Bayesian inference for a variance component model using pairwise composite likelihood with survey data
Section 4. Extension to unequal probability sampling designs

An important extension of our setting is to a complex sampling framework, where frequentist parameter estimation through estimation of a population-level pairwise composite likelihood is now in fairly common use. RVH and YRL have shown that an approach based on applying a frequentist pairwise composite likelihood works well for estimating multilevel model variance components in the case of certain unequal probability sampling designs, and avoids the issue of inconsistency when the second stage sample sizes are small. The uncertainty estimation in this approach uses estimating function theory and may not require the adjustments we consider in this paper. However, it would be desirable to formulate a Bayesian counterpart of this method. If a Bayesian formulation were agreed upon, the results of our paper would predict a need for adjustment of the pseudo-log-pairwise-composite-likelihood to align it with an appropriate log full likelihood function.

Suppose that the purpose is still analytic, that the model for Y ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGzbWaaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3494@  is (1.1), and the objects of inference are the mean θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  and the variance component σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3553@  or its square root. The survey population has N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGobaaaa@3280@  first stage units with sizes M i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaadMgaaeqaaO Gaaiilaaaa@3453@   i=1,,N, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaiilaiaaysW7caWGobGaaiilaaaa @3E5C@  and the first-stage sample consists of n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbaaaa@32A0@  of these, selected with an unequal probability sampling design. At the second stage, m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbWaaSbaaSqaaiaadMgaaeqaaa aa@33B9@  elementary units are selected by simple random sampling from the i th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbWaaWbaaSqabeaacaqG0bGaae iAaaaaaaa@34AA@  first stage unit, if that unit has been sampled at the first-stage. If the sizes M i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaadMgaaeqaaa aa@3399@  and m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbWaaSbaaSqaaiaadMgaaeqaaa aa@33B9@  and the sampling design probabilities p( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbGaaGPaVpaabmqabaGaaGjcVl aadohacaaMi8oacaGLOaGaayzkaaaaaa@39D1@  (where s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGZbaaaa@32A5@  runs through the two-stage subsets of the population satisfying the sample size specifications) do not depend on the u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaa aa@33C1@  or e ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGLbWaaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34A0@  values, the likelihood function can be taken to be of the form of (2.3), with m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbaaaa@329F@  replaced by m i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbWaaSbaaSqaaiaadMgaaeqaaO Gaaiilaaaa@3473@  and the extension of our work is straightforward in principle. However, if the sizes or sampling design probabilities do depend on the values of u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaa aa@33C1@  or e ij , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGLbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaacYcaaaa@355A@  they will be informative about the parameters of interest. The sample-level likelihood function from the combination of multilevel model and sampling design may be ill-defined or intractable. From a Bayesian perspective we then need to consider what can reasonably substitute for the true likelihood, and how closely that substitute can be approximated by an adjusted pairwise composite likelihood. The answers may depend upon the preferred method of using the sampling design probabilities in inference, and there are several possibilities. Pursuing these possibilities would be a fruitful avenue for future research.

One method, with limited applicability, would be based on the approach of Léon-Novelo and Savitsky (2019). Assuming single stage Bernoulli sampling (so that the sampling probabilities are fully determined by the inclusion probabilities) they model the joint distribution of the outcome variable, Y, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGzbGaaiilaaaa@333B@  and the inclusion probability, π, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaGGSaaaaa@341A@  using the model generating Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGzbaaaa@328B@  from x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH4baaaa@32AE@  in the population and a model generating π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCaaa@336A@  from x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH4baaaa@32AE@  and Y. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGzbGaaiOlaaaa@333D@  To make computations feasible there are restrictions on the form of this model; see their Theorem 1 and, especially, the special case in their Section 2.1.

We can extend the model in Section 2.1 of Léon-Novelo and Savitsky (2019) to two-stage cluster sampling. A further extension, i.e., replacing the sampling density of Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGzbaaaa@328B@  with a pairwise composite likelihood analogous to the likelihood part of (2.6), can be made. Thus, subject to the limitations in Theorem 1 of Léon-Novelo and Savitsky (2019), there are counterparts to the posterior densities, (2.5) and (2.6), that include the inclusion probabilities.

Another method, not fully Bayesian, but perhaps the most widely applicable extension of our approach, is to consider the population (census) log likelihood function ((2.5) and (2.6) of RVH) to be correct, and formulate a corresponding census log pairwise composite likelihood function as in our Section 2. We would then try to estimate the latter from the sample using sampling weights ((4.2) of RVH), and make adjustments such as appropriate weight normalization, or “scaling” as in Pfeffermann, Skinner, Holmes, Goldstein and Rasbash (1998), and curvature adjustments to the resulting estimated log pairwise composite likelihood function. This would produce a log pseudo-pairwise-likelihood function that could be used as an approximate log likelihood function in Bayesian inference. It would yield a Bayesian counterpart to the frequentist method put forward by RVH and YRL, and would extend the method of this paper to the unequal probability sampling situation.

We have obtained some preliminary details for this second approach. That is, if σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3553@  is known, analytic expressions for the full likelihood and pairwise composite likelihood are available for θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  at the census level. For the partial likelihood we alter (2.8) by taking σ u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaWgaaWcbaGaamyDaaqaba aaaa@3496@  fixed and add the weights w i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaa aa@33C3@  and w jk|i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG3bWaaSbaaSqaamaaeiqabaGaam OAaiaadUgacaaMc8oacaGLiWoacaaMc8UaamyAaaqabaaaaa@3A4F@  as in (4.2) of RVH. With a locally uniform prior for θ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCcaGGSaaaaa@3413@

p PL ( θ|y( n ) )exp{ 0.5 i=1 n j<k w i w jk|i ( y ij θ y ik θ ) Σ 2 1 ( y ij θ y ik θ ) T } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGqb GaaeitaaqabaGcdaqadeqaamaaeiqabaGaeqiUdeNaaGPaVdGaayjc SdGaaGPaVlaahMhacaaMc8+aaeWabeaacaaMi8UaamOBaiaayIW7ai aawIcacaGLPaaaaiaawIcacaGLPaaacaaMe8UaaGPaVlabg2Hi1kaa ysW7caaMc8UaaeyzaiaabIhacaqGWbGaaGPaVpaacmqabaGaeyOeI0 Iaaeimaiaab6cacaqG1aGaaGjbVpaaqahabaGaaGPaVpaaqafabaGa aGPaVlaadEhadaWgaaWcbaGaamyAaaqabaGccaWG3bWaaSbaaSqaam aaeiqabaGaamOAaiaadUgacaaMc8oacaGLiWoacaaMc8UaamyAaaqa baGcdaqadeqaaiaadMhadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaG jbVlabgkHiTiaaysW7cqaH4oqCcaaMf8UaamyEamaaBaaaleaacaWG PbGaam4AaaqabaGccaaMe8UaeyOeI0IaaGjbVlabeI7aXbGaayjkai aawMcaaiaaysW7cqqHJoWudaqhaaWcbaGaaGOmaaqaaiabgkHiTiaa igdaaaGcdaqadeqaaiaadMhadaWgaaWcbaGaamyAaiaadQgaaeqaaO GaaGjbVlabgkHiTiaaysW7cqaH4oqCcaaMf8UaamyEamaaBaaaleaa caWGPbGaam4AaaqabaGccaaMe8UaeyOeI0IaaGjbVlabeI7aXbGaay jkaiaawMcaamaaCaaaleqabaGaaeivaaaaaeaacaWGQbGaaGPaVlab gYda8iaaykW7caWGRbaabeqdcqGHris5aaWcbaGaamyAaiaai2daca aIXaaabaGaamOBaaqdcqGHris5aaGccaGL7bGaayzFaaaaaa@A4B8@

where

Σ 2 1 =[ σ 11 σ 12 σ 21 σ 22 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqqHJoWudaqhaaWcbaGaaGOmaaqaai abgkHiTiaaigdaaaGccaaMe8UaaGypaiaaysW7daWadaqaauaabaqa ciaaaeaacqaHdpWCdaahaaWcbeqaaiaaigdacaaIXaaaaaGcbaGaeq 4Wdm3aaWbaaSqabeaacaaIXaGaaGOmaaaaaOqaaiabeo8aZnaaCaaa leqabaGaaGOmaiaaigdaaaaakeaacqaHdpWCdaahaaWcbeqaaiaaik dacaaIYaaaaaaaaOGaay5waiaaw2faaaaa@4971@

with

σ 11 = σ 22 = σ e 2 ( 1 σ u 2 σ e 2 +2 σ u 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaahaaWcbeqaaiaaigdaca aIXaaaaOGaaGjbVlaai2dacaaMe8Uaeq4Wdm3aaWbaaSqabeaacaaI YaGaaGOmaaaakiaaysW7caaI9aGaaGjbVlabeo8aZnaaDaaaleaaca WGLbaabaGaeyOeI0IaaGOmaaaakiaaysW7daqadaqaaiaaigdacaaM e8UaeyOeI0IaaGjbVpaalaaabaGaeq4Wdm3aa0baaSqaaiaadwhaae aacaaIYaaaaaGcbaGaeq4Wdm3aa0baaSqaaiaadwgaaeaacaaIYaaa aOGaaGjbVlabgUcaRiaaysW7caaIYaGaeq4Wdm3aa0baaSqaaiaadw haaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaaaa@5C7D@

and

σ 12 = σ 21 = σ u 2 σ e 2 ( σ e 2 +2 σ u 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaahaaWcbeqaaiaaigdaca aIYaaaaOGaaGjbVlaai2dacaaMe8Uaeq4Wdm3aaWbaaSqabeaacaaI YaGaaGymaaaakiaaysW7caaI9aGaaGjbVlabgkHiTiaaysW7daWcaa qaaiabeo8aZnaaDaaaleaacaWG1baabaGaaGOmaaaaaOqaaiabeo8a ZnaaDaaaleaacaWGLbaabaGaaGOmaaaakiaaykW7daqadeqaaiabeo 8aZnaaDaaaleaacaWGLbaabaGaaGOmaaaakiaaysW7cqGHRaWkcaaM e8UaaGOmaiabeo8aZnaaDaaaleaacaWG1baabaGaaGOmaaaaaOGaay jkaiaawMcaaaaacaaIUaaaaa@59FF@

After some algebra,

p PL ( θ|y( n ) )exp{ 0.5 2 i=1 n j<k w i w jk|i σ e 2 +2 σ u 2 [ θ i=1 n j<k w i w jk|i ( y ij + y ik )/ 2 i=1 n j<k w i w jk|i ] 2 }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaabcfacaqGmb aabeaakmaabmqabaWaaqGabeaacqaH4oqCcaaMc8oacaGLiWoacaaM c8UaaCyEaiaaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkai aawMcaaaGaayjkaiaawMcaaiaaysW7caaMc8UaeyyhIuRaaGPaVlaa ysW7caqGLbGaaeiEaiaabchacaaMc8+aaiWabeaacqGHsislcaaMc8 Uaaeimaiaab6cacaqG1aGaaGjbVpaalaaabaGaaGOmaiaaykW7daae WaqaaiaaykW7daaeqaqaaiaaykW7caWG3bWaaSbaaSqaaiaadMgaae qaaOGaam4DamaaBaaaleaadaabceqaaiaadQgacaWGRbGaaGPaVdGa ayjcSdGaaGPaVlaadMgaaeqaaaqaaiaadQgacaaMe8UaeyipaWJaaG jbVlaadUgaaeqaniabggHiLdaaleaacaWGPbGaaGypaiaaigdaaeaa caWGUbaaniabggHiLdaakeaacqaHdpWCdaqhaaWcbaGaamyzaaqaai aaikdaaaGccaaMe8Uaey4kaSIaaGjbVlaaikdacqaHdpWCdaqhaaWc baGaamyDaaqaaiaaikdaaaaaaOGaaGjbVlaaykW7daWadeqaaiabeI 7aXjabgkHiTmaalaaabaWaaabmaeaacaaMc8+aaabeaeaacaaMc8Ua am4DamaaBaaaleaacaWGPbaabeaakiaadEhadaWgaaWcbaWaaqGabe aacaWGQbGaam4AaiaaykW7aiaawIa7aiaaykW7caWGPbaabeaaaeaa caWGQbGaaGjbVlabgYda8iaaysW7caWGRbaabeqdcqGHris5aaWcba GaamyAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOGaaGPaVpaa lyaabaGaaGikaiaadMhadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaG jbVlabgUcaRiaaysW7caWG5bWaaSbaaSqaaiaadMgacaWGRbaabeaa kiaaiMcaaeaacaaMc8UaaGOmaaaaaeaadaaeWaqaaiaaykW7daaeqa qaaiaaykW7caWG3bWaaSbaaSqaaiaadMgaaeqaaOGaam4DamaaBaaa leaadaabceqaaiaadQgacaWGRbGaaGPaVdGaayjcSdGaaGPaVlaadM gaaeqaaaqaaiaadQgacaaMe8UaeyipaWJaaGjbVlaadUgaaeqaniab ggHiLdaaleaacaWGPbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLd aaaaGccaGLBbGaayzxaaWaaWbaaSqabeaacaaMc8UaaGOmaaaaaOGa ay5Eaiaaw2haaiaai6caaaa@D309@

Similarly, we alter (2.7) by taking σ u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaWgaaWcbaGaamyDaaqaba aaaa@3496@  fixed and adding the weights. With a locally uniform prior for θ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCcaGGSaaaaa@3413@

p FL ( θ|y( n ) )exp{ 0.5 i=1 n j=1 m k=1 m w i w jk|i σ jk ( y ij θ )( y ik θ ) }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaabAeacaqGmb aabeaakmaabmqabaWaaqGabeaacqaH4oqCcaaMc8oacaGLiWoacaaM c8UaaCyEaiaaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkai aawMcaaaGaayjkaiaawMcaaiaaysW7caaMc8UaeyyhIuRaaGPaVlaa ysW7caqGLbGaaeiEaiaabchacaaMc8+aaiWabeaacqGHsislcaaMc8 Uaaeimaiaab6cacaqG1aGaaGjbVpaaqahabaGaaGPaVpaaqahabaGa aGPaVpaaqahabaGaaGPaVlaadEhadaWgaaWcbaGaamyAaaqabaGcca WG3bWaaSbaaSqaamaaeiqabaGaamOAaiaadUgacaaMc8oacaGLiWoa caWGPbaabeaakiabeo8aZnaaCaaaleqabaGaamOAaiaadUgaaaGcca aMc8+aaeWabeaacaWG5bWaaSbaaSqaaiaadMgacaWGQbaabeaakiaa ysW7cqGHsislcaaMe8UaeqiUdehacaGLOaGaayzkaaGaaGjbVpaabm qabaGaamyEamaaBaaaleaacaWGPbGaam4AaaqabaGccaaMe8UaeyOe I0IaaGjbVlabeI7aXbGaayjkaiaawMcaaaWcbaGaam4Aaiaai2daca aIXaaabaGaamyBaaqdcqGHris5aaWcbaGaamOAaiaai2dacaaIXaaa baGaamyBaaqdcqGHris5aaWcbaGaamyAaiaai2dacaaIXaaabaGaam OBaaqdcqGHris5aaGccaGL7bGaayzFaaGaaGOlaaaa@9422@

After some algebra,

p FL ( θ|y( n ) )exp{ 0.5 i=1 n w i { j=1 m w j|i a ( 1 ) + jk w jk|i a ( 2 ) } ( θ θ ^ ) 2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaabAeacaqGmb aabeaakiaaykW7daqadeqaamaaeiqabaGaeqiUdeNaaGPaVdGaayjc SdGaaGPaVlaahMhacaaMc8+aaeWabeaacaaMi8UaamOBaiaayIW7ai aawIcacaGLPaaaaiaawIcacaGLPaaacaaMe8UaaGPaVlabg2Hi1kaa ykW7caaMc8UaaeyzaiaabIhacaqGWbGaaGPaVpaacmqabaGaeyOeI0 IaaGPaVlaaicdacaaIUaGaaGynaiaaykW7daaeWbqaaiaaykW7caWG 3bWaaSbaaSqaaiaadMgaaeqaaOWaaiWabeaadaaeWbqaaiaaykW7ca WG3bWaaSbaaSqaamaaeiqabaGaamOAaiaaykW7aiaawIa7aiaaykW7 caWGPbaabeaakiaadggadaahaaWcbeqaamaabmqabaGaaGjcVlaaig dacaaMi8oacaGLOaGaayzkaaaaaaqaaiaadQgacaaMc8UaaGypaiaa ykW7caaIXaaabaGaamyBaaqdcqGHris5aOGaaGjbVlabgUcaRiaays W7daaeqbqaaiaaykW7caWG3bWaaSbaaSqaamaaeiqabaGaamOAaiaa dUgacaaMc8oacaGLiWoacaaMc8UaamyAaaqabaGccaWGHbWaaWbaaS qabeaadaqadeqaaiaayIW7caaIYaGaaGjcVdGaayjkaiaawMcaaaaa aeaacaWGQbGaaGPaVlabgcMi5kaaykW7caWGRbaabeqdcqGHris5aa GccaGL7bGaayzFaaWaaeWabeaacqaH4oqCcaaMe8UaeyOeI0IaaGjb VlqbeI7aXzaajaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaa qaaiaadMgacaaMc8UaaGypaiaaykW7caaIXaaabaGaamOBaaqdcqGH ris5aaGccaGL7bGaayzFaaaaaa@A91C@

where

a ( 1 ) = σ e 2 ( 1 σ u 2 σ e 2 +m σ u 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGHbWaaWbaaSqabeaadaqadeqaai aayIW7caaIXaGaaGjcVdGaayjkaiaawMcaaaaakiaaysW7caaMc8Ua aGypaiaaysW7caaMc8Uaeq4Wdm3aa0baaSqaaiaadwgaaeaacqGHsi slcaaIYaaaaOGaaGPaVpaabmqabaGaaGymaiaaysW7cqGHsislcaaM e8+aaSaaaeaacqaHdpWCdaqhaaWcbaGaamyDaaqaaiaaikdaaaaake aacqaHdpWCdaqhaaWcbaGaamyzaaqaaiaaikdaaaGccaaMe8Uaey4k aSIaaGjbVlaad2gacqaHdpWCdaqhaaWcbaGaamyDaaqaaiaaikdaaa aaaaGccaGLOaGaayzkaaGaaGPaVlaaiYcaaaa@5DCA@

a ( 2 ) = σ u 2 σ e 2 ( σ e 2 +m σ u 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGHbWaaWbaaSqabeaadaqadeqaai aayIW7caaIYaGaaGjcVdGaayjkaiaawMcaaaaakiaaysW7caaI9aGa aGjbVlabgkHiTiaaysW7daWcaaqaaiabeo8aZnaaDaaaleaacaWG1b aabaGaaGOmaaaaaOqaaiabeo8aZnaaDaaaleaacaWGLbaabaGaaGOm aaaakiaaykW7daqadeqaaiabeo8aZnaaDaaaleaacaWGLbaabaGaaG OmaaaakiaaysW7cqGHRaWkcaaMe8UaamyBaiabeo8aZnaaDaaaleaa caWG1baabaGaaGOmaaaaaOGaayjkaiaawMcaaaaaaaa@5540@

and

θ ^ = i=1 n w i [ j=1 m a ( 1 ) w j|i y ij + jk a ( 2 ) w jk|i ( y ij + y ik )/ 2 ] i=1 n w i [ j=1 m a ( 1 ) w j|i + jk a ( 2 ) w jk|i ] . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH4oqCgaqcaiaaysW7caaMc8UaaG ypaiaaysW7caaMc8+aaSaaaeaadaaeWaqaaiaaykW7caWG3bWaaSba aSqaaiaadMgaaeqaaOGaaGPaVpaadmqabaWaaabmaeaacaaMc8Uaam yyamaaCaaaleqabaWaaeWabeaacaaMi8UaaGymaiaayIW7aiaawIca caGLPaaaaaGccaWG3bWaaSbaaSqaamaaeiqabaGaamOAaiaaykW7ai aawIa7aiaaykW7caWGPbaabeaakiaadMhadaWgaaWcbaGaamyAaiaa dQgaaeqaaaqaaiaadQgacaaMc8UaaGypaiaaykW7caaIXaaabaGaam yBaaqdcqGHris5aOGaaGjbVlabgUcaRiaaysW7daaeqaqaaiaaykW7 caWGHbWaaWbaaSqabeaadaqadeqaaiaayIW7caaIYaGaaGjcVdGaay jkaiaawMcaaaaakiaadEhadaWgaaWcbaWaaqGabeaacaWGQbGaam4A aiaaykW7aiaawIa7aiaaykW7caWGPbaabeaakmaalyaabaWaaeWabe aacaWG5bWaaSbaaSqaaiaadMgacaWGQbaabeaakiaaysW7cqGHRaWk caaMe8UaamyEamaaBaaaleaacaWGPbGaam4AaaqabaaakiaawIcaca GLPaaacaaMc8oabaGaaGPaVlaaikdaaaaaleaacaWGQbGaaGPaVlab gcMi5kaaykW7caWGRbaabeqdcqGHris5aaGccaGLBbGaayzxaaaale aacaWGPbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdaakeaadaae WaqaaiaaykW7caWG3bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgaca aMc8UaaGypaiaaykW7caaIXaaabaGaamOBaaqdcqGHris5aOWaamWa beaadaaeWaqaaiaaykW7caWGHbWaaWbaaSqabeaadaqadeqaaiaayI W7caaIXaGaaGjcVdGaayjkaiaawMcaaaaakiaadEhadaWgaaWcbaGa amOAaiaaiYhacaWGPbaabeaakiabgUcaRmaaqababaGaaGPaVlaadg gadaahaaWcbeqaamaabmqabaGaaGjcVlaaikdacaaMi8oacaGLOaGa ayzkaaaaaOGaam4DamaaBaaaleaadaabceqaaiaadQgacaWGRbGaaG PaVdGaayjcSdGaaGPaVlaadMgaaeqaaaqaaiaadQgacaaMc8Uaeyiy IKRaaGPaVlaadUgaaeqaniabggHiLdaaleaacaWGQbGaaGPaVlaai2 dacaaMc8UaaGymaaqaaiaad2gaa0GaeyyeIuoaaOGaay5waiaaw2fa aaaacaaIUaaaaa@CCE6@

Choice of the scaling of the weights will be important. To quantify the overstated precision in the log pairwise composite posterior a numerical evaluation may be required.

An advantage of pursuing extensions of this Bayesian approach further in future research would be that it is focused on inference for the model parameters rather than on finite population quantities, and thus it would not be necessary to bring third- or fourth-order inclusion probabilities into uncertainty estimation for σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3552@  or σ u . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaWgaaWcbaGaamyDaaqaba GccaGGUaaaaa@3551@


Date modified: