Analysis
Filter results by
Search HelpKeyword(s)
Subject
Year of publication
Author(s)
Results
All (11)
All (11) (0 to 10 of 11 results)
- Articles and reports: 12-001-X202400100002Description: We provide comparisons among three parametric methods for the estimation of participation probabilities and some brief comments on homogeneous groups and post-stratification.Release date: 2024-06-25
- Articles and reports: 12-001-X202300200005Description: Population undercoverage is one of the main hurdles faced by statistical analysis with non-probability survey samples. We discuss two typical scenarios of undercoverage, namely, stochastic undercoverage and deterministic undercoverage. We argue that existing estimation methods under the positivity assumption on the propensity scores (i.e., the participation probabilities) can be directly applied to handle the scenario of stochastic undercoverage. We explore strategies for mitigating biases in estimating the mean of the target population under deterministic undercoverage. In particular, we examine a split population approach based on a convex hull formulation, and construct estimators with reduced biases. A doubly robust estimator can be constructed if a followup subsample of the reference probability survey with measurements on the study variable becomes feasible. Performances of six competing estimators are investigated through a simulation study and issues which require further investigation are briefly discussed.Release date: 2024-01-03
- Articles and reports: 12-001-X202200200002Description:
We provide a critical review and some extended discussions on theoretical and practical issues with analysis of non-probability survey samples. We attempt to present rigorous inferential frameworks and valid statistical procedures under commonly used assumptions, and address issues on the justification and verification of assumptions in practical applications. Some current methodological developments are showcased, and problems which require further investigation are mentioned. While the focus of the paper is on non-probability samples, the essential role of probability survey samples with rich and relevant information on auxiliary variables is highlighted.
Release date: 2022-12-15 - Articles and reports: 12-001-X202200200008Description:
This response contains additional remarks on a few selected issues raised by the discussants.
Release date: 2022-12-15 - Articles and reports: 12-001-X201300111826Description:
It is routine practice for survey organizations to provide replication weights as part of survey data files. These replication weights are meant to produce valid and efficient variance estimates for a variety of estimators in a simple and systematic manner. Most existing methods for constructing replication weights, however, are only valid for specific sampling designs and typically require a very large number of replicates. In this paper we first show how to produce replication weights based on the method outlined in Fay (1984) such that the resulting replication variance estimator is algebraically equivalent to the fully efficient linearization variance estimator for any given sampling design. We then propose a novel weight-calibration method to simultaneously achieve efficiency and sparsity in the sense that a small number of sets of replication weights can produce valid and efficient replication variance estimators for key population parameters. Our proposed method can be used in conjunction with existing resampling techniques for large-scale complex surveys. Validity of the proposed methods and extensions to some balanced sampling designs are also discussed. Simulation results showed that our proposed variance estimators perform very well in tracking coverage probabilities of confidence intervals. Our proposed strategies will likely have impact on how public-use survey data files are produced and how these data sets are analyzed.
Release date: 2013-06-28 - Articles and reports: 11-536-X200900110806Description:
Recent work using a pseudo empirical likelihood (EL) method for finite population inferences with complex survey data focused primarily on a single survey sample, non-stratified or stratified, with considerable effort devoted to computational procedures. In this talk we present a pseudo empirical likelihood approach to inference from multiple surveys and multiple-frame surveys, two commonly encountered problems in survey practice. We show that inferences about the common parameter of interest and the effective use of various types of auxiliary information can be conveniently carried out through the constrained maximization of joint pseudo EL function. We obtain asymptotic results which are used for constructing the pseudo EL ratio confidence intervals, either using a chi-square approximation or a bootstrap calibration. All related computational problems can be handled using existing algorithms on stratified sampling after suitable re-formulation.
Release date: 2009-08-11 - Articles and reports: 11-522-X200600110424Description:
The International Tobacco Control (ITC) Policy Evaluation China Survey uses a multi-stage unequal probability sampling design with upper level clusters selected by the randomized systematic PPS sampling method. A difficulty arises in the execution of the survey: several selected upper level clusters refuse to participate in the survey and have to be replaced by substitute units, selected from units not included in the initial sample and once again using the randomized systematic PPS sampling method. Under such a scenario the first order inclusion probabilities of the final selected units are very difficult to calculate and the second order inclusion probabilities become virtually intractable. In this paper we develop a simulation-based approach for computing the first and the second order inclusion probabilities when direct calculation is prohibitive or impossible. The efficiency and feasibility of the proposed approach are demonstrated through both theoretical considerations and numerical examples. Several R/S-PLUS functions and codes for the proposed procedure are included. The approach can be extended to handle more complex refusal/substitution scenarios one may encounter in practice.
Release date: 2008-06-26 - Articles and reports: 12-001-X200800110613Description:
The International Tobacco Control (ITC) Policy Evaluation Survey of China uses a multi-stage unequal probability sampling design with upper level clusters selected by the randomized systematic PPS sampling method. A difficulty arises in the execution of the survey: several selected upper level clusters refuse to participate in the survey and have to be replaced by substitute units, selected from units not included in the initial sample and once again using the randomized systematic PPS sampling method. Under such a scenario the first order inclusion probabilities of the final selected units are very difficult to calculate and the second order inclusion probabilities become virtually intractable. In this paper we develop a simulation-based approach for computing the first and the second order inclusion probabilities when direct calculation is prohibitive or impossible. The efficiency and feasibility of the proposed approach are demonstrated through both theoretical considerations and numerical examples. Several R/S-PLUS functions and codes for the proposed procedure are included. The approach can be extended to handle more complex refusal/substitution scenarios one may encounter in practice.
Release date: 2008-06-26 - Articles and reports: 12-001-X20050029051Description:
We present computational algorithms for the recently proposed pseudo empirical likelihood method for the analysis of complex survey data. Several key algorithms for computing the maximum pseudo empirical likelihood estimators and for constructing the pseudo empirical likelihood ratio confidence intervals are implemented using the popular statistical software R and S-PLUS. Major codes are written in the form of R/S-PLUS functions and therefore can directly be used for survey applications and/or simulation studies.
Release date: 2006-02-17 - Articles and reports: 11-522-X20030017711Description:
This article uses the recently developed pseudo-empirical likelihood method to construct estimators that not only meet the consistency and efficiency requirements but have more attractive features.
Release date: 2005-01-26
Stats in brief (0)
Stats in brief (0) (0 results)
No content available at this time.
Articles and reports (11)
Articles and reports (11) (0 to 10 of 11 results)
- Articles and reports: 12-001-X202400100002Description: We provide comparisons among three parametric methods for the estimation of participation probabilities and some brief comments on homogeneous groups and post-stratification.Release date: 2024-06-25
- Articles and reports: 12-001-X202300200005Description: Population undercoverage is one of the main hurdles faced by statistical analysis with non-probability survey samples. We discuss two typical scenarios of undercoverage, namely, stochastic undercoverage and deterministic undercoverage. We argue that existing estimation methods under the positivity assumption on the propensity scores (i.e., the participation probabilities) can be directly applied to handle the scenario of stochastic undercoverage. We explore strategies for mitigating biases in estimating the mean of the target population under deterministic undercoverage. In particular, we examine a split population approach based on a convex hull formulation, and construct estimators with reduced biases. A doubly robust estimator can be constructed if a followup subsample of the reference probability survey with measurements on the study variable becomes feasible. Performances of six competing estimators are investigated through a simulation study and issues which require further investigation are briefly discussed.Release date: 2024-01-03
- Articles and reports: 12-001-X202200200002Description:
We provide a critical review and some extended discussions on theoretical and practical issues with analysis of non-probability survey samples. We attempt to present rigorous inferential frameworks and valid statistical procedures under commonly used assumptions, and address issues on the justification and verification of assumptions in practical applications. Some current methodological developments are showcased, and problems which require further investigation are mentioned. While the focus of the paper is on non-probability samples, the essential role of probability survey samples with rich and relevant information on auxiliary variables is highlighted.
Release date: 2022-12-15 - Articles and reports: 12-001-X202200200008Description:
This response contains additional remarks on a few selected issues raised by the discussants.
Release date: 2022-12-15 - Articles and reports: 12-001-X201300111826Description:
It is routine practice for survey organizations to provide replication weights as part of survey data files. These replication weights are meant to produce valid and efficient variance estimates for a variety of estimators in a simple and systematic manner. Most existing methods for constructing replication weights, however, are only valid for specific sampling designs and typically require a very large number of replicates. In this paper we first show how to produce replication weights based on the method outlined in Fay (1984) such that the resulting replication variance estimator is algebraically equivalent to the fully efficient linearization variance estimator for any given sampling design. We then propose a novel weight-calibration method to simultaneously achieve efficiency and sparsity in the sense that a small number of sets of replication weights can produce valid and efficient replication variance estimators for key population parameters. Our proposed method can be used in conjunction with existing resampling techniques for large-scale complex surveys. Validity of the proposed methods and extensions to some balanced sampling designs are also discussed. Simulation results showed that our proposed variance estimators perform very well in tracking coverage probabilities of confidence intervals. Our proposed strategies will likely have impact on how public-use survey data files are produced and how these data sets are analyzed.
Release date: 2013-06-28 - Articles and reports: 11-536-X200900110806Description:
Recent work using a pseudo empirical likelihood (EL) method for finite population inferences with complex survey data focused primarily on a single survey sample, non-stratified or stratified, with considerable effort devoted to computational procedures. In this talk we present a pseudo empirical likelihood approach to inference from multiple surveys and multiple-frame surveys, two commonly encountered problems in survey practice. We show that inferences about the common parameter of interest and the effective use of various types of auxiliary information can be conveniently carried out through the constrained maximization of joint pseudo EL function. We obtain asymptotic results which are used for constructing the pseudo EL ratio confidence intervals, either using a chi-square approximation or a bootstrap calibration. All related computational problems can be handled using existing algorithms on stratified sampling after suitable re-formulation.
Release date: 2009-08-11 - Articles and reports: 11-522-X200600110424Description:
The International Tobacco Control (ITC) Policy Evaluation China Survey uses a multi-stage unequal probability sampling design with upper level clusters selected by the randomized systematic PPS sampling method. A difficulty arises in the execution of the survey: several selected upper level clusters refuse to participate in the survey and have to be replaced by substitute units, selected from units not included in the initial sample and once again using the randomized systematic PPS sampling method. Under such a scenario the first order inclusion probabilities of the final selected units are very difficult to calculate and the second order inclusion probabilities become virtually intractable. In this paper we develop a simulation-based approach for computing the first and the second order inclusion probabilities when direct calculation is prohibitive or impossible. The efficiency and feasibility of the proposed approach are demonstrated through both theoretical considerations and numerical examples. Several R/S-PLUS functions and codes for the proposed procedure are included. The approach can be extended to handle more complex refusal/substitution scenarios one may encounter in practice.
Release date: 2008-06-26 - Articles and reports: 12-001-X200800110613Description:
The International Tobacco Control (ITC) Policy Evaluation Survey of China uses a multi-stage unequal probability sampling design with upper level clusters selected by the randomized systematic PPS sampling method. A difficulty arises in the execution of the survey: several selected upper level clusters refuse to participate in the survey and have to be replaced by substitute units, selected from units not included in the initial sample and once again using the randomized systematic PPS sampling method. Under such a scenario the first order inclusion probabilities of the final selected units are very difficult to calculate and the second order inclusion probabilities become virtually intractable. In this paper we develop a simulation-based approach for computing the first and the second order inclusion probabilities when direct calculation is prohibitive or impossible. The efficiency and feasibility of the proposed approach are demonstrated through both theoretical considerations and numerical examples. Several R/S-PLUS functions and codes for the proposed procedure are included. The approach can be extended to handle more complex refusal/substitution scenarios one may encounter in practice.
Release date: 2008-06-26 - Articles and reports: 12-001-X20050029051Description:
We present computational algorithms for the recently proposed pseudo empirical likelihood method for the analysis of complex survey data. Several key algorithms for computing the maximum pseudo empirical likelihood estimators and for constructing the pseudo empirical likelihood ratio confidence intervals are implemented using the popular statistical software R and S-PLUS. Major codes are written in the form of R/S-PLUS functions and therefore can directly be used for survey applications and/or simulation studies.
Release date: 2006-02-17 - Articles and reports: 11-522-X20030017711Description:
This article uses the recently developed pseudo-empirical likelihood method to construct estimators that not only meet the consistency and efficiency requirements but have more attractive features.
Release date: 2005-01-26
Journals and periodicals (0)
Journals and periodicals (0) (0 results)
No content available at this time.
- Date modified: