiolaadAeadaWgaaWcbaGaamyAaaqabaaakeaadaWcaaqaaiaadkha cqGHRaWkcaWGybWaaSbaaSqaaiaadMgaaeqaaaGcbaWaaeWaaeaaca WGybWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamOCaiabgkHiTiaa igdaaiaawIcacaGLPaaacqaHapaCdaWgaaWcbaWaaqGaaeaacaWGRb GaaGPaVdGaayjcSdGaaGPaVlaadMgaaeqaaOWaaeWaaeaacaWGYbGa ey4kaSIaamiwamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaa aaaeaacaqGPbGaaeOzaiaaysW7caaMe8Uaam4AaiabgIGiolaadsea daWgaaWcbaGaamyAaaqabaGccaaIUaaaaaGaay5Eaaaaaa@8BD2@

Date modified: