Estimation of domain discontinuities using Hierarchical Bayesian Fay-Herriot models
Section 3. Methods

3.1   Small area estimation for domain discontinuities

Testing hypotheses about differences between estimates of a finite population parameter observed under different survey processes implies the existence of measurement errors. Therefore a measurement error model is required to explain systematic differences between survey estimates for the same population parameter observed under two different survey approaches. Let θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqaH4oqCdaWgaaWcbaGaamyAaaqaba aaaa@3392@ denote the population parameter of domain i = 1, , m . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGPbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGTbGaaiOlaaaa @3D98@ Let y i r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWG5bWaa0baaSqaaiaadMgaaeaaca WGYbaaaaaa@33D2@ and y i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWG5bWaa0baaSqaaiaadMgaaeaaca WGHbaaaaaa@33C1@ denote the observed value for θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqaH4oqCdaWgaaWcbaGaamyAaaqaba aaaa@3392@ in the case of a complete enumeration under the regular approach and alternative approach, respectively. Direct estimates for y i r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWG5bWaa0baaSqaaiaadMgaaeaaca WGYbaaaaaa@33D2@ and y i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWG5bWaa0baaSqaaiaadMgaaeaaca WGHbaaaaaa@33C1@ are obtained with the GREG estimator based on the samples assigned to the regular and alternative survey and are denoted as y ^ i r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWG5bGbaKaadaqhaaWcbaGaamyAaa qaaiaadkhaaaaaaa@33E2@ and y ^ i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWG5bGbaKaadaqhaaWcbaGaamyAaa qaaiaadggaaaaaaa@33D1@ respectively.

The relation between the observed values under a complete enumeration and the real population parameter is:   y i q = θ i + λ i q , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWG5bWaa0baaSqaaiaadMgaaeaaca WGXbaaaOGaaGjbVlaai2dacaaMe8UaeqiUde3aaSbaaSqaaiaadMga aeqaaOGaaGjbVlabgUcaRiaaysW7cqaH7oaBdaqhaaWcbaGaamyAaa qaaiaadghaaaGccaGGSaaaaa@4311@ i = 1, , m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGPbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGTbGaaiilaaaa @3D96@ q = r , a , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGXbGaaGjbVlaai2dacaaMe8Uaam OCaiaaiYcacaaMe8UaamyyaiaacYcaaaa@3A69@ with λ i q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqaH7oaBdaqhaaWcbaGaamyAaaqaai aadghaaaaaaa@3487@ the real measurement bias if θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqaH4oqCdaWgaaWcbaGaamyAaaqaba aaaa@3392@ is measured with survey approach q . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGXbGaaiOlaaaa@326A@ Without any external information, it is not possible to estimate λ i q . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqaH7oaBdaqhaaWcbaGaamyAaaqaai aadghaaaGccaGGUaaaaa@3543@ From the sample data only the relative bias, say Δ i = y i r y i a = λ i r λ i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqqHuoardaWgaaWcbaGaamyAaaqaba GccaaMe8UaaGypaiaaysW7caWG5bWaa0baaSqaaiaadMgaaeaacaWG YbaaaOGaaGjbVlabgkHiTiaaysW7caWG5bWaa0baaSqaaiaadMgaae aacaWGHbaaaOGaaGjbVlaai2dacaaMe8Uaeq4UdW2aa0baaSqaaiaa dMgaaeaacaWGYbaaaOGaaGjbVlabgkHiTiaaysW7cqaH7oaBdaqhaa WcbaGaamyAaaqaaiaadggaaaaaaa@50C4@ is identifiable. Direct estimates for these discontinuities are obtained from the survey data as the contrast between the GREG estimates, i.e., Δ ^ i = y ^ i r y ^ i a . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacuqHuoargaqcamaaBaaaleaacaWGPb aabeaakiaaysW7caaI9aGaaGjbVlqadMhagaqcamaaDaaaleaacaWG PbaabaGaamOCaaaakiaaysW7cqGHsislcaaMe8UabmyEayaajaWaa0 baaSqaaiaadMgaaeaacaWGHbaaaOGaaiOlaaaa@4239@

In the case of the Dutch CVS the sample size of the regular survey is large enough to obtain sufficiently precise direct estimates for the planned domains, since the sample is designed to publish official statistics for these domains. The sample assigned to the alternative survey for the parallel run has only a size of one third of the regular sample size, which is insufficient to obtain precise direct estimates for the planned domains. In an earlier paper (van den Brakel et al., 2016) univariate FH models were developed to obtain more precise predictions for the domain parameters observed with the small sample size assigned to the alternative survey approach using auxiliary variables derived from three different sources. The first source contains demographic variables derived from the Municipal Basis Administration (MBA), which is an administration of all people residing in the Netherlands. The second source contains related variables available in the Police Register of Reported Offences (PRRO). The third source, which is unique in the case of a parallel run, contains direct estimates for the same variables observed under the regular survey, which are sufficiently precise at least for the planned domains like police districts. The direct estimates from the regular survey are often selected as auxiliary variables for these univariate FH models. This comes not as a surprise since these are survey estimates for the same population parameters. Although measured with a different survey process, strong positive correlations can be expected. Strong improvements of the precision of small domain prediction are indeed found if the set of potential auxiliary variables, i.e., from MBA and PRRO, is extended with the direct estimates from the regular CVS.

In this application the sampling error in the auxiliary variables that come from the regular CVS can be ignored in the FH model, since the sample size and therefore the sampling error for these domains is more or less equal for the domains (Ybarra and Lohr, 2008). This implies that the variance component of the random domain effects is inflated with the sampling error of the auxiliary variables, which is fine as long as the sampling error does not differ between domains. In most applications this is not the case and the methods proposed by Ybarra and Lohr (2008) should be used to account for sampling error in the auxiliary variables.

FH multilevel models can be fitted under a frequentist approach using EBLUP or under an HB approach (Rao and Molina, 2015). In van den Brakel et al. (2016) the HB approach is preferred over the EBLUP, since the strong auxiliary information in the fixed effect part of the model often results in zero estimates for the variance component of the random domain effects, giving too much weight to the synthetic regression part and too little weight to the direct estimates in the EBLUP, (Bell, 1999; Rao and Molina, 2015). This problem can also be overcome with adjusted maximum likelihood estimation, see e.g., Li and Lahiri (2010) and Hirose and Lahiri (2018).

Let y ˜ i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWG5bGbaGaadaqhaaWcbaGaamyAaa qaaiaadggaaaaaaa@33D0@ denote the HB prediction for domain i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGPbaaaa@31B0@ under the alternative approach. Now domain discontinuites are obtained by Δ ˜ i = y ^ i r y ˜ i a . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacuqHuoargaacamaaBaaaleaacaWGPb aabeaakiaaysW7caaI9aGaaGjbVlqadMhagaqcamaaDaaaleaacaWG PbaabaGaamOCaaaakiaaysW7cqGHsislcaaMe8UabmyEayaaiaWaa0 baaSqaaiaadMgaaeaacaWGHbaaaOGaaiOlaaaa@4237@ Using direct estimates of the regular survey as auxiliary variables in the fixed part of the FH model for the alternative survey considerably increases the complexity of the variance estimation for the discontinuities. The variance of Δ ˜ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacuqHuoargaacamaaBaaaleaacaWGPb aabeaaaaa@3351@ can be expressed as Var ( Δ ˜ i ) = Var ( y ^ i r ) + MSE ( y ˜ i a ) 2 cov ( y ^ i r , y ˜ i a ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaqGwbGaaeyyaiaabkhadaqadeqaai qbfs5aezaaiaWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGa aGjbVlaai2dacaaMe8UaaeOvaiaabggacaqGYbWaaeWabeaaceWG5b GbaKaadaqhaaWcbaGaamyAaaqaaiaadkhaaaaakiaawIcacaGLPaaa caaMe8Uaey4kaSIaaGjbVlaab2eacaqGtbGaaeyramaabmqabaGabm yEayaaiaWaa0baaSqaaiaadMgaaeaacaWGHbaaaaGccaGLOaGaayzk aaGaaGjbVlabgkHiTiaaysW7caaIYaGaae4yaiaab+gacaqG2bWaae WabeaaceWG5bGbaKaadaqhaaWcbaGaamyAaaqaaiaadkhaaaGccaaI SaGaaGjbVlqadMhagaacamaaDaaaleaacaWGPbaabaGaamyyaaaaaO GaayjkaiaawMcaaiaac6caaaa@603E@ The use of y ^ i r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWG5bGbaKaadaqhaaWcbaGaamyAaa qaaiaadkhaaaaaaa@33E2@ or related sample estimates as auxiliary variables to predict y ˜ i a , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWG5bGbaGaadaqhaaWcbaGaamyAaa qaaiaadggaaaGccaGGSaaaaa@348A@ results in non-zero values for cov ( y ^ i r , y ˜ i a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaqGJbGaae4BaiaabAhadaqadeqaai qadMhagaqcamaaDaaaleaacaWGPbaabaGaamOCaaaakiaaiYcacaaM e8UabmyEayaaiaWaa0baaSqaaiaadMgaaeaacaWGHbaaaaGccaGLOa Gaayzkaaaaaa@3DA1@ that cannot be ignored. To approximate Var ( Δ ˜ i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaqGwbGaaeyyaiaabkhadaqadeqaai qbfs5aezaaiaWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGa aiilaaaa@3846@ van den Brakel et al. (2016) proposed an approximately design-unbiased estimator for cov ( y ^ i r , y ˜ i a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaqGJbGaae4BaiaabAhadaqadeqaai qadMhagaqcamaaDaaaleaacaWGPbaabaGaamOCaaaakiaaiYcacaaM e8UabmyEayaaiaWaa0baaSqaaiaadMgaaeaacaWGHbaaaaGccaGLOa Gaayzkaaaaaa@3DA1@ and Var ( y ^ i r ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaqGwbGaaeyyaiaabkhadaqadeqaai qadMhagaqcamaaDaaaleaacaWGPbaabaGaamOCaaaaaOGaayjkaiaa wMcaaiaacYcaaaa@38D7@ while the MSE ( y ˜ i a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaqGnbGaae4uaiaabweadaqadeqaai qadMhagaacamaaDaaaleaacaWGPbaabaGaamyyaaaaaOGaayjkaiaa wMcaaaaa@37D1@ is approximated with the posterior variance of the HB domain predictions. A major disadvantage of this approach is that model-based and design-based uncertainty measures are intertwined. On the one hand, the MSE’s for y ˜ i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWG5bGbaGaadaqhaaWcbaGaamyAaa qaaiaadggaaaaaaa@33D0@ are approximated with their posterior variances. On the other hand, the covariances between y ^ i r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWG5bGbaKaadaqhaaWcbaGaamyAaa qaaiaadkhaaaaaaa@33E2@ and y ˜ i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWG5bGbaGaadaqhaaWcbaGaamyAaa qaaiaadggaaaaaaa@33D0@ are approximated from a design-based perspective. Consequently, naive application of this approach may give negative variance estimates for the discontinuities. This drawback has been solved using a design-based approximation for the MSE ( y ˜ i a ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaqGnbGaae4uaiaabweadaqadeqaai qadMhagaacamaaDaaaleaacaWGPbaabaGaamyyaaaaaOGaayjkaiaa wMcaaiaacYcaaaa@3881@ resulting in a fully design-based approximation for the uncertainty of the estimated domain discontinuities.

In this paper a full HB framework for estimating domain discontinuities is proposed as an alternative by developing a bivariate FH model for the domain parameters observed under both the regular and alternative approach. The advantage of this approach is that it improves the precision of both the direct estimates of the regular and alternative domain estimates by borrowing strength from other domains and both surveys. Negative variance estimates for the estimated domain discontinuities are precluded by definition under this multivariate HB framework. This method is compared with a simple alternative, namely a univariate FH model for the direct estimates of the discontinuities. As mentioned in the introduction, it is anticipated that it might be hard to find covariates in the available registers that explain the discontinuities. An advantage of both models is that they avoid the complications of accounting for sampling error in the auxiliary variables, which is necessary if the survey estimates of the regular survey are used as covariates in univariate FH models and the sampling error differs between domains.

3.2   Bivariate Fay-Herriot model

A bivariate version of the FH model (Fay and Herriot, 1979) starts with a measurement model for the two GREG estimates observed in each domain:

y ^ i = y i + e i , i = 1, , m , ( 3.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWH5bGbaKaadaWgaaWcbaGaamyAaa qabaGccaaMe8UaaGypaiaaysW7caWH5bWaaSbaaSqaaiaadMgaaeqa aOGaaGjbVlabgUcaRiaaysW7caWHLbWaaSbaaSqaaiaadMgaaeqaaO GaaGilaiaaysW7caWGPbGaaGjbVlaai2dacaaMe8UaaGymaiaaiYca caaMe8UaeSOjGSKaaGilaiaaysW7caWGTbGaaGilaiaaywW7caaMf8 UaaGzbVlaaywW7caaMf8UaaiikaiaaiodacaGGUaGaaGymaiaacMca aaa@5972@

with y i = ( y i r , y i a ) t , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWH5bWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlaai2dacaaMe8+aaeWabeaacaWG5bWaa0baaSqaaiaadMga aeaacaWGYbaaaOGaaGilaiaaysW7caWG5bWaa0baaSqaaiaadMgaae aacaWGHbaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWG0baaaOGa aiilaaaa@4299@ y ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWH5bGbaKaadaWgaaWcbaGaamyAaa qabaaaaa@32EE@ a vector containing the GREG estimates of y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWH5bWaaSbaaSqaaiaadMgaaeqaaa aa@32DE@ and e i = ( e i r , e i a ) t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHLbWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlaai2dacaaMe8+aaeWabeaacaWGLbWaa0baaSqaaiaadMga aeaacaWGYbaaaOGaaGilaiaaysW7caWGLbWaa0baaSqaaiaadMgaae aacaWGHbaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWG0baaaaaa @41A3@ a vector with the sampling errors of y ^ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWH5bGbaKaadaWgaaWcbaGaamyAaa qabaaaaa@32ED@ for which it is assumed that

e i ~ ind N ( 0 2 , Ψ i ) , i = 1, , m . ( 3.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBamXvP5wqonvsaeHbmv3yPrwyGmuy SXwANjxyWHwEaebbnrfifHhDYfgasaacH8rrps0lbbf9q8qsFG0lHa Vhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXd crpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWace aaeaaakeaacaWHLbWaaSbaaSqaaiaadMgaaeqaaOGaaGjbVpaawaga beWcbeqaaiaabMgacaqGUbGaaeizaaqaaGqaaKqzGfGaa8NFaaaaki aaysW7imGacqGFobGtdaqadeqaaiaahcdadaWgaaWcbaGaaGOmaaqa baGccaaISaGaaGjbVlaahI6adaWgaaWcbaGaamyAaaqabaaakiaawI cacaGLPaaacaGGSaGaaGjbVlaadMgacaaMe8UaaGypaiaaysW7caaI XaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaad2gacaaIUaGaaG zbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaI YaGaaiykaaaa@67E4@

Here 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHWaWaaSbaaSqaaiaaikdaaeqaaa aa@3263@ is a 2 dimensional column vector with each element equal to zero. Since the sample for the regular and alternative survey are drawn independently, it is assumed that Ψ i = Diag ( ψ i r , ψ i a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaWHOoWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlaai2dacaaMe8UaaeiraiaabMgacaqGHbGaae4zamaabmqa baGaeqiYdK3aa0baaSqaaiaadMgaaeaacaWGYbaaaOGaaGilaiaays W7cqaHipqEdaqhaaWcbaGaamyAaaqaaiaadggaaaaakiaawIcacaGL Paaaaaa@460B@ where ψ i q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqaHipqEdaqhaaWcbaGaamyAaaqaai aadghaaaaaaa@34A1@ is the design variance of y ^ i q . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWG5bGbaKaadaqhaaWcbaGaamyAaa qaaiaadghaaaGccaGGUaaaaa@349D@ It is also assumed that these design variances are known although they are replaced by their estimates in practice. The true domain parameters are modelled with a multilevel model. For the fixed effects it is assumed that the regular and alternative approach share the same covariates. In the most general case the regression coefficients for the fixed part are different for both variables i.e., y i q = x i t β q + ν i q , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWG5bWaa0baaSqaaiaadMgaaeaaca WGXbaaaOGaaGjbVlaai2dacaaMe8UaaCiEamaaDaaaleaacaWGPbaa baGaamiDaaaakiaahk7adaahaaWcbeqaaiaadghaaaGccaaMe8Uaey 4kaSIaaGjbVlabe27aUnaaDaaaleaacaWGPbaabaGaamyCaaaakiaa cYcaaaa@45C5@ with x i = ( x i 1 , , x i p ) t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWH4bWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlaai2dacaaMe8+aaeWabeaacaWG4bWaaSbaaSqaaiaadMga caaIXaaabeaakiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWG4b WaaSbaaSqaaiaadMgacaWGWbaabeaaaOGaayjkaiaawMcaamaaCaaa leqabaGaamiDaaaaaaa@4512@ a p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGWbaaaa@31B7@ -vector with covariates of domain i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGPbGaaiilaaaa@3260@ β q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHYoWaaWbaaSqabeaacaWGXbaaaa aa@3323@ a p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGWbaaaa@31B7@ -vector of regression coefficients, which are equal over the domains but might be different between the two survey approaches. It is assumed that x i 1 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWG4bWaaSbaaSqaaiaadMgacaaIXa aabeaakiaaysW7caaI9aGaaGjbVlaaigdaaaa@383A@ corresponds to the intercept. Furthermore ν i q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqaH9oGBdaqhaaWcbaGaamyAaaqaai aadghaaaaaaa@348B@ are random domain effects. This gives rise to the following bivariate multilevel model for the two domain parameters:

y i = X i β + ν i , i = 1, , m , ( 3.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWH5bWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlaai2dacaaMe8UaaCiwamaaBaaaleaacaWGPbaabeaakiaa hk7acaaMe8Uaey4kaSIaaGjbVlaah27adaWgaaWcbaGaamyAaaqaba GccaaISaGaaGjbVlaadMgacaaMe8UaaGypaiaaysW7caaIXaGaaGil aiaaysW7cqWIMaYscaaISaGaaGjbVlaad2gacaaISaGaaGzbVlaayw W7caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaIZaGaaiyk aaaa@5ADC@

where X i = I 2 x i t , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHybWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlaai2dacaaMe8UaaCysamaaBaaaleaacaaIYaaabeaakiaa ykW7cqGHxkcXcaaMc8UaaCiEamaaDaaaleaacaWGPbaabaGaamiDaa aakiaacYcaaaa@415A@ β = ( β r t , β a t ) t , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHYoGaaGjbVlaai2dacaaMe8+aae WabeaacaWHYoWaaWbaaSqabeaacaWGYbWaaWbaaWqabeaacaWG0baa aaaakiaacYcacaaMe8UaaCOSdmaaCaaaleqabaGaamyyamaaCaaabe qaaiaadshaaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWG0baa aOGaaiilaaaa@4291@ I 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHjbWaaSbaaSqaaiaaikdaaeqaaa aa@327C@ a 2 dimensional identity matrix, and ν i = ( ν i r , ν i a ) t . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWH9oWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlaai2dacaaMe8+aaeWabeaacqaH9oGBdaqhaaWcbaGaamyA aaqaaiaadkhaaaGccaaISaGaaGjbVlabe27aUnaaDaaaleaacaWGPb aabaGaamyyaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamiDaaaa kiaac6caaaa@4456@ For the random domain effects it is assumed that

ν i ~ IID N ( 0 2 , Σ ) , i = 1, , m , ( 3.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBamXvP5wqonvsaeHbmv3yPrwyGmuy SXwANjxyWHwEaebbnrfifHhDYfgasaacH8rrps0lbbf9q8qsFG0lHa Vhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXd crpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWace aaeaaakeaacaWH9oWaaSbaaSqaaiaadMgaaeqaaOGaaGjbVpaawaga beWcbeqaaiaabMeacaqGjbGaaeiraaqaaGqaaKqzGfGaa8NFaaaaki aaysW7imGacqGFobGtdaqadeqaaiaahcdadaWgaaWcbaGaaGOmaaqa baGccaaISaGaaGjbVlaaho6aaiaawIcacaGLPaaacaaISaGaaGjbVl aadMgacaaMe8UaaGypaiaaysW7caaIXaGaaGilaiaaysW7cqWIMaYs caaISaGaaGjbVlaad2gacaaISaGaaGzbVlaaywW7caaMf8UaaGzbVl aaywW7caGGOaGaaG4maiaac6cacaaI0aGaaiykaaaa@66B7@

with Σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHJoaaaa@31F1@ a general 2 × 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaaIYaGaaGjbVlabgEna0kaaysW7ca aIYaaaaa@376B@ covariance matrix for the random domain effects. Inserting (3.3) into (3.1) gives:

y ^ i = X i β + ν i + e i , i = 1, , m , ( 3.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWH5bGbaKaadaWgaaWcbaGaamyAaa qabaGccaaMe8UaaGypaiaaysW7caWHybWaaSbaaSqaaiaadMgaaeqa aOGaaCOSdiaaysW7cqGHRaWkcaaMe8UaaCyVdmaaBaaaleaacaWGPb aabeaakiaaysW7cqGHRaWkcaaMe8UaaCyzamaaBaaaleaacaWGPbaa beaakiaaiYcacaaMe8UaamyAaiaaysW7caaI9aGaaGjbVlaaigdaca aISaGaaGjbVlablAciljaaiYcacaaMe8UaamyBaiaaiYcacaaMf8Ua aGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIZaGaaiOlaiaaiwdaca GGPaaaaa@60FC@

with model assumptions (3.2) and (3.4).

Since the number of domains in this application is small, it is important to select parsimonious models. One way to reduce model complexity is to assume that the regression coefficients are equal for both survey approaches. In this case a dummy indicator, say δ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqaH0oazdaWgaaWcbaGaamyAaaqaba GccaGGSaaaaa@343B@ is introduced, which is equal to zero for the regular survey and equal to one for the alternative survey. In this case x i 1 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWG4bWaaSbaaSqaaiaadMgacaaIXa aabeaakiaaysW7caaI9aGaaGjbVlaaigdaaaa@383A@ corresponds to the overall intercept and x i 2 = δ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWG4bWaaSbaaSqaaiaadMgacaaIYa aabeaakiaaysW7caaI9aGaaGjbVlabes7aKnaaBaaaleaacaWGPbaa beaaaaa@3A3F@ is the indicator whose coefficient measures the differences between intercepts of the variables observed under both surveys. So y i q = x i t β + ν i q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWG5bWaa0baaSqaaiaadMgaaeaaca WGXbaaaOGaaGjbVlaai2dacaaMe8UaaCiEamaaDaaaleaacaWGPbaa baGaamiDaaaakiaahk7acaaMe8Uaey4kaSIaaGjbVlabe27aUnaaDa aaleaacaWGPbaabaGaamyCaaaaaaa@43DE@ and in (3.3) X i = x i t , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHybWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlaai2dacaaMe8UaaCiEamaaDaaaleaacaWGPbaabaGaamiD aaaakiaacYcaaaa@3A77@ and β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHYoaaaa@3200@ a vector with the corresponding regression coefficients. As a result, two versions for the fixed effects are considered: 

Δ i = j = 1 p x i , j ( β j r β j a ) + ( ν i r ν i a ) . ( 3.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqqHuoardaWgaaWcbaGaamyAaaqaba GccaaMe8UaaGypaiaaysW7daaeWbqaaiaadIhadaWgaaWcbaGaamyA aiaaiYcacaWGQbaabeaakmaabmqabaGaeqOSdi2aa0baaSqaaiaadQ gaaeaacaWGYbaaaOGaaGjbVlabgkHiTiaaysW7cqaHYoGydaqhaaWc baGaamOAaaqaaiaadggaaaaakiaawIcacaGLPaaaaSqaaiaadQgaca aI9aGaaGymaaqaaiaadchaa0GaeyyeIuoakiaaysW7cqGHRaWkcaaM e8+aaeWabeaacqaH9oGBdaqhaaWcbaGaamyAaaqaaiaadkhaaaGcca aMe8UaeyOeI0IaaGjbVlabe27aUnaaDaaaleaacaWGPbaabaGaamyy aaaaaOGaayjkaiaawMcaaiaai6cacaaMf8UaaGzbVlaaywW7caaMf8 UaaGzbVlaacIcacaaIZaGaaiOlaiaaiAdacaGGPaaaaa@6ACA@

Δ i = β 2 + ( ν i r ν i a ) , ( 3.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqqHuoardaWgaaWcbaGaamyAaaqaba GccaaMe8UaaGypaiaaysW7cqGHsislcqaHYoGydaWgaaWcbaGaaGOm aaqabaGccaaMe8Uaey4kaSIaaGjbVpaabmqabaGaeqyVd42aa0baaS qaaiaadMgaaeaacaWGYbaaaOGaaGjbVlabgkHiTiaaysW7cqaH9oGB daqhaaWcbaGaamyAaaqaaiaadggaaaaakiaawIcacaGLPaaacaaISa GaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6ca caaI3aGaaiykaaaa@57D5@

The following covariance structures for the random domain effects are considered: 

3.3   Univariate Fay-Herriot model for domain discontinuities

The univariate FH model for the direct estimates of the discontinuities starts with defining a measurement error model for the GREG estimates of the discontinuities:

Δ ^ i = Δ i + z i ( 3.8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacuqHuoargaqcamaaBaaaleaacaWGPb aabeaakiaaysW7caaI9aGaaGjbVlabfs5aenaaBaaaleaacaWGPbaa beaakiaaysW7cqGHRaWkcaaMe8UaamOEamaaBaaaleaacaWGPbaabe aakiaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaiodacaGG UaGaaGioaiaacMcaaaa@4B35@

with Δ i = y i r y i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqqHuoardaWgaaWcbaGaamyAaaqaba GccaaMe8UaaGypaiaaysW7caWG5bWaa0baaSqaaiaadMgaaeaacaWG YbaaaOGaaGjbVlabgkHiTiaaysW7caWG5bWaa0baaSqaaiaadMgaae aacaWGHbaaaaaa@414D@ the true discontinuity of domain i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGPbaaaa@31B0@ under a complete enumeration of the population under both approaches, Δ ^ i = y ^ i r y ^ i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacuqHuoargaqcamaaBaaaleaacaWGPb aabeaakiaaysW7caaI9aGaaGjbVlqadMhagaqcamaaDaaaleaacaWG PbaabaGaamOCaaaakiaaysW7cqGHsislcaaMe8UabmyEayaajaWaa0 baaSqaaiaadMgaaeaacaWGHbaaaaaa@417D@ the GREG estimate for Δ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqqHuoardaWgaaWcbaGaamyAaaqaba aaaa@3342@ based on the parallel run and z i = e i r e i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWG6bWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlaai2dacaaMe8UaamyzamaaDaaaleaacaWGPbaabaGaamOC aaaakiaaysW7cqGHsislcaaMe8UaamyzamaaDaaaleaacaWGPbaaba Gaamyyaaaaaaa@40BE@ the sampling error of Δ ^ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacuqHuoargaqcamaaBaaaleaacaWGPb aabeaakiaac6caaaa@340E@ It is assumed that z i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBamXvP5wqonvsaeHbmv3yPrwyGmuy SXwANjxyWHwEaebbnrfifHhDYfgasaacH8rrps0lbbf9q8qsFG0lHa Vhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXd crpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWace qaeaaakeaacaWG6bWaaSbaaSqaaiaadMgaaeqaaaaa@3C44@ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqWIdjYoaaa@3747@ N ( 0, ψ i r + ψ i a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBamXvP5wqonvsaeHbmv3yPrwyGmuy SXwANjxyWHwEaebbnrfifHhDYfgasaacH8rrps0lbbf9q8qsFG0lHa Vhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXd crpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWace qaeaaakeaaimGacqWFobGtdaqadeqaaiaaicdacaaISaGaaGjbVlab eI8a5naaDaaaleaacaWGPbaabaGaamOCaaaakiaaysW7cqGHRaWkca aMe8UaeqiYdK3aa0baaSqaaiaadMgaaeaacaWGHbaaaaGccaGLOaGa ayzkaaaaaa@4B9F@ and that the design variances of the sampling errors are known. For Δ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqqHuoardaWgaaWcbaGaamyAaaqaba aaaa@3342@ the following linear model is assumed:

Δ i = x i t β + v i , ( 3.9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqqHuoardaWgaaWcbaGaamyAaaqaba GccaaMe8UaaGypaiaaysW7caWH4bWaa0baaSqaaiaadMgaaeaacaWG 0baaaOGaaCOSdiaaysW7cqGHRaWkcaaMe8UaamODamaaBaaaleaaca WGPbaabeaakiaaiYcacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaa cIcacaaIZaGaaiOlaiaaiMdacaGGPaaaaa@4DAB@

with v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBamXvP5wqonvsaeHbmv3yPrwyGmuy SXwANjxyWHwEaebbnrfifHhDYfgasaacH8rrps0lbbf9q8qsFG0lHa Vhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXd crpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWace qaeaaakeaacaWG2bWaaSbaaSqaaiaadMgaaeqaaaaa@3C40@ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbwaqaaKba zaqgWdbiabl2==Ubaa@3B94@ N ( 0, σ v 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBamXvP5wqonvsaeHbmv3yPrwyGmuy SXwANjxyWHwEaebbnrfifHhDYfgasaacH8rrps0lbbf9q8qsFG0lHa Vhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXd crpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWace qaeaaakeaaimGacqWFobGtdaqadeqaaiaaicdacaaISaGaaGjbVlab eo8aZnaaDaaaleaacaWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaai aac6caaaa@4443@ Inserting (3.9) into (3.10) gives:

Δ ^ i = x i t β + v i + z i . ( 3.10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacuqHuoargaqcamaaBaaaleaacaWGPb aabeaakiaaysW7caaI9aGaaGjbVlaahIhadaqhaaWcbaGaamyAaaqa aiaadshaaaGccaWHYoGaaGjbVlabgUcaRiaaysW7caWG2bWaaSbaaS qaaiaadMgaaeqaaOGaaGjbVlabgUcaRiaaysW7caWG6bWaaSbaaSqa aiaadMgaaeqaaOGaaiOlaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8 UaaiikaiaaiodacaGGUaGaaGymaiaaicdacaGGPaaaaa@5488@

3.4   Estimation of the bivariate Fay-Herriot model

The models developed in Subsections 3.2 and 3.3 are fitted with a HB approach using Markov Chain Monte Carlo (MCMC) sampling. In particular the Gibbs sampler is used. The following priors are used for the model parameters and hyperparameters. For the regression coefficients uniform improper priors are assumed, i.e., β ~ 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHYoGaaGjbVJqaaiaa=5hacaaMe8 UaaGymaiaac6caaaa@378F@ For the random domain effects a multivariate normal prior is used: ν | Σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepeea0dXdHaVhbbf9v8qrpq0dc9vqFj 0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9ar=x fr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH9oGaaG PaVpaaeeqabaGaaGPaVlaaho6aaiaawEa7aaaa@3C94@ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbwaqaaKba zaqgWdbiabl2==Ubaa@3B94@ N ( 0 2 m , I m Σ ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepeea0dXdHaVhbbf9v8qrpq0dc9vqFj 0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9ar=x fr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatCvAUfKttL earyat1nwAKfgidfgBSL2zYfgCOLhaiuGacqWFobGtdaqadeqaaiaa hcdadaWgaaWcbaGaaGOmaiaad2gaaeqaaOGaaGilaiaaysW7caWHjb WaaSbaaSqaaiaad2gaaeqaaOGaaGPaVlabgEPielaaykW7caWHJoaa caGLOaGaayzkaaGaaiOlaaaa@4F6A@

In the case of a full covariance matrix for the random domain effects, the prior for Σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHJoaaaa@31F1@ is taken to be a scaled inverse Wishart distribution (O’Malley and Zaslavsky, 2008). This distribution is obtained by writing Σ = Diag ( ξ ) Σ ˜ Diag ( ξ ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaWHJoGaaGjbVlaai2dacaaMe8Uaae iraiaabMgacaqGHbGaae4zamaabmqabaGaaCOVdaGaayjkaiaawMca aiqaho6agaacaiaabseacaqGPbGaaeyyaiaabEgadaqadeqaaiaah6 7aaiaawIcacaGLPaaacaGGSaaaaa@4469@ with ξ = ( ξ r , ξ a ) t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWH+oGaaGjbVlaai2dacaaMe8+aae WabeaacqaH+oaEdaahaaWcbeqaaiaadkhaaaGccaaISaGaaGjbVlab e67a4naaCaaaleqabaGaamyyaaaaaOGaayjkaiaawMcaamaaCaaale qabaGaamiDaaaaaaa@40B1@ and assuming a standard normal distribution for ξ r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqaH+oaEdaahaaWcbeqaaiaadkhaaa aaaa@33A9@ and ξ a , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqaH+oaEdaahaaWcbeqaaiaadggaaa GccaGGSaaaaa@3452@ i.e., ξ x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepeea0dXdHaVhbbf9v8qrpq0dc9vqFj 0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9ar=x fr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH+oaEda ahaaWcbeqaaiaadIhaaaaaaa@385E@ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbwaqaaKba zaqgWdbiabl2==Ubaa@3B94@ N ( 0, 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepeea0dXdHaVhbbf9v8qrpq0dc9vqFj 0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9ar=x fr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatCvAUfKttL earyat1nwAKfgidfgBSL2zYfgCOLhaiuGacqWFobGtdaqadeqaaiaa icdacaaISaGaaGjbVlaaigdaaiaawIcacaGLPaaacaGGSaaaaa@45F8@ ( x ( a , r ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaadaqadeqaaiaadIhacaaMe8UaeyicI4 SaaGjbVpaabmqabaGaamyyaiaaiYcacaaMe8UaamOCaaGaayjkaiaa wMcaaaGaayjkaiaawMcaaaaa@3D91@ and an inverse Wishart distribution for Σ ˜ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWHJoGbaGaacaGGSaaaaa@32B0@ i.e., Σ ˜ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepeea0dXdHaVhbbf9v8qrpq0dc9vqFj 0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9ar=x fr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWHJoGbaG aaaaa@36AF@ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbwaqaaKba zaqgWdbiabl2==Ubaa@3B94@ Inv Wish ( v v , Φ v ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepeea0dXdHaVhbbf9v8qrpq0dc9vqFj 0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9ar=x fr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGjbGaae OBaiaabAhacaaMe8UaeyOeI0IaaGjbVlaabEfacaqGPbGaae4Caiaa bIgadaqadeqaaiaadAhadaWgaaWcbaGaamODaaqabaGccaaISaGaaG jbVlaahA6adaWgaaWcbaGaamODaaqabaaakiaawIcacaGLPaaacaGG Saaaaa@48E1@ with v v = d + 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWG2bWaaSbaaSqaaiaadAhaaeqaaO GaaGjbVlaai2dacaaMe8UaamizaiaaysW7cqGHRaWkcaaMe8UaaGym aaaa@3C6F@ degrees of freedom, with d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGKbaaaa@31AB@ the dimension of Σ ˜ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWHJoGbaGaaaaa@3200@ which is equal to 2 in this application, and scale parameter Φ v = I 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHMoWaaSbaaSqaaiaadAhaaeqaaO GaaGjbVlaai2dacaaMe8UaaCysamaaBaaaleaacaaIYaaabeaakiaa c6caaaa@397C@ In the case of a diagonal covariance matrix for the random domain effects, the priors for σ q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqaHdpWCdaWgaaWcbaGaamyCaaqaba aaaa@33A7@ (in the case of unequal variances) or σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqaHdpWCaaa@3285@ (in the case of equal variances) are half-Cauchy distributions. These are more robust prior distributions than the more commonly used inverse chi-squared distribution (Gelman, 2006). The inverse chi-squared distribution might be informative, even in the case of small scale and shape parameters. In addition convergence problems might occur with the Gibbs sampler. Both problems are largely avoided with a redundant multiplicative parametrization of the random effects (Gelman, 2006; Gelman, Van Dyk, Huang and Boscardin, 2008; Polson and Scott, 2012). See van den Brakel and Boonstra (2018) for more details on the priors of this model.

Let y ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWH5bGbaKaaaaa@31D4@ denote the 2 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaaIYaGaamyBaaaa@3270@ column vector obtained by stacking the m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGTbaaaa@31B4@ column vectors y ^ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWH5bGbaKaadaWgaaWcbaGaamyAaa qabaGccaGGSaaaaa@33A8@ and X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHybaaaa@31A3@ the matrix obtained by stacking the matrices X i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHybWaaSbaaSqaaiaadMgaaeqaaO GaaiOlaaaa@3379@ In the case of unequal regression coefficients, X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHybaaaa@31A3@ is a 2 m × 2 p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaaIYaGaamyBaiaaysW7cqGHxdaTca aMe8UaaGOmaiaadchaaaa@3952@ matrix. In the case of equal regression coefficients, X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHybaaaa@31A3@ is a 2 m × p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaaIYaGaamyBaiaaysW7cqGHxdaTca aMe8UaamiCaaaa@3896@ matrix. The likelihood function can be written as

p ( y ^ | θ ) = N ( X β + ν , Ψ ) , ( 3.11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBamXvP5wqonvsaeHbmv3yPrwyGmuy SXwANjxyWHwEaebbnrfifHhDYfgasaacH8rrps0lbbf9q8qsFG0lHa Vhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXd crpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWace qaeaaakeaacaWGWbWaaeWabeaadaabceqaaiqahMhagaqcaiaaykW7 aiaawIa7aiaaykW7caWH4oaacaGLOaGaayzkaaGaaGjbVlaai2daca aMe8ocdiGae8Nta40aaeWabeaacaWHybGaaCOSdiaaysW7cqGHRaWk caaMe8UaaCyVdiaaiYcacaaMe8UaaCiQdaGaayjkaiaawMcaaiaaiY cacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIZaGaaiOl aiaaigdacaaIXaGaaiykaaaa@61DA@

with Ψ = i = 1 m Ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHOoGaaGjbVlaai2dacaaMe8Uaey yLIu8aa0baaSqaaiaadMgacaaI9aGaaGymaaqaaiaad2gaaaGccaWH OoWaaSbaaSqaaiaadMgaaeqaaaaa@3DC6@ a 2 m × 2 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaaIYaGaamyBaiaaysW7cqGHxdaTca aMe8UaaGOmaiaad2gaaaa@394F@ diagonal matrix with the design variances of the direct estimates y ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWH5bGbaKaaaaa@31D4@ and θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWH4oaaaa@3206@ a vector containing all model parameters. The joint prior distribution p ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGWbWaaeWabeaacaaMb8UaaCiUdi aaygW7aiaawIcacaGLPaaaaaa@3799@ equals the product of the aforementioned priors. The posterior distribution of θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWH4oaaaa@3206@ is proportional to the joint density, i.e., p ( θ | y ^ ) p ( θ ) p ( y ^ | θ ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGWbWaaeWabeaadaabceqaaiaahI 7acaaMc8oacaGLiWoacaaMc8UabCyEayaajaaacaGLOaGaayzkaaGa aGjbVlabg2Hi1kaaysW7caWGWbWaaeWabeaacaaMb8UaaCiUdiaayg W7aiaawIcacaGLPaaacaWGWbWaaeWabeaadaabceqaaiqahMhagaqc aiaaykW7aiaawIa7aiaaykW7caWH4oaacaGLOaGaayzkaaGaaiOlaa aa@4FE9@ The model is fitted using the Gibbs sampler Geman and Geman (1984); Gelfand and Smith (1990). The full conditional distributions used in the Gibbs sampler are specified in van den Brakel and Boonstra (2018).

For each model considered, the Gibbs sampler is run in three independent chains with randomly generated starting values. The length of each chain after the burn-in period for each run is 10,000 iterations. This gives 30,000 draws to compute estimates and standard errors. The convergence of the MCMC simulation is assessed using trace and autocorrelation plots as well as the Gelman-Rubin potential scale reduction factor (Gelman and Rubin, 1992), which diagnoses the mixing of the chains. The diagnostics suggest that all chains converge well within 500 draws. The estimated Monte Carlo simulation errors are small compared to the posterior standard errors for all parameters, so that the number of draws are more than sufficient for our purposes.

The estimands of interest are expressed as functions of the parameters, and applying these functions to the MCMC output for the parameters results in draws from the posteriors for these estimands. Domain predictions for the target variables under the bivariate FH model are obtained as the posterior means approximated by the Gibbs sampler output and are denoted as y ˜ i q , b FH . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaaceWG5bGbaGaadaqhaaWcbaGaamyAaa qaaiaadghacaaISaGaaGPaVlaadkgacaqGgbGaaeisaaaakiaac6ca aaa@3957@ Domain predictions for the discontinuities are obtained as the posterior means of (3.6) or (3.7) approximated by the Gibbs sampler output and are denoted as Δ ˜ i b FH . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacuqHuoargaacamaaDaaaleaacaWGPb aabaGaamOyaiaabAeacaqGibaaaOGaaiOlaaaa@3688@ Mean squared errors for y ˜ i q , b FH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaaceWG5bGbaGaadaqhaaWcbaGaamyAaa qaaiaadghacaaISaGaaGPaVlaadkgacaqGgbGaaeisaaaaaaa@389B@ and Δ ˜ i b FH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacuqHuoargaacamaaDaaaleaacaWGPb aabaGaamOyaiaabAeacaqGibaaaaaa@35CC@ are obtained as posterior variances approximated from the Gibbs sampler output.

The methods are implemented in R using the mcmcsae R-package (Boonstra, 2020).

3.5   Pooling design variances

Estimates for the design variances ψ i r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqaHipqEdaqhaaWcbaGaamyAaaqaai aadkhaaaaaaa@34A2@ and ψ i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqaHipqEdaqhaaWcbaGaamyAaaqaai aadggaaaaaaa@3491@ are available from the GREG estimator and are used as if the true design variances are known. This is a standard assumption in small area estimation. Therefore it is important to provide reliable estimates for these design variances. For the regular survey the variance estimates of the GREG estimates are considered to be reliable enough to be used in the FH model. For the alternative survey the estimates of the design variances are unreliable and therefore smoothed to improve their stability of the estimates of ψ i a . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacqaHipqEdaqhaaWcbaGaamyAaaqaai aadggaaaGccaGGUaaaaa@354D@ Under the assumption that the population variances of the GREG residuals under the alternative approach are equal accross domains, the analysis-of-variance type of pooled variance estimator is used:

ψ i a = 1 f i a n i a 1 n a m i = 1 m ( n i a 1 ) S i ; GREG a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacqaHipqEdaqhaaWcbaGaamyAaaqaai aadggaaaGccaaMe8UaaGypaiaaysW7daWcaaqaaiaaigdacaaMe8Ua eyOeI0IaaGjbVlaadAgadaqhaaWcbaGaamyAaaqaaiaadggaaaaake aacaWGUbWaa0baaSqaaiaadMgaaeaacaWGHbaaaaaakiaaysW7daWc aaqaaiaaigdaaeaacaWGUbWaaWbaaSqabeaacaWGHbaaaOGaaGjbVl abgkHiTiaaysW7caWGTbaaaiaaysW7daaeWbqaamaabmqabaGaamOB amaaDaaaleaacaWGPbaabaGaamyyaaaakiaaysW7cqGHsislcaaMe8 UaaGymaaGaayjkaiaawMcaaiaaysW7caWGtbWaa0baaSqaaiaadMga caGG7aGaaGPaVlaabEeacaqGsbGaaeyraiaabEeaaeaacaWGHbWaaW baaWqabeaacaaIYaaaaaaaaSqaaiaadMgacqGH9aqpcaaIXaaabaGa amyBaaqdcqGHris5aaaa@6826@

with f i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGMbWaa0baaSqaaiaadMgaaeaaca WGHbaaaaaa@33AE@ the sample fraction in domain i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGPbaaaa@31B0@ of the alternative survey, n i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGUbWaa0baaSqaaiaadMgaaeaaca WGHbaaaaaa@33B6@ the number of respondents in domain i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGPbaaaa@31B0@ under the alternative survey, n a = i = 1 m n i a , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGUbWaaWbaaSqabeaacaWGHbaaaO GaaGjbVlaai2dacaaMe8+aaabmaeaacaWGUbWaa0baaSqaaiaadMga aeaacaWGHbaaaaqaaiaadMgacaaI9aGaaGymaaqaaiaad2gaa0Gaey yeIuoakiaacYcaaaa@3FBA@ and S i ; GREG a 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaWGtbWaa0baaSqaaiaadMgacaaI7a GaaGPaVlaabEeacaqGsbGaaeyraiaabEeaaeaacaWGHbWaaWbaaWqa beaacaaIYaaaaaaaaaa@3A05@ the estimated population variance of the GREG residuals.

Alternatively, variance estimates of the direct estimates can be smoothed by modeling the variance estimates along with the GREG estimates themselves, (You and Chapman, 2006) and Sugasawa, Tamae and Kubokawa (2017). Their approach can be traced back to Arora and Lahiri (1997). Another possibility is to smooth variance estimates by applying generalized variance functions, (Wolter (2007), Chapter 7, and Hawala and Lahiri (2018)).

3.6   Model selection and evaluation

Frequently applied model selection criteria in HB settings are the Widely Applicable Information Criterion or Watanabe-Akaike Information Criteria (WAIC) (Watanabe, 2010, 2013) and the Deviance Information Criteria (DIC) (Spiegelhalter, Best, Carlin and van der Linde, 2002). They are popular because they are easy to compute from MCMC simulation output and because of their ability to make a reasonable tradeoff between model fit and model complexity. The WAIC is seen as an improvement on the DIC since the latter can produce negative estimates for the effective number of parameters and it is not defined for singular models (Vehtari, Gelman and Gabry, 2017). The penalty used for model complexity in DIC and WAIC is closely related to the effective number of parameters proposed by Hodges and Sargent (2001) for linear multilevel models where each fixed effect contributes one degree of freedom and the random effects contribute a value in the range between zero and m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGTbGaaiilaaaa@3264@ depending on the size of the variance component. As follows from the definition of WAIC, models with lower WAIC values are preferred. The WAIC estimates are uncertain and an approximation of its standard error is provided by Vehtari et al. (2017) equation (23) and can be computed using R package loo MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepK0hi9siW7rqqrFfpu0de9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacdaGaa8hBai aa=9gacaWFVbaaaa@37D4@ (Vehtari, Gelman and Gabry, 2015).

Covariates are selected from the set of auxiliary variables listed in van den Brakel and Boonstra (2018) using a step-forward selection procedure. Various models are compared using the aforementioned WAIC estimates. From the set of potential covariates, the covariate with the lowest WAIC value is selected in the model. This selection process is iteratively repeated as long as adding a new covariate further decreases the WAIC value. In this application, this step-forward selection procedure, further abbreviated as step-WAIC, often results in models with a large number of covariates. Since the WAIC values are estimates that contain error, it appears that it might not be desirable to minimize the WAIC by adding covariates to the model as long as it reduces the point estimates of the WAIC. As an alternative we applied a step-forward selection procedure where covariates are added to the model as long as a new covariate decreases the WAIC with a value that exceeds the estimated standard error of the WAIC. This method will be referred to as step-WAIC-se.

The step-forward selection procedure is applied to each of the six different combinations of the two fixed effect versions (FE_uq and FE_eq) and the three covariance structures of the random component (RE_f, RE_d, and RE_s). From the resulting six models the one with the lowest WAIC value is selected. Model adequacy of these six selected models is evaluated with posterior predictive checks. This implies that replicate data sets, simulated from the posterior predictive distribution are compared with the originally observed data to study systematic discrepancies and to evaluate how well the selected model fits the observed data (Gelman, Carlin, Stern, Dunson, Vehtari and Rubin, 2004). Posterior predictive p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGWbaaaa@31B7@ -values are calculated for six different tests that evaluate particular aspects of the posterior predictive distribution. Posterior predictive p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGWbaaaa@31B7@ -values for the domain discontinuities are defined as p = P ( T ( Δ ^ sim , Δ ) T ( Δ ^ , Δ ) | y ^ ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaWGWbGaaGjbVlaai2dacaaMe8Uaam iuamaabmqabaGaamivamaabmqabaGabCiLdyaajaWaaWbaaSqabeaa caqGZbGaaeyAaiaab2gaaaGccaaISaGaaGjbVlaahs5aaiaawIcaca GLPaaacaaMe8UaeyyzImRaaGjbVlaadsfadaabceqaamaabmqabaGa bCiLdyaajaGaaGilaiaaysW7caWHuoaacaGLOaGaayzkaaGaaGPaVd GaayjcSdGaaGPaVlqahMhagaqcaaGaayjkaiaawMcaaiaacYcaaaa@543A@ where Δ ^ sim = ( Δ ^ 1 sim , , Δ ^ m sim ) t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaaceWHuoGbaKaadaahaaWcbeqaaiaabo hacaqGPbGaaeyBaaaakiaaysW7caaI9aGaaGjbVpaabmqabaGafuiL dqKbaKaadaqhaaWcbaGaaGymaaqaaiaabohacaqGPbGaaeyBaaaaki aaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7cuqHuoargaqcamaaDaaa leaacaWGTbaabaGaae4CaiaabMgacaqGTbaaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacaWG0baaaaaa@4BDE@ are replicates of the observed discontinuities for the m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGTbaaaa@31B4@ domains under the posterior predictive distribution, Δ ^ = ( Δ ^ 1 , , Δ ^ m ) t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWHuoGbaKaacaaMe8UaaGypaiaays W7daqadeqaaiqbfs5aezaajaWaaSbaaSqaaiaaigdaaeqaaOGaaGil aiaaysW7cqWIMaYscaaISaGaaGjbVlqbfs5aezaajaWaaSbaaSqaai aad2gaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWG0baaaaaa @4330@ the observed direct estimates for the m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGTbaaaa@31B4@ domain discontinuities and T ( Δ ^ sim , Δ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaWGubGaaiikaiqahs5agaqcamaaCa aaleqabaGaae4CaiaabMgacaqGTbaaaOGaaiilaiaaysW7caWHuoGa aiykaaaa@3A89@ (or T ( Δ ^ , Δ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGubGaaiikaiqahs5agaqcaiaaiY cacaaMe8UaaCiLdiaacMcacaGGPaaaaa@3834@ a test statistic that depends on Δ ^ sim MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaaceWHuoGbaKaadaahaaWcbeqaaiaabo hacaqGPbGaaeyBaaaaaaa@34F0@ (or Δ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWHuoGbaKaacaGGPaaaaa@329F@ and unknown true values for the m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGTbaaaa@31B4@ domain discontinuities Δ = ( Δ 1 , , Δ m ) t . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHuoGaaGjbVlaai2dacaaMe8+aae WabeaacqqHuoardaWgaaWcbaGaaGymaaqabaGccaaISaGaaGjbVlab lAciljaaiYcacaaMe8UaeuiLdq0aaSbaaSqaaiaad2gaaeqaaaGcca GLOaGaayzkaaWaaWbaaSqabeaacaWG0baaaOGaaiOlaaaa@43BC@ Posterior predictive p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGWbaaaa@31B7@ -values are estimated from the Gibbs sampler output as the average over the S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGtbaaaa@319A@ Monte Carlo samples

p ^ = 1 S s = 1 S I ( T ( Δ ^ s , Δ s ) T ( Δ ^ , Δ s ) ) , ( 3.12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWGWbGbaKaacaaMe8UaaGypaiaays W7daWcaaqaaiaaigdaaeaacaWGtbaaaiaaysW7daaeWbqaaiaadMea daqadeqaaiaadsfadaqadeqaaiqahs5agaqcamaaCaaaleqabaGaam 4CaaaakiaaiYcacaaMe8UaaCiLdmaaCaaaleqabaGaam4CaaaaaOGa ayjkaiaawMcaaiaaysW7cqGHLjYScaaMe8UaamivamaabmqabaGabC iLdyaajaGaaGilaiaaysW7caWHuoWaaWbaaSqabeaacaWGZbaaaaGc caGLOaGaayzkaaaacaGLOaGaayzkaaGaaGilaaWcbaGaam4Caiaai2 dacaaIXaaabaGaam4uaaqdcqGHris5aOGaaGzbVlaaywW7caaMf8Ua aGzbVlaaywW7caGGOaGaaG4maiaac6cacaaIXaGaaGOmaiaacMcaaa a@63E1@

with I ( A ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGjbWaaeWabeaacaaMb8Uaamyqai aaygW7aiaawIcacaGLPaaaaaa@36F4@ the indicator function with value one if the condition A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGbbaaaa@3188@ is fulfilled and zero otherwise, Δ ^ s = ( Δ ^ 1 s , , Δ ^ m s ) t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaaceWHuoGbaKaadaahaaWcbeqaaiaado haaaGccaaMe8UaaGypaiaaysW7daqadeqaaiqbfs5aezaajaWaa0ba aSqaaiaaigdaaeaacaWGZbaaaOGaaGilaiaaysW7cqWIMaYscaaISa GaaGjbVlqbfs5aezaajaWaa0baaSqaaiaad2gaaeaacaWGZbaaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacaWG0baaaaaa@4651@ the m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGTbaaaa@31B4@ observed domain discontinuities in the s th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaWGZbWaaWbaaSqabeaacaqG0bGaae iAaaaaaaa@33C8@ replicate of the MCMC simulation and Δ s = ( Δ 1 s , , Δ m s ) t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWHuoWaaWbaaSqabeaacaWGZbaaaO GaaGjbVlaai2dacaaMe8+aaeWabeaacqqHuoardaqhaaWcbaGaaGym aaqaaiaadohaaaGccaaISaGaaGjbVlablAciljaaiYcacaaMe8Uaeu iLdq0aa0baaSqaaiaad2gaaeaacaWGZbaaaaGccaGLOaGaayzkaaWa aWbaaSqabeaacaWG0baaaaaa@4621@ the true values of the m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGTbaaaa@31B4@ domain discontinuities in the s th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaWGZbWaaWbaaSqabeaacaqG0bGaae iAaaaaaaa@33C8@ replicate of the MCMC simulation. If a model fits the observed data adequately, then it is expected that T ( Δ ^ , Δ s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGubWaaeWabeaaceWHuoGbaKaaca aISaGaaGjbVlaahs5adaahaaWcbeqaaiaadohaaaaakiaawIcacaGL Paaaaaa@38E7@ is in the bulk of the histogram of the replicates T ( Δ ^ s , Δ s ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGubWaaeWabeaaceWHuoGbaKaada ahaaWcbeqaaiaadohaaaGccaaISaGaaGjbVlaahs5adaahaaWcbeqa aiaadohaaaaakiaawIcacaGLPaaacaGGUaaaaa@3AC8@ Therefore p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGWbaaaa@31B7@ -values close to zero or one are indications of a poor fit with respect to that test statistic. In the expressions below, it is understood that T x , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGubWaaSbaaSqaaiaadIhaaeqaaO Gaaiilaaaa@337E@ for x = 1, , 6 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWG4bGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caaI2aGaaiilaaaa @3D73@ is a function of ( Δ ^ s , Δ s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaadaqadeqaaiqahs5agaqcamaaCaaale qabaGaam4CaaaakiaaiYcacaaMe8UaaCiLdmaaCaaaleqabaGaam4C aaaaaOGaayjkaiaawMcaaaaa@393D@ or ( Δ ^ , Δ s ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaadaqadeqaaiqahs5agaqcaiaaiYcaca aMe8UaaCiLdmaaCaaaleqabaGaam4CaaaaaOGaayjkaiaawMcaaiaa cYcaaaa@38BE@ depending on the component that is evaluated in (3.12). The following posterior predictive tests are defined (You, 2008):

  1. A general goodness-of-fit test statistic T 1 = i = 1 m ( Δ ^ i Δ i ) 2 / Var ( Δ ^ i | Δ i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaWGubWaaSbaaSqaaiaaigdaaeqaaO GaaGjbVlaai2dacaaMe8+aaabmaeaadaWcgaqaamaabmqabaGafuiL dqKbaKaadaWgaaWcbaGaamyAaaqabaGccaaMe8UaeyOeI0IaaGjbVl abfs5aenaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaaCaaa leqabaGaaGOmaaaaaOqaaiaabAfacaqGHbGaaeOCamaabmqabaWaaq GabeaacuqHuoargaqcamaaBaaaleaacaWGPbaabeaakiaaykW7aiaa wIa7aiaaykW7cqqHuoardaWgaaWcbaGaamyAaaqabaaakiaawIcaca GLPaaaaaaaleaacaWGPbGaaGypaiaaigdaaeaacaWGTbaaniabggHi LdGccaGGUaaaaa@5657@ Here Var ( Δ ^ i | Δ i ) = ψ i r + ψ i a . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaqGwbGaaeyyaiaabkhadaqadeqaam aaeiqabaGafuiLdqKbaKaadaWgaaWcbaGaamyAaaqabaGccaaMc8oa caGLiWoacaaMc8UaeuiLdq0aaSbaaSqaaiaadMgaaeqaaaGccaGLOa GaayzkaaGaaGjbVlaai2dacaaMe8UaeqiYdK3aa0baaSqaaiaadMga aeaacaWGYbaaaOGaaGjbVlabgUcaRiaaysW7cqaHipqEdaqhaaWcba GaamyAaaqaaiaadggaaaGccaGGUaaaaa@4F20@
  2. T 2 = max ( Δ ^ i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaWGubWaaSbaaSqaaiaaikdaaeqaaO GaaGjbVlaai2dacaaMe8UaaeyBaiaabggacaqG4bWaaeWabeaacuqH uoargaqcamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaa@3D60@ and T 3 = min ( Δ ^ i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaWGubWaaSbaaSqaaiaaiodaaeqaaO GaaGjbVlaai2dacaaMe8UaaeyBaiaabMgacaqGUbWaaeWabeaacuqH uoargaqcamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaa@3D5F@ which are sensitive for deviations in the tails of the distribution.
  3. T 4 = 1 m i = 1 m Δ ^ i Δ ^ ¯ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGubWaaSbaaSqaaiaaisdaaeqaaO GaaGjbVlaai2dacaaMe8+aaSqaaSqaaiaaigdaaeaacaWGTbaaaOGa aGjbVpaaqadabaGafyiLdqKbaKaadaWgaaWcbaGaamyAaaqabaaaba GaamyAaiaai2dacaaIXaaabaGaamyBaaqdcqGHris5aOGaaGjbVlab ggMi6kaaysW7cuGHuoargaqcgaqeaiaacYcaaaa@48E5@ i.e., the mean which is sensitive for bias in the domain predictions.
  4. T 5 = 1 m 1 i = 1 m ( Δ ^ i Δ ^ ¯ ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacaWGubWaaSbaaSqaaiaaiwdaaeqaaO GaaGjbVlaai2dacaaMe8+aaSqaaSqaaiaaigdaaeaacaWGTbGaaGjb VlabgkHiTiaaysW7caaIXaaaaOGaaGjbVpaaqadabaWaaeWabeaacu qHuoargaqcamaaBaaaleaacaWGPbaabeaakiaaysW7cqGHsislcaaM e8UafuiLdqKbaKGbaebaaiaawIcacaGLPaaaaSqaaiaadMgacaaI9a GaaGymaaqaaiaad2gaa0GaeyyeIuoakmaaCaaaleqabaGaaGOmaaaa kiaacYcaaaa@4F5C@ i.e., the variance of the domain estimates, which is sensitive for e.g., overshrinkage.
  5. T 6 = | max ( Δ ^ i ) Δ ¯ | | min ( Δ ^ i ) Δ ¯ | , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeaadaaakeaacaWGubWaaSbaaSqaaiaaiAdaaeqaaO GaaGjbVlaai2dacaaMe8+aaqWabeaacaaMc8UaaeyBaiaabggacaqG 4bWaaeWabeaacuqHuoargaqcamaaBaaaleaacaWGPbaabeaaaOGaay jkaiaawMcaaiaaysW7cqGHsislcaaMe8UafuiLdqKbaebacaaMc8oa caGLhWUaayjcSdGaaGjbVlabgkHiTiaaysW7daabdeqaaiaaykW7ca qGTbGaaeyAaiaab6gadaqadeqaaiqbfs5aezaajaWaaSbaaSqaaiaa dMgaaeqaaaGccaGLOaGaayzkaaGaaGjbVlabgkHiTiaaysW7cuqHuo argaqeaiaaykW7aiaawEa7caGLiWoacaGGSaaaaa@6088@ with Δ ¯ = 1 m i = 1 m Δ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8qsFG0lHaVhbbf9v8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqabeqadaaakeaacuqHuoargaqeaiaaysW7caaI9aGaaG jbVpaaleaaleaacaaIXaaabaGaamyBaaaakiaaysW7daaeWaqaaiab fs5aenaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaaGypaiaaigdaae aacaWGTbaaniabggHiLdaaaa@415A@ which is sensitive to asymmetry in the distribution.

Date modified: