Survey Methodology
Release date: June 21, 2022
The journal Survey Methodology Volume 48, Number 1 (June 2022) contains the following ten papers:
Regular Papers
Maximum entropy classification for record linkage
by Danhyang Lee, Li-Chun Zhang and Jae Kwang Kim
Abstract
By record linkage one joins records residing in separate files which are believed to be related to the same entity. In this paper we approach record linkage as a classification problem, and adapt the maximum entropy classification method in machine learning to record linkage, both in the supervised and unsupervised settings of machine learning. The set of links will be chosen according to the associated uncertainty. On the one hand, our framework overcomes some persistent theoretical flaws of the classical approach pioneered by Fellegi and Sunter (1969); on the other hand, the proposed algorithm is fully automatic, unlike the classical approach that generally requires clerical review to resolve the undecided cases.
The anchoring method: Estimation of interviewer effects in the absence of interpenetrated sample assignment
by Michael R. Elliott, Brady T. West, Xinyu Zhang and Stephanie Coffey
Abstract
Methodological studies of the effects that human interviewers have on the quality of survey data have long been limited by a critical assumption: that interviewers in a given survey are assigned random subsets of the larger overall sample (also known as interpenetrated assignment). Absent this type of study design, estimates of interviewer effects on survey measures of interest may reflect differences between interviewers in the characteristics of their assigned sample members, rather than recruitment or measurement effects specifically introduced by the interviewers. Previous attempts to approximate interpenetrated assignment have typically used regression models to condition on factors that might be related to interviewer assignment. We introduce a new approach for overcoming this lack of interpenetrated assignment when estimating interviewer effects. This approach, which we refer to as the “anchoring” method, leverages correlations between observed variables that are unlikely to be affected by interviewers (“anchors”) and variables that may be prone to interviewer effects to remove components of within-interviewer correlations that lack of interpenetrated assignment may introduce. We consider both frequentist and Bayesian approaches, where the latter can make use of information about interviewer effect variances in previous waves of a study, if available. We evaluate this new methodology empirically using a simulation study, and then illustrate its application using real survey data from the Behavioral Risk Factor Surveillance System (BRFSS), where interviewer IDs are provided on public-use data files. While our proposed method shares some of the limitations of the traditional approach – namely the need for variables associated with the outcome of interest that are also free of measurement error – it avoids the need for conditional inference and thus has improved inferential qualities when the focus is on marginal estimates, and it shows evidence of further reducing overestimation of larger interviewer effects relative to the traditional approach.
Relative performance of methods based on model-assisted survey regression estimation: A simulation study
by Erin R. Lundy and J.N.K. Rao
Abstract
Use of auxiliary data to improve the efficiency of estimators of totals and means through model-assisted survey regression estimation has received considerable attention in recent years. Generalized regression (GREG) estimators, based on a working linear regression model, are currently used in establishment surveys at Statistics Canada and several other statistical agencies. GREG estimators use common survey weights for all study variables and calibrate to known population totals of auxiliary variables. Increasingly, many auxiliary variables are available, some of which may be extraneous. This leads to unstable GREG weights when all the available auxiliary variables, including interactions among categorical variables, are used in the working linear regression model. On the other hand, new machine learning methods, such as regression trees and lasso, automatically select significant auxiliary variables and lead to stable nonnegative weights and possible efficiency gains over GREG. In this paper, a simulation study, based on a real business survey sample data set treated as the target population, is conducted to study the relative performance of GREG, regression trees and lasso in terms of efficiency of the estimators and properties of associated regression weights. Both probability sampling and non-probability sampling scenarios are studied.
Bayesian inference for a variance component model using pairwise composite likelihood with survey data
by Mary E. Thompson, Joseph Sedransk, Junhan Fang and Grace Y. Yi
Abstract
We consider an intercept only linear random effects model for analysis of data from a two stage cluster sampling design. At the first stage a simple random sample of clusters is drawn, and at the second stage a simple random sample of elementary units is taken within each selected cluster. The response variable is assumed to consist of a cluster-level random effect plus an independent error term with known variance. The objects of inference are the mean of the outcome variable and the random effect variance. With a more complex two stage sampling design, the use of an approach based on an estimated pairwise composite likelihood function has appealing properties. Our purpose is to use our simpler context to compare the results of likelihood inference with inference based on a pairwise composite likelihood function that is treated as an approximate likelihood, in particular treated as the likelihood component in Bayesian inference. In order to provide credible intervals having frequentist coverage close to nominal values, the pairwise composite likelihood function and corresponding posterior density need modification, such as a curvature adjustment. Through simulation studies, we investigate the performance of an adjustment proposed in the literature, and find that it works well for the mean but provides credible intervals for the random effect variance that suffer from under-coverage. We propose possible future directions including extensions to the case of a complex design.
Non-response follow-up for business surveys
by Elisabeth Neusy, Jean-François Beaumont, Wesley Yung, Mike Hidiroglou and David Haziza
Abstract
In the last two decades, survey response rates have been steadily falling. In that context, it has become increasingly important for statistical agencies to develop and use methods that reduce the adverse effects of non-response on the accuracy of survey estimates. Follow-up of non-respondents may be an effective, albeit time and resource-intensive, remedy for non-response bias. We conducted a simulation study using real business survey data to shed some light on several questions about non-response follow-up. For instance, assuming a fixed non-response follow-up budget, what is the best way to select non-responding units to be followed up? How much effort should be dedicated to repeatedly following up non-respondents until a response is received? Should they all be followed up or a sample of them? If a sample is followed up, how should it be selected? We compared Monte Carlo relative biases and relative root mean square errors under different follow-up sampling designs, sample sizes and non-response scenarios. We also determined an expression for the minimum follow-up sample size required to expend the budget, on average, and showed that it maximizes the expected response rate. A main conclusion of our simulation experiment is that this sample size also appears to approximately minimize the bias and mean square error of the estimates.
Using Multiple Imputation of Latent Classes to construct population census tables with data from multiple sources
by Laura Boeschoten, Sander Scholtus, Jacco Daalmans, Jeroen K. Vermunt and Ton de Waal
Abstract
The Multiple Imputation of Latent Classes (MILC) method combines multiple imputation and latent class analysis to correct for misclassification in combined datasets. Furthermore, MILC generates a multiply imputed dataset which can be used to estimate different statistics in a straightforward manner, ensuring that uncertainty due to misclassification is incorporated when estimating the total variance. In this paper, it is investigated how the MILC method can be adjusted to be applied for census purposes. More specifically, it is investigated how the MILC method deals with a finite and complete population register, how the MILC method can simultaneously correct misclassification in multiple latent variables and how multiple edit restrictions can be incorporated. A simulation study shows that the MILC method is in general able to reproduce cell frequencies in both low- and high-dimensional tables with low amounts of bias. In addition, variance can also be estimated appropriately, although variance is overestimated when cell frequencies are small.
Bayesian inference for multinomial data from small areas incorporating uncertainty about order restriction
by Xinyu Chen and Balgobin Nandram
Abstract
When the sample size of an area is small, borrowing information from neighbors is a small area estimation technique to provide more reliable estimates. One of the famous models in small area estimation is a multinomial-Dirichlet hierarchical model for multinomial counts. Due to natural characteristics of the data, making unimodal order restriction assumption to parameter spaces is relevant. In our application, body mass index is more likely at an overweight level, which means the unimodal order restriction may be reasonable. The same unimodal order restriction for all areas may be too strong to be true for some cases. To increase flexibility, we add uncertainty to the unimodal order restriction. Each area will have similar unimodal patterns, but not the same. Since the order restriction with uncertainty increases the inference difficulty, we make comparison with the posterior summaries and approximated log-pseudo marginal likelihood.
A generalization of inverse probability weighting
Abstract
In finite population estimation, the inverse probability or Horvitz-Thompson estimator is a basic tool. Even when auxiliary information is available to model the variable of interest, it is still used to estimate the model error. Here, the inverse probability estimator is generalized by introducing a positive definite matrix. The usual inverse probability estimator is a special case of the generalized estimator, where the positive definite matrix is the identity matrix. Since calibration estimation seeks weights that are close to the inverse probability weights, it too can be generalized by seeking weights that are close to those of the generalized inverse probability estimator. Calibration is known to be optimal, in the sense that it asymptotically attains the Godambe-Joshi lower bound. That lower bound has been derived under a model where no correlation is present. This too, can be generalized to allow for correlation. With the correct choice of the positive definite matrix that generalizes the calibration estimators, this generalized lower bound can be asymptotically attained. There is often no closed-form formula for the generalized estimators. However, simple explicit examples are given here to illustrate how the generalized estimators take advantage of the correlation. This simplicity is achieved here, by assuming a correlation of one between some population units. Those simple estimators can still be useful, even if the correlation is smaller than one. Simulation results are used to compare the generalized estimators to the ordinary estimators.
Is undesirable answer behaviour consistent across surveys? An investigation into respondent characteristics
by Frank Bais, Barry Schouten and Vera Toepoel
Abstract
In this study, we investigate to what extent the respondent characteristics age and educational level may be associated with undesirable answer behaviour (UAB) consistently across surveys. We use data from panel respondents who participated in ten general population surveys of CentERdata and Statistics Netherlands. A new method to visually present UAB and an inventive adaptation of a non-parametric effect size measure are used. The occurrence of UAB of respondents with specific characteristics is summarized in density distributions that we refer to as respondent profiles. An adaptation of the robust effect size Cliff’s Delta is used to compare respondent profiles on the potentially consistent occurrence of UAB across surveys. Taking all surveys together, the degree of UAB varies by age and education. The results do not show consistent UAB across individual surveys: Age and educational level are associated with a relatively higher occurrence of UAB for some surveys, but a relatively lower occurrence for other surveys. We conclude that the occurrence of UAB across surveys may be more dependent on the survey and its items than on respondent’s cognitive ability.
A simulated annealing algorithm for joint stratification and sample allocation
by Mervyn O’Luing, Steven Prestwich and S. Armagan Tarim
Abstract
This study combines simulated annealing with delta evaluation to solve the joint stratification and sample allocation problem. In this problem, atomic strata are partitioned into mutually exclusive and collectively exhaustive strata. Each partition of atomic strata is a possible solution to the stratification problem, the quality of which is measured by its cost. The Bell number of possible solutions is enormous, for even a moderate number of atomic strata, and an additional layer of complexity is added with the evaluation time of each solution. Many larger scale combinatorial optimisation problems cannot be solved to optimality, because the search for an optimum solution requires a prohibitive amount of computation time. A number of local search heuristic algorithms have been designed for this problem but these can become trapped in local minima preventing any further improvements. We add, to the existing suite of local search algorithms, a simulated annealing algorithm that allows for an escape from local minima and uses delta evaluation to exploit the similarity between consecutive solutions, and thereby reduces the evaluation time. We compared the simulated annealing algorithm with two recent algorithms. In both cases, the simulated annealing algorithm attained a solution of comparable quality in considerably less computation time.
- Date modified: