Keyword search

Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Type

2 facets displayed. 0 facets selected.

Year of publication

4 facets displayed. 0 facets selected.

Geography

1 facets displayed. 0 facets selected.

Survey or statistical program

1 facets displayed. 0 facets selected.
Sort Help
entries

Results

All (4)

All (4) ((4 results))

  • Articles and reports: 92F0138M2008002
    Description:

    On November 26 2006, the Organization for Economic Co-operation and Development (OECD) held an international workshop on defining and measuring metropolitan regions. The reasons the OECD organized this workshop are listed below.

    1. Metropolitan Regions have become a crucial economic actor in today's highly integrated world. Not only do they play their traditional role of growth poles in their countries but they function as essential nodes of the global economy.2. Policy makers, international organisations and research networks are increasingly called to compare the economic and social performances of Metropolitan Regions across countries. Examples of this work undertaken in international organisation and networks include the UN-Habitat, the EU Urban Audit, ESPON and the OECD Competitive Cities.3. The scope of what we can learn from these international comparisons, however, is limited by the lack of a comparable definition of Metropolitan Regions. Although most countries have their own definitions, these vary significantly from one country to another. Furthermore, in search for higher cross-country comparability, international initiatives have - somehow paradoxically - generated an even larger number of definitions.4. In principle, there is no clear reason to prefer one definition to another. As each definition has been elaborated for a specific analytical purpose, it captures some features of a Metropolitan Region while it tends to overlook others. The issue, rather, is that we do not know the pros and the cons of different definitions nor, most important, the analytical implications of using one definition rather than another. 5. In order to respond to these questions, the OECD hosted an international workshop on 'Defining and Measuring Metropolitan Regions'. The workshop brought together major international organisations (the UN, Eurostat, the World Bank, and the OECD), National Statistical Offices and researchers from this field. The aim of the workshop was to develop some 'guiding principles', which could be agreed upon among the participants and would eventually provide the basis for some form of 'International Guidance' for comparing Metropolitan Regions across countries.

    This working paper was presented at this workshop. It provides the conceptual and methodological basis for the definition of metropolitan areas in Canada and provides a detailed comparison of Canada's methodology to that of the USA. The intent was to encourage discussion regarding Canada's approach to defining metropolitan areas in the effort to identify the 'guiding principles'. It is being made available as a working paper to continue this discussion and to provide background to the user community to encourage dialogue and commentary from the user community regarding Canada's metropolitan area methodology.

    Release date: 2008-02-20

  • Articles and reports: 92F0138M2007001
    Description:

    Statistics Canada creates files that provide the link between postal codes and the geographic areas by which it disseminates statistical data. By linking postal codes to the Statistics Canada geographic areas, Statistics Canada facilitates the extraction and subsequent aggregation of data for selected geographic areas from files available to users. Users can then take data from Statistics Canada for their areas and tabulate this with other data for these same areas to create a combined statistical profile for these areas.

    An issue has been the methodology used by Statistics Canada to establish the linkage of postal codes to geographic areas. In order to address this issue, Statistics Canada decided to create a conceptual framework on which to base the rules for linking postal codes and Statistics Canada's geographic areas. This working paper presents the conceptual framework and the geocoding rules. The methodology described in this paper will be the basis for linking postal codes to the 2006 Census geographic areas. This paper is presented for feedback from users of Statistics Canada's postal codes related products.

    Release date: 2007-02-12

  • Articles and reports: 12-001-X20020026428
    Description:

    The analysis of survey data from different geographical areas where the data from each area are polychotomous can be easily performed using hierarchical Bayesian models, even if there are small cell counts in some of these areas. However, there are difficulties when the survey data have missing information in the form of non-response, especially when the characteristics of the respondents differ from the non-respondents. We use the selection approach for estimation when there are non-respondents because it permits inference for all the parameters. Specifically, we describe a hierarchical Bayesian model to analyse multinomial non-ignorable non-response data from different geographical areas; some of them can be small. For the model, we use a Dirichlet prior density for the multinomial probabilities and a beta prior density for the response probabilities. This permits a 'borrowing of strength' of the data from larger areas to improve the reliability in the estimates of the model parameters corresponding to the smaller areas. Because the joint posterior density of all the parameters is complex, inference is sampling-based and Markov chain Monte Carlo methods are used. We apply our method to provide an analysis of body mass index (BMI) data from the third National Health and Nutrition Examination Survey (NHANES III). For simplicity, the BMI is categorized into 3 natural levels, and this is done for each of 8 age-race-sex domains and 34 counties. We assess the performance of our model using the NHANES III data and simulated examples, which show our model works reasonably well.

    Release date: 2003-01-29

  • Geographic files and documentation: 92F0138M1993001
    Geography: Canada
    Description:

    The Geography Divisions of Statistics Canada and the U.S. Bureau of the Census have commenced a cooperative research program in order to foster an improved and expanded perspective on geographic areas and their relevance. One of the major objectives is to determine a common geographic area to form a geostatistical basis for cross-border research, analysis and mapping.

    This report, which represents the first stage of the research, provides a list of comparable pairs of Canadian and U.S. standard geographic areas based on current definitions. Statistics Canada and the U.S. Bureau of the Census have two basic types of standard geographic entities: legislative/administrative areas (called "legal" entities in the U.S.) and statistical areas.

    The preliminary pairing of geographic areas are based on face-value definitions only. The definitions are based on the June 4, 1991 Census of Population and Housing for Canada and the April 1, 1990 Census of Population and Housing for the U.S.A. The important aspect is the overall conceptual comparability, not the precise numerical thresholds used for delineating the areas.

    Data users should use this report as a general guide to compare the census geographic areas of Canada and the United States, and should be aware that differences in settlement patterns and population levels preclude a precise one-to-one relationship between conceptually similar areas. The geographic areas compared in this report provide a framework for further empirical research and analysis.

    Release date: 1999-03-05
Data (0)

Data (0) (0 results)

No content available at this time.

Analysis (3)

Analysis (3) ((3 results))

  • Articles and reports: 92F0138M2008002
    Description:

    On November 26 2006, the Organization for Economic Co-operation and Development (OECD) held an international workshop on defining and measuring metropolitan regions. The reasons the OECD organized this workshop are listed below.

    1. Metropolitan Regions have become a crucial economic actor in today's highly integrated world. Not only do they play their traditional role of growth poles in their countries but they function as essential nodes of the global economy.2. Policy makers, international organisations and research networks are increasingly called to compare the economic and social performances of Metropolitan Regions across countries. Examples of this work undertaken in international organisation and networks include the UN-Habitat, the EU Urban Audit, ESPON and the OECD Competitive Cities.3. The scope of what we can learn from these international comparisons, however, is limited by the lack of a comparable definition of Metropolitan Regions. Although most countries have their own definitions, these vary significantly from one country to another. Furthermore, in search for higher cross-country comparability, international initiatives have - somehow paradoxically - generated an even larger number of definitions.4. In principle, there is no clear reason to prefer one definition to another. As each definition has been elaborated for a specific analytical purpose, it captures some features of a Metropolitan Region while it tends to overlook others. The issue, rather, is that we do not know the pros and the cons of different definitions nor, most important, the analytical implications of using one definition rather than another. 5. In order to respond to these questions, the OECD hosted an international workshop on 'Defining and Measuring Metropolitan Regions'. The workshop brought together major international organisations (the UN, Eurostat, the World Bank, and the OECD), National Statistical Offices and researchers from this field. The aim of the workshop was to develop some 'guiding principles', which could be agreed upon among the participants and would eventually provide the basis for some form of 'International Guidance' for comparing Metropolitan Regions across countries.

    This working paper was presented at this workshop. It provides the conceptual and methodological basis for the definition of metropolitan areas in Canada and provides a detailed comparison of Canada's methodology to that of the USA. The intent was to encourage discussion regarding Canada's approach to defining metropolitan areas in the effort to identify the 'guiding principles'. It is being made available as a working paper to continue this discussion and to provide background to the user community to encourage dialogue and commentary from the user community regarding Canada's metropolitan area methodology.

    Release date: 2008-02-20

  • Articles and reports: 92F0138M2007001
    Description:

    Statistics Canada creates files that provide the link between postal codes and the geographic areas by which it disseminates statistical data. By linking postal codes to the Statistics Canada geographic areas, Statistics Canada facilitates the extraction and subsequent aggregation of data for selected geographic areas from files available to users. Users can then take data from Statistics Canada for their areas and tabulate this with other data for these same areas to create a combined statistical profile for these areas.

    An issue has been the methodology used by Statistics Canada to establish the linkage of postal codes to geographic areas. In order to address this issue, Statistics Canada decided to create a conceptual framework on which to base the rules for linking postal codes and Statistics Canada's geographic areas. This working paper presents the conceptual framework and the geocoding rules. The methodology described in this paper will be the basis for linking postal codes to the 2006 Census geographic areas. This paper is presented for feedback from users of Statistics Canada's postal codes related products.

    Release date: 2007-02-12

  • Articles and reports: 12-001-X20020026428
    Description:

    The analysis of survey data from different geographical areas where the data from each area are polychotomous can be easily performed using hierarchical Bayesian models, even if there are small cell counts in some of these areas. However, there are difficulties when the survey data have missing information in the form of non-response, especially when the characteristics of the respondents differ from the non-respondents. We use the selection approach for estimation when there are non-respondents because it permits inference for all the parameters. Specifically, we describe a hierarchical Bayesian model to analyse multinomial non-ignorable non-response data from different geographical areas; some of them can be small. For the model, we use a Dirichlet prior density for the multinomial probabilities and a beta prior density for the response probabilities. This permits a 'borrowing of strength' of the data from larger areas to improve the reliability in the estimates of the model parameters corresponding to the smaller areas. Because the joint posterior density of all the parameters is complex, inference is sampling-based and Markov chain Monte Carlo methods are used. We apply our method to provide an analysis of body mass index (BMI) data from the third National Health and Nutrition Examination Survey (NHANES III). For simplicity, the BMI is categorized into 3 natural levels, and this is done for each of 8 age-race-sex domains and 34 counties. We assess the performance of our model using the NHANES III data and simulated examples, which show our model works reasonably well.

    Release date: 2003-01-29
Reference (1)

Reference (1) ((1 result))

  • Geographic files and documentation: 92F0138M1993001
    Geography: Canada
    Description:

    The Geography Divisions of Statistics Canada and the U.S. Bureau of the Census have commenced a cooperative research program in order to foster an improved and expanded perspective on geographic areas and their relevance. One of the major objectives is to determine a common geographic area to form a geostatistical basis for cross-border research, analysis and mapping.

    This report, which represents the first stage of the research, provides a list of comparable pairs of Canadian and U.S. standard geographic areas based on current definitions. Statistics Canada and the U.S. Bureau of the Census have two basic types of standard geographic entities: legislative/administrative areas (called "legal" entities in the U.S.) and statistical areas.

    The preliminary pairing of geographic areas are based on face-value definitions only. The definitions are based on the June 4, 1991 Census of Population and Housing for Canada and the April 1, 1990 Census of Population and Housing for the U.S.A. The important aspect is the overall conceptual comparability, not the precise numerical thresholds used for delineating the areas.

    Data users should use this report as a general guide to compare the census geographic areas of Canada and the United States, and should be aware that differences in settlement patterns and population levels preclude a precise one-to-one relationship between conceptually similar areas. The geographic areas compared in this report provide a framework for further empirical research and analysis.

    Release date: 1999-03-05
Date modified: