Inférence fondée sur la vraisemblance empirique pour les données d’enquête manquantes selon un échantillonnage à probabilités inégales - ARCHIVÉ

Articles et rapports : 12-001-X201900100002

Description :

La non-réponse partielle se produit fréquemment dans les enquêtes-échantillons. On utilise couramment l’imputation hot deck pour remplacer les valeurs des items manquants dans des groupes homogènes appelés classes d’imputation. Nous proposons une procédure d’imputation hot deck fractionnaire et une vraisemblance empirique associée pour l’inférence sur la moyenne de population d’une fonction d’une variable d’intérêt présentant des données manquantes selon un échantillonnage avec probabilité proportionnelle à la taille avec fractions d’échantillonnage négligeables. Nous calculons les distributions limites de l’estimateur du maximum de vraisemblance empirique et du rapport de vraisemblance empirique, et nous proposons deux procédures bootstrap asymptotiques valides afin de construire des intervalles de confiance pour la moyenne de population. Les études par simulations montrent que les procédures bootstrap proposées donnent de meilleurs résultats que les procédures bootstrap habituelles, qui se révèlent asymptotiquement incorrectes quand le nombre de tirages aléatoires de l’imputation fractionnaire est fixe. De plus, la procédure bootstrap proposée, fondée sur le rapport de vraisemblance empirique, semble donner des résultats significativement meilleurs que la méthode fondée sur la distribution limite de l’estimateur du maximum de vraisemblance empirique en cas de grande variation des probabilités d’inclusion ou d’échantillon de petite taille.

Numéro d'exemplaire : 2019001
Auteur(s) : Rao, J.N.K.; Cai, Song

Produit principal : Techniques d'enquête

FormatDate de sortieInformations supplémentaires
HTML7 mai 2019
PDF7 mai 2019