Considering interviewer and design effects when planning sample sizes
Section 4. Conclusions

Using a design effect to select a sample size is a commonly used method to account for the loss of efficiency that a complex sampling design might entail. However, the design effect can be inflated by an interviewer effect in face-to-face surveys. This can lead to erroneous conclusions about the effect that complex sampling has on the efficiency of a sampling strategy. As a consequence, this could lead to misallocation of resources. The planned sample size might be too high, if it is based on an overestimated design effect. Therefore, we propose to consider both the design and the interviewer effect simultaneously when planning a sample size. The survey effect, which we develop in Section 2, accounts both for interviewer and PSU variance to assess the efficiency of a survey design. Based on the survey effect we introduce a corrected design effect, which uses as a reference design a simple random sample with an interviewer effect. As a result, the corrected design effect is no longer conflated with the interviewer effect and can be used to better base the decision on the samples size on the effect the sampling design has on the precision of survey estimates.

For ESS6, our empirical findings in Section 3.2 show that high design effects are related to high interviewer effects. The average corrected design effects that we observe suggest that the sampling design influences the variance of an estimator to a lesser degree than interviewers for many countries in the ESS6. The ability to estimate the corrected design effect, e.g., from historical data as guide for the survey planner, depends mainly on the PSU-interviewer structure and the allocation of interviewer workloads and cluster sizes. We find a partially interpenetrated survey design, i.e., on a regional level, can be sufficient to disentangle PSU and interviewer variance. In our simulation study an average number of 1.5 PSUs per interviewer or interviewers per PSU was enough to estimate the variance components of measurement model ( M 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWabeaaca WGnbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaiOlaaaa @39A9@ For actual survey data, that is categorical, this level of interpenetration might not be high enough, but a high number of PSUs, interviewers, and a large sample size might off-set a low interpenetration. For practical applications, we recommend testing via simulation if the assumed measurement model can be estimated with the given PSU-interviewer structure, as we did in Section 3.1.

When using the survey effect and corrected design effect for the planning of a sample size it can be helpful to work with the upper and lower bounds of these statistics. In Section 2, we derive such bounds, but under somewhat unrealistic assumptions regarding the distribution of survey weights, interviewer workloads and PSU sizes. However, if realistic assumptions about the concentration of survey weights, interviewer workloads and PSU sizes can be made, then we propose to use a linear optimization, as shown in the Appendix, to derive bounds that are of much higher practical relevance and can serve as valuable guidance for survey planners. Generally, we recommend to have lowly concentrated distributions of interviewer workloads and PSU cluster sizes in order to increase the precision of survey estimates. Thus, interviewer workloads and PSU cluster sizes should be as equal as possible for any given number of interviewer and PSUs.

The measurement models we introduce in Section 2 are arguably simplistic. This makes the models applicable to most survey designs. The only information, besides the survey data, used to compute the estimates for Table 3.3 were the PSU and interviewer indicators. However, there are certain aspects of survey measurements that could be incorporated into a practical measurement model, such as stratification, which, in general, increases the efficiency of an estimation strategy (Särndal et al., 1992, Section 3.7). This was neglected in our analysis, despite the fact that many ESS6 countries used a stratified design for their PSU sample. Gabler, Häder and Lynn (2006) develop a design effect for estimation strategies that combine different sampling designs for sampling domains. This approach could possibly be adapted to add a stratification effect to the PSU variance. Furthermore, it might be plausible to assume that interviewers differ with regard to the degree of homogeneity that they add to their measurements. This interviewer heterogeneity could be incorporated into a measurement model by allowing groups of interviewers to have different distributions of i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=frijnaaBaaaleaa qaaaaaaaaaWdbiaadMgaa8aabeaakiaacYcaaaa@436D@ i.e., values for σ I 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHdpWCpaWaa0baaSqaa8qacaWGjbaapaqaa8qacaaIYaaaaaaa @3981@ (West and Elliott, 2014). However, a procedure to classify interviewers would be needed. Preferably one that does mainly rely on the survey data and not so much on information available about the interviewers, which might differ from survey to survey.

A future application for the presented framework of the survey effect would be to find an optimal budget allocation with respect to the number of PSUs and interviewers, for a given effective sample size. Such an optimization requires a cost model for the deployment of interviewers to a possible set of PSUs. Fieldwork institutes could possibly provide the necessary information to calculate such a model for a particular country. Such a method could help survey planners to conduct face-to-face surveys more effectively, which is of increasing importance as surveys based on probability samples are under pressure from the comparably cheap alternative of recruiting respondents from online-access panels.

Further research could also focus on the development of survey effect for other estimators than the weighted sample mean. For estimators that can be described as functions of estimated totals, which includes the Ordinary Least Square Estimator for regression coefficients (Särndal et al., 1992, Section 5.10), it should be possible to derive survey effects, under the framework shown in Section 2, that allow for a similar factorization as the survey effect presented in this work.

Appendix

For the Appendix we will introduce a short notation of multiple sums, where, for example, q i k y q i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaaeqaqaaiaayIW7caWG5bWdamaaBaaaleaapeGaamyCaiaadMga caWGRbaapaqabaaapeqaaiaadghacaWGPbGaam4Aaaqab0GaeyyeIu oaaaa@4042@ will be shorthand for

q K i R k s q i y q i k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaaeqbqaamaaqafabaWaaabuaeaacaWG5bWdamaaBaaaleaapeGa amyCaiaadMgacaWGRbaapaqabaaapeqaaiaadUgacqGHiiIZcaWGZb WdamaaBaaameaapeGaamyCaiaadMgaa8aabeaaaSWdbeqaniabggHi LdaaleaacaWGPbGaeyicI48exLMBb50ujbqegWuDJLgzHbYqHXgBPD MCHbhA5bacfaGae8NuaifabeqdcqGHris5aaWcbaGaamyCaiabgIGi olab=Tealbqab0GaeyyeIuoakiaac6caaaa@5786@

Results 1

eff 20 * ( w ) n q i k w q i k 2 ( q i k w q i k ) 2 ( 1 + ρ I [ n R 1 ] + ρ C [ n K 1 ] ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGLbGaaeOzaiaabAgapaWaa0baaSqaa8qacaaIYaGaaGimaaWd aeaacaGGQaaaaOWdbmaabmaapaqaa8qacaWH3baacaGLOaGaayzkaa GaaGjbVlaaykW7cqGHKjYOcaaMe8UaaGPaVpaalaaapaqaa8qacaWG UbWaaubeaeqal8aabaWdbiaadghacaWGPbGaam4Aaaqab0Wdaeaape GaeyyeIuoaaOGaaGjcVlaadEhapaWaa0baaSqaa8qacaWGXbGaamyA aiaadUgaa8aabaWdbiaaikdaaaaak8aabaWdbmaabmaapaqaa8qada qfqaqabSWdaeaapeGaamyCaiaadMgacaWGRbaabeqdpaqaa8qacqGH ris5aaGccaaMi8Uaam4Da8aadaWgaaWcbaWdbiaadghacaWGPbGaam 4AaaWdaeqaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI Yaaaaaaakmaabmaapaqaa8qacaaIXaGaaGjbVlabgUcaRiaaysW7cq aHbpGCpaWaaSbaaSqaa8qacaWGjbaapaqabaGcpeWaamWaa8aabaWd bmaalaaapaqaa8qacaWGUbaapaqaa8qacaWGsbaaaiaaysW7cqGHsi slcaaMe8UaaGymaaGaay5waiaaw2faaiaaysW7cqGHRaWkcaaMe8Ua eqyWdi3damaaBaaaleaapeGaam4qaaWdaeqaaOWdbmaadmaapaqaa8 qadaWcaaWdaeaapeGaamOBaaWdaeaapeGaam4saaaacaaMe8UaeyOe I0IaaGjbVlaaigdaaiaawUfacaGLDbaaaiaawIcacaGLPaaacaGGUa aaaa@82F0@

Proof: We need to show that

i ( q k w q i k ) 2 q i k w q i k 2 n R ( A .1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeWaaubeaeqal8aabaWdbiaadMgaaeqan8aabaWd biabggHiLdaakmaabmaapaqaa8qadaqfqaqabSWdaeaapeGaamyCai aadUgaaeqan8aabaWdbiabggHiLdaakiaayIW7caWG3bWdamaaBaaa leaapeGaamyCaiaadMgacaWGRbaapaqabaaak8qacaGLOaGaayzkaa WdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbmaavababeWcpaqa a8qacaWGXbGaamyAaiaadUgaaeqan8aabaWdbiabggHiLdaakiaayI W7caWG3bWdamaaDaaaleaapeGaamyCaiaadMgacaWGRbaapaqaa8qa caaIYaaaaaaakiaaysW7cqGHKjYOcaaMe8+aaSaaa8aabaWdbiaad6 gaa8aabaWdbiaadkfaaaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7 caGGOaGaaeyqaiaab6cacaqGXaGaaiykaaaa@63A5@

and

i ( q k w q i k ) 2 q i k w q i k 2 n K ( A .2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeWaaubeaeqal8aabaWdbiaadMgaaeqan8aabaWd biabggHiLdaakmaabmaapaqaa8qadaqfqaqabSWdaeaapeGaamyCai aadUgaaeqan8aabaWdbiabggHiLdaakiaadEhapaWaaSbaaSqaa8qa caWGXbGaamyAaiaadUgaa8aabeaaaOWdbiaawIcacaGLPaaapaWaaW baaSqabeaapeGaaGOmaaaaaOWdaeaapeWaaubeaeqal8aabaWdbiaa dghacaWGPbGaam4Aaaqab0WdaeaapeGaeyyeIuoaaOGaam4Da8aada qhaaWcbaWdbiaadghacaWGPbGaam4AaaWdaeaapeGaaGOmaaaaaaGc caaMe8UaeyizImQaaGjbVpaalaaapaqaa8qacaWGUbaapaqaa8qaca WGlbaaaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaabgea caqGUaGaaeOmaiaacMcaaaa@607C@

hold, if n i = n R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaamyAaaWdaeqaaOGaaGjbV=qacqGH 9aqpcaaMe8+aaSqaaSqaaiaad6gaaeaacaWGsbaaaaaa@3E24@ and n q = n K , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaamyCaaWdaeqaaOGaaGjbV=qacqGH 9aqpcaaMe8+aaSqaaSqaaiaad6gaaeaacaWGlbaaaOGaaiilaaaa@3EDF@ for all i = 1 , , R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGPbGaaGjbVlabg2da9iaaysW7caaIXaGaaiilaiaaysW7cqGH MacVcaGGSaGaaGjbVlaadkfaaaa@4271@ and q = 1 , , K . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGXbGaaGjbVlabg2da9iaaysW7caaIXaGaaiilaiaaysW7cqGH MacVcaGGSaGaaGjbVlaadUeacaGGUaaaaa@4324@

As shown in Gabler et al. (1999), if a q i k = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGHbWdamaaBaaaleaapeGaamyCaiaadMgacaWGRbaapaqabaGc caaMe8+dbiabg2da9iaaysW7caaIXaaaaa@3ED2@ for all q K , i R , k s q i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGXbGaaGjbVlabgIGiolaaysW7tCvAUfKttLearyat1nwAKfgi dfgBSL2zYfgCOLhaiuaacqWFlbWscaGGSaGaaGjbVlaaykW7caWGPb GaaGjbVlabgIGiolaaysW7cqWFsbGucaGGSaGaaGjbVlaaykW7caWG RbGaaGjbVlabgIGiolaaysW7caWGZbWdamaaBaaaleaapeGaamyCai aadMgaa8aabeaakiaacYcaaaa@5DAD@ using the Cauchy-Schwarz inequality, we know that

( q k w q i k a q i k ) 2 = ( q k w q i k ) 2 n i q k w q i k 2 = q k a q i k 2 q k w q i k 2 i ( q k w q i k ) 2 i q k w q i k 2 i n i q k w q i k 2 i q k w q i k 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaabaaaaaaaaapeWaaeWaa8aabaWdbmaaqafabaGaam4Da8aadaWg aaWcbaWdbiaadghacaWGPbGaam4AaaWdaeqaaOWdbiaadggapaWaaS baaSqaa8qacaWGXbGaamyAaiaadUgaa8aabeaaa8qabaGaamyCaiaa dUgaaeqaniabggHiLdaakiaawIcacaGLPaaapaWaaWbaaSqabeaape GaaGOmaaaakiabg2da9aWdaeaapeWaaeWaa8aabaWdbmaaqafabaGa am4Da8aadaWgaaWcbaWdbiaadghacaWGPbGaam4AaaWdaeqaaaWdbe aacaWGXbGaam4Aaaqab0GaeyyeIuoaaOGaayjkaiaawMcaa8aadaah aaWcbeqaa8qacaaIYaaaaOWdaiaaysW7peGaeyizImQaaGjbVlaad6 gapaWaaSbaaSqaa8qacaWGPbaapaqabaGcdaaeqbqaa8qacaWG3bWd amaaDaaaleaapeGaamyCaiaadMgacaWGRbaapaqaa8qacaaIYaaaaa WdaeaapeGaamyCaiaadUgaa8aabeqdcqGHris5aOGaaGjbV=qacqGH 9aqpcaaMe8+aaabuaeaacaWGHbWdamaaDaaaleaapeGaamyCaiaadM gacaWGRbaapaqaa8qacaaIYaaaaaqaaiaadghacaWGRbaabeqdcqGH ris5aOWaaabuaeaacaWG3bWdamaaDaaaleaapeGaamyCaiaadMgaca WGRbaapaqaa8qacaaIYaaaaaqaaiaadghacaWGRbaabeqdcqGHris5 aaGcpaqaaaqaa8qadaWcaaqaamaaqababaWaaeWabeaadaaeqaqaai aadEhapaWaaSbaaSqaa8qacaWGXbGaamyAaiaadUgaa8aabeaaa8qa baGaamyCaiaadUgaaeqaniabggHiLdaakiaawIcacaGLPaaadaahaa WcbeqaaiaaikdaaaaabaGaamyAaaqab0GaeyyeIuoaaOqaamaaqaba baWaaabeaeaacaWG3bWaa0baaSqaaiaadghacaWGPbGaam4Aaaqaai aaikdaaaaabaGaamyCaiaadUgaaeqaniabggHiLdaaleaacaWGPbaa beqdcqGHris5aaaakiaaysW7cqGHKjYOcaaMe8+aaSaaaeaadaaeqa qaaiaad6gadaWgaaWcbaGaamyAaaqabaGcdaaeqaqaaiaadEhapaWa a0baaSqaa8qacaWGXbGaamyAaiaadUgaa8aabaWdbiaaikdaaaaaba GaamyCaiaadUgaaeqaniabggHiLdaaleaacaWGPbaabeqdcqGHris5 aaGcbaWaaabeaeaadaaeqaqaaiaadEhapaWaa0baaSqaa8qacaWGXb GaamyAaiaadUgaa8aabaWdbiaaikdaaaaabaGaamyCaiaadUgaaeqa niabggHiLdaaleaacaWGPbaabeqdcqGHris5aaaakiaac6caaaaaaa@AF38@

If we have n i = n R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaamyAaaWdaeqaaOGaaGjbV=qacqGH 9aqpcaaMe8+aaSqaaSqaaiaad6gaaeaacaWGsbaaaaaa@3E24@ for all i = 1 , , R , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGPbGaaGjbVlabg2da9iaaysW7caaIXaGaaiilaiaaysW7cqGH MacVcaGGSaGaaGjbVlaadkfacaGGSaaaaa@4321@ then it follows that

i ( q k w q i k ) 2 q i k w q i k 2 n R . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeWaaubeaeqal8aabaWdbiaadMgaaeqan8aabaWd biabggHiLdaakmaabmaapaqaa8qadaqfqaqabSWdaeaapeGaamyCai aadUgaaeqan8aabaWdbiabggHiLdaakiaadEhapaWaaSbaaSqaa8qa caWGXbGaamyAaiaadUgaa8aabeaaaOWdbiaawIcacaGLPaaapaWaaW baaSqabeaapeGaaGOmaaaaaOWdaeaapeWaaubeaeqal8aabaWdbiaa dghacaWGPbGaam4Aaaqab0WdaeaapeGaeyyeIuoaaOGaam4Da8aada qhaaWcbaWdbiaadghacaWGPbGaam4AaaWdaeaapeGaaGOmaaaaaaGc cqGHKjYOdaWcaaWdaeaapeGaamOBaaWdaeaapeGaamOuaaaacaaMc8 UaaiOlaaaa@545E@

The proof for inequality (A.2) is analogous to the one above, which completes the proof of Result 1.

Upper bounds for m ¯ I ( w ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmaeaaaaaa aaa8qaceWFTbWdayaaraWaaSbaaSqaa8qacaWFjbaapaqabaGcpeWa aeWaa8aabaWdbiaahEhaaiaawIcacaGLPaaacaGGSaaaaa@3B71@ m ¯ C ( w ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmaeaaaaaa aaa8qaceWFTbWdayaaraWaaSbaaSqaa8qacaWFdbaapaqabaGcpeWa aeWaa8aabaWdbiaahEhaaiaawIcacaGLPaaaaaa@3ABB@ and e f f w ( w ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWHLbGaaCOzaiaahAgapaWaaSbaaSqaaGqad8qacaWF3baapaqa baGcpeWaaeWaa8aabaWdbiaahEhaaiaawIcacaGLPaaaaaa@3CB5@

For given n I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWHUbWdamaaDaaaleaapeGaamysaaqaamrr1ngBPrwtHrhAXaqe guuDJXwAKbstHrhAG8KBLbacfeGae8hPIujaaaaa@4345@ and n C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWHUbWdamaaDaaaleaapeGaam4qaaqaamrr1ngBPrwtHrhAXaqe guuDJXwAKbstHrhAG8KBLbacfeGae8hPIujaaaaa@433F@ and w k [ a , b ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG3bWdamaaBaaaleaapeGaam4AaaWdaeqaaOGaaGjbV=qacqGH iiIZcaaMe8+aamWaa8aabaWdbiaadggacaGGSaGaaGjbVlaadkgaai aawUfacaGLDbaaaaa@42E2@ with a , b + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGHbGaaiilaiaaysW7caWGIbGaaGjbVlabgIGiolaaysW7tuuD JXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ris9aada WgaaWcbaWdbiabgUcaRaWdaeqaaaaa@4A65@ for all k s , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGRbGaaGjbVlabgIGiolaaysW7caWGZbGaaiilaaaa@3CFF@ and k w k = n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaaeqaqaaiaadEhapaWaaSbaaSqaa8qacaWGRbaapaqabaGccaaM e8+dbiabg2da9iaaysW7caWGUbaaleaacaWGRbaabeqdcqGHris5aa aa@400F@ we can construct an upper bound for m ¯ I ( w ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGTbWdayaaraWaaSbaaSqaa8qacaWGjbaapaqabaGcpeWaaeWa a8aabaWdbiaahEhaaiaawIcacaGLPaaaaaa@3ABD@ and m ¯ C ( w ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGTbWdayaaraWaaSbaaSqaa8qacaWGdbaapaqabaGcpeWaaeWa a8aabaWdbiaahEhaaiaawIcacaGLPaaacaGGUaaaaa@3B69@

We know that

  i ( q k w q i k ) 2 i q k w q i k 2 i n i q k w q i k 2 i q k w q i k 2 i n i q k w q i k 2 n . ( A .3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabeqaaa qaaabaaaaaaaaapeGaaiiOamaalaaabaWaaabeaeaadaqadeqaamaa qababaGaam4Da8aadaWgaaWcbaWdbiaadghacaWGPbGaam4AaaWdae qaaaWdbeaacaWGXbGaam4Aaaqab0GaeyyeIuoaaOGaayjkaiaawMca amaaCaaaleqabaGaaGOmaaaaaeaacaWGPbaabeqdcqGHris5aaGcba WaaabeaeaadaaeqaqaaiaadEhadaqhaaWcbaGaamyCaiaadMgacaWG RbaabaGaaGOmaaaaaeaacaWGXbGaam4Aaaqab0GaeyyeIuoaaSqaai aadMgaaeqaniabggHiLdaaaOGaaGjbVlabgsMiJkaaysW7daWcaaqa amaaqababaGaamOBamaaBaaaleaacaWGPbaabeaakmaaqababaGaam 4DamaaDaaaleaacaWGXbGaamyAaiaadUgaaeaacaaIYaaaaaqaaiaa dghacaWGRbaabeqdcqGHris5aaWcbaGaamyAaaqab0GaeyyeIuoaaO qaamaaqababaWaaabeaeaacaWG3bWaa0baaSqaaiaadghacaWGPbGa am4AaaqaaiaaikdaaaaabaGaamyCaiaadUgaaeqaniabggHiLdaale aacaWGPbaabeqdcqGHris5aaaakiaaysW7cqGHKjYOcaaMe8+aaSaa aeaadaaeqaqaaiaad6gadaWgaaWcbaGaamyAaaqabaGcdaaeqaqaai aadEhadaqhaaWcbaGaamyCaiaadMgacaWGRbaabaGaaGOmaaaaaeaa caWGXbGaam4Aaaqab0GaeyyeIuoaaSqaaiaadMgaaeqaniabggHiLd aakeaacaWGUbaaaiaac6caaaWdaiaaywW7caaMf8UaaGzbVlaaywW7 caaMf8UaaiikaiaabgeacaqGUaGaae4maiaacMcaaaa@8C7F@

Now we need to find a sufficiently high value for i n i q k w q i k 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaaeqaqaaiaad6gadaWgaaWcbaGaamyAaaqabaGcdaaeqaqaaiaa dEhapaWaa0baaSqaa8qacaWGXbGaamyAaiaadUgaa8aabaWdbiaaik daaaaabaGaamyCaiaadUgaaeqaniabggHiLdaaleaacaWGPbaabeqd cqGHris5aOGaaiOlaaaa@4422@ For this we define x i = q k w q i k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG4bWdamaaBaaaleaapeGaamyAaaWdaeqaaOGaaGjbV=qacqGH 9aqpcaaMe8+aaabeaeaacaWG3bWdamaaDaaaleaapeGaamyCaiaadM gacaWGRbaapaqaa8qacaaIYaaaaaqaaiaadghacaWGRbaabeqdcqGH ris5aaaa@44FD@ and x = ( x 1 , , x I ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWH4bGaaGjbVlabg2da9iaaysW7caGGOaGaamiEa8aadaWgaaWc baWdbiaaigdaa8aabeaak8qacaGGSaGaaGjbVlabgAci8kaacYcaca aMe8UaamiEa8aadaWgaaWcbaWdbiaadMeaa8aabeaak8qacaGGPaWd amaaCaaaleqapeqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8 KBLbacfeGae8hPIujaaOWdaiaac6caaaa@5338@ Thus we have to solve the following problem:

max x R n I x s .t . x i a 2 n i i R x i b 2 n i i R i x i n i x i f s q m ( a , b , n ) , ( A .4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabyqaaa aabaWaaCbeaeaaqaaaaaaaaaWdbiGac2gacaGGHbGaaiiEaaWcpaqa a8qacaWH4bGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDOb cv39gaiuaacqWFDeIupaWaaWbaaWqabeaapeGaamOuaaaaaSWdaeqa aOWdbiaah6gapaWaa0baaSqaa8qacaWGjbaabaWefv3ySLgznfgDOf darCqr1ngBPrginfgDObYtUvgaiyqacqGFKksLaaGccaWH4baapaqa a8qacaqGZbGaaeOlaiaabshacaqGUaaapaqaa8qacaWG4bWdamaaBa aaleaapeGaamyAaaWdaeqaaOGaaGjbV=qacqGHLjYScaaMe8Uaamyy a8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOBa8aadaWgaaWcbaWdbi aadMgaa8aabeaakiaaysW7peGaeyiaIiIaamyAaiaaysW7cqGHiiIZ caaMe8+exLMBb50ujbqeiWuDJLgzHbYqHXgBPDMCHbhA5bachaGae0 Nuaifapaqaa8qacaWG4bWdamaaBaaaleaapeGaamyAaaWdaeqaaOGa aGjbV=qacqGHKjYOcaaMe8UaamOya8aadaahaaWcbeqaa8qacaaIYa aaaOGaamOBa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaaMe8Ua eyiaIiIaamyAaiaaysW7cqGHiiIZcaaMe8Uae0Nuaifapaqaa8qada aeqbqaaiaadIhapaWaaSbaaSqaa8qacaWGPbaapaqabaGccaaMe8+d biabgwMiZkaaysW7caWGUbaaleaacaWGPbaabeqdcqGHris5aaGcpa qaa8qadaaeqbqaaiaadIhapaWaaSbaaSqaa8qacaWGPbaapaqabaGc caaMe8+dbiabgsMiJkaaysW7caWGMbWdamaaBaaaleaapeGaam4Cai aadghacaWGTbaapaqabaGcpeWaaeWaa8aabaWdbiaadggacaGGSaGa aGjbVlaadkgacaGGSaGaaGjbVlaad6gaaiaawIcacaGLPaaaaSqaai aadMgaaeqaniabggHiLdGccaGGSaaaa8aacaaMf8UaaGzbVlaaywW7 caaMf8UaaGzbVlaacIcacaqGbbGaaeOlaiaabsdacaGGPaaaaa@BB6E@

where

f s q m ( a , b , n ) = b 2 n n b a b + ( n n b ) n n b a b ( a b ) + b + a 2 ( n n n b a b 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWdamaaBaaaleaapeGaam4CaiaadghacaWGTbaapaqabaGc peWaaeWaa8aabaWdbiaadggacaGGSaGaaGjbVlaadkgacaGGSaGaaG jbVlaad6gaaiaawIcacaGLPaaacaaMe8Uaeyypa0JaaGjbVlaadkga paWaaWbaaSqabeaapeGaaGOmaaaakmaagmqabaWaaSaaa8aabaWdbi aad6gacaaMe8UaeyOeI0IaaGjbVlaad6gacaWGIbaapaqaa8qacaWG HbGaaGjbVlabgkHiTiaaysW7caWGIbaaaaGaayj84laawUp+aiaays W7cqGHRaWkcaaMe8+aaeWaa8aabaWdbiaad6gacaaMe8UaeyOeI0Ia aGjbVlaad6gacaWGIbaacaGLOaGaayzkaaGaaGjbVlabgkHiTiaays W7daGbdeqaamaalaaapaqaa8qacaWGUbGaaGjbVlabgkHiTiaaysW7 caWGUbGaamOyaaWdaeaapeGaamyyaiaaysW7cqGHsislcaaMe8Uaam Oyaaaaaiaawcp+caGL7JpadaqadaWdaeaapeGaamyyaiaaysW7cqGH sislcaaMe8UaamOyaaGaayjkaiaawMcaaiaaysW7cqGHRaWkcaaMe8 UaamOyaiaaysW7cqGHRaWkcaaMe8Uaamyya8aadaahaaWcbeqaa8qa caaIYaaaaOWaaeWaa8aabaWdbiaad6gacaaMe8UaeyOeI0IaaGjbVp aagmqabaWaaSaaa8aabaWdbiaad6gacaaMe8UaeyOeI0IaaGjbVlaa d6gacaWGIbaapaqaa8qacaWGHbGaaGjbVlabgkHiTiaaysW7caWGIb aaaaGaayj84laawUp+aiaaysW7cqGHsislcaaMe8UaaGymaaGaayjk aiaawMcaaiaacYcaaaa@AE15@

where MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaayWabeaaca aMi8oacaGLWJVaay5+4daaaa@3C53@ means rounded to the nearest lower integer. The problem formulated in equation (A.4) can be solved using a solver for linear programs, e.g., with the solveLP function from the R package Henningsen (2012). Function f s q m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWdamaaBaaaleaapeGaam4CaiaadghacaWGTbaapaqabaaa aa@39EE@ gives a maximum of k w k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaaeqaqaaiaadEhapaWaa0baaSqaa8qacaWGRbaapaqaa8qacaaI YaaaaaqaaiaadUgaaeqaniabggHiLdaaaa@3BA4@ given the upper and lower bounds of the weights a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGHbaaaa@36AF@ and b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGIbaaaa@36B0@ and the fact that the weights are scaled to n , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbGaaiilaaaa@376C@ i.e., k w k = n . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaaeqaqaaiaadEhapaWaaSbaaSqaa8qacaWGRbaapaqabaGccaaM e8+dbiabg2da9iaaysW7caWGUbaaleaacaWGRbaabeqdcqGHris5aO GaaiOlaaaa@40CB@ The sum of squares is maximized by giving as many weights their highest possible value b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGIbaaaa@36B0@ under the condition that each weight must have at least a value of a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGHbaaaa@36AF@ and that k w k = n . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaaeqaqaaiaadEhapaWaaSbaaSqaa8qacaWGRbaapaqabaGcpeGa eyypa0JaamOBaaWcbaGaam4Aaaqab0GaeyyeIuoakiaac6caaaa@3DB1@ The problem can then be solved using a simplex algorithm. An upper bound for m ¯ C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGTbWdayaaraWaaSbaaSqaa8qacaWGdbaapaqabaaaaa@37F5@ can be determined in the same fashion. Changing the problem to minimization and a lower bound for eff 20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGLbGaaeOzaiaabAgapaWaaSbaaSqaa8qacaaIYaGaaGimaaWd aeqaaaaa@3A53@ can be found. However, it is not guaranteed that separate optimization of m ¯ C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGTbWdayaaraWaaSbaaSqaa8qacaWGdbaapaqabaaaaa@37F5@ and m ¯ I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGTbWdayaaraWaaSbaaSqaa8qacaWGjbaapaqabaaaaa@37FB@ will yield values of x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWH4baaaa@36CA@ that allow for a value of w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWH3baaaa@36C9@ that jointly maximizes (or minimizes) m ¯ C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGTbWdayaaraWaaSbaaSqaa8qacaWGdbaapaqabaaaaa@37F5@ and m ¯ I . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGTbWdayaaraWaaSbaaSqaa8qacaWGjbaapaqabaGccaGGUaaa aa@38B7@ Although, if, x C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWH4bWdamaaBaaaleaapeGaam4qaaWdaeqaaaaa@37EC@ and x I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWH4bWdamaaBaaaleaapeGaamysaaWdaeqaaaaa@37F2@ are the vectors that optimizes m ¯ C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGTbWdayaaraWaaSbaaSqaa8qacaWGdbaapaqabaaaaa@37F5@ and m ¯ I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGTbWdayaaraWaaSbaaSqaa8qacaWGjbaapaqabaaaaa@37FB@ respectively, it should be possible to find a possible value for w , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWH3bGaaiilaaaa@3779@ e.g., using iterative proportional fitting.

For eff w ( w ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGLbGaaeOzaiaabAgapaWaaSbaaSqaa8qacaWG3baapaqabaGc peWaaeWaa8aabaWdbiaahEhaaiaawIcacaGLPaaaaaa@3C9B@ we have under the same assumptions as made above

1 eff w ( w ) = k s w k 2 n f s q x ( a , b , n ) n . ( A .5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabeqaaa qaaabaaaaaaaaapeGaaGymaiaaysW7cqGHKjYOcaaMe8Uaaeyzaiaa bAgacaqGMbWdamaaBaaaleaapeGaam4DaaWdaeqaaOWdbmaabmaapa qaa8qacaWH3baacaGLOaGaayzkaaGaaGjbVlaaysW7cqGH9aqpcaaM e8UaaGjbVpaalaaapaqaa8qadaqfqaqabSWdaeaapeGaam4AaiabgI Giolaadohaaeqan8aabaWdbiabggHiLdaakiaadEhapaWaa0baaSqa a8qacaWGRbaapaqaa8qacaaIYaaaaaGcpaqaa8qacaWGUbaaaiaays W7caaMe8UaeyizImQaaGjbVlaaysW7daWcaaWdaeaapeGaamOza8aa daWgaaWcbaWdbiaadohacaWGXbGaamiEaaWdaeqaaOWdbmaabmaapa qaa8qacaWGHbGaaiilaiaaysW7caWGIbGaaiilaiaaysW7caWGUbaa caGLOaGaayzkaaaapaqaa8qacaWGUbaaaiaac6cacaaMf8UaaGzbVl aaywW7caaMf8UaaGzbVlaacIcacaqGbbGaaeOlaiaabwdacaGGPaaa aaaa@75BA@

Result 2

n ρ I ( n R ) ( n R + 1 ) + n eff I R R + ( n R ) ρ I . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabeqaaa qaaabaaaaaaaaapeWaaSaaa8aabaWdbiaad6gaa8aabaWdbiabeg8a Y9aadaWgaaWcbaWdbiaadMeaa8aabeaak8qadaqadaWdaeaapeGaam OBaiaaysW7cqGHsislcaaMe8UaamOuaaGaayjkaiaawMcaaiaaysW7 daqadaWdaeaapeGaamOBaiaaysW7cqGHsislcaaMe8UaamOuaiaays W7cqGHRaWkcaaMe8UaaGymaaGaayjkaiaawMcaaiaaysW7cqGHRaWk caaMe8UaamOBaaaacaaMe8UaaGjbVlabgsMiJkaaysW7caaMe8Uaae yzaiaabAgacaqGMbWdamaaBaaaleaapeGaamysaaWdaeqaaOGaaGjb VlaaysW7peGaeyizImQaaGjbVlaaysW7daWcaaWdaeaapeGaamOuaa WdaeaapeGaamOuaiaaysW7cqGHRaWkcaaMe8+aaeWaa8aabaWdbiaa d6gacaaMe8UaeyOeI0IaaGjbVlaadkfaaiaawIcacaGLPaaacaaMe8 UaeqyWdi3damaaBaaaleaapeGaamysaaWdaeqaaaaak8qacaGGUaaa aaaa@7ABB@

Proof: The upper bound in Result 2 can be shown by using the Cauchy-Schwarz inequality, which gives us

R i n i 2 ( i n i ) 2 i n i 2 n 2 R . ( A .6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaabaaaaaaaaapeGaamOuamaaqafabaGaamOBa8aadaqhaaWcbaWd biaadMgaa8aabaWdbiaaikdaaaaabaGaamyAaaqab0GaeyyeIuoaaO WdaeaapeGaeyyzIm7aaeWaa8aabaWdbmaaqafabaGaamOBa8aadaWg aaWcbaWdbiaadMgaa8aabeaaa8qabaGaamyAaaqab0GaeyyeIuoaaO GaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qa caaMc8UaaGPaVlaayIW7daaeqbqaaiaad6gapaWaa0baaSqaa8qaca WGPbaapaqaa8qacaaIYaaaaaqaaiaadMgaaeqaniabggHiLdaak8aa baWdbiabgwMiZoaalaaapaqaa8qacaWGUbWdamaaCaaaleqabaWdbi aaikdaaaaak8aabaWdbiaadkfaaaGaaiOlaaaapaGaaGzbVlaaywW7 caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaabgeacaqGUaGaaeOnai aacMcaaaa@6449@

With a some algebra we can formulate the upper bound of eff I . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGLbGaaeOzaiaabAgapaWaaSbaaSqaa8qacaWGjbaapaqabaGc caGGUaaaaa@3A67@

To prove the lower bound in Result 2 we solve the following problem:

max n I > 0 R n I n I s .t . i n i = n . ( A .7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmqaaa qaamaaxababaaeaaaaaaaaa8qacaqGTbGaaeyyaiaabIhaaSWdaeaa peGaaCOBa8aadaWgaaadbaWdbiaadMeaa8aabeaal8qacqGHiiIZtu uDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=vrio9aa daqhaaadbaWdbiabg6da+iaaicdaa8aabaWdbiaadkfaaaaal8aabe aak8qacaWHUbWdamaaDaaaleaapeGaamysaaqaamrr1ngBPrwtHrhA XaqehuuDJXwAKbstHrhAG8KBLbacgeGae4hPIujaaOGaaCOBa8aada WgaaWcbaWdbiaadMeaa8aabeaaaOqaa8qacaqGZbGaaeOlaiaabsha caqGUaaapaqaa8qadaaeqbqaaiaad6gapaWaaSbaaSqaa8qacaWGPb aapaqabaGcpeGaeyypa0JaamOBaiaac6caaSqaaiaadMgaaeqaniab ggHiLdaaaOWdaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikai aabgeacaqGUaGaae4naiaacMcaaaa@7147@

A solution to the problem formulated in (A.7) can be found by considering that if we have n i 1 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaamyAaaWdaeqaaOGaaGjbV=qacqGH sislcaaMe8UaaGymaiaaysW7cqGHLjYScaaMe8UaaGymaaaa@427B@ and n i n j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaamyAaaWdaeqaaOGaaGjbV=qacqGH KjYOcaaMe8UaamOBa8aadaWgaaWcbaWdbiaadQgaa8aabeaaaaa@3F29@ it follows that ( n i 1 ) 2 + ( n j + 1 ) 2 > n i 2 + n j 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadeqaaiaad6gapaWaaSbaaSqaa8qacaWGPbaapaqabaGccaaM e8+dbiabgkHiTiaaysW7caaIXaaacaGLOaGaayzkaaWdamaaCaaale qabaWdbiaaikdaaaGcpaGaaGjbV=qacqGHRaWkcaaMe8+aaeWabeaa caWGUbWdamaaBaaaleaapeGaamOAaaWdaeqaaOGaaGjbV=qacqGHRa WkcaaMe8UaaGymaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI YaaaaOWdaiaaysW7peGaeyOpa4JaaGjbVlaad6gapaWaa0baaSqaa8 qacaWGPbaapaqaa8qacaaIYaaaaOWdaiaaysW7peGaey4kaSIaaGjb Vlaad6gapaWaa0baaSqaa8qacaWGQbaapaqaa8qacaaIYaaaaOWdai aac6caaaa@5C82@ Thus for n j = max i R n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaamOAaaWdaeqaaOGaaGjbV=qacqGH 9aqpcaaMe8UaaeyBaiaabggacaqG4bWdamaaBaaaleaapeGaamsyAai abgIGiopXvP5wqonvsaeHbmv3yPrwyGmuySXwANjxyWHwEaGqbaiab =jfasbWdaeqaaOWdbiaad6gapaWaaSbaaSqaa8qacaWGPbaapaqaba aaaa@4ECA@ we can increase i R n i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaaeWaqaaiaad6gapaWaa0baaSqaa8qacaWGPbaapaqaa8qacaaI YaaaaaqaaiaadMgaaeaacaWGsbaaniabggHiLdaaaa@3C8D@ if we reduce any n i > 1 i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaamyAaaWdaeqaaOGaaGjbV=qacqGH +aGpcaaMe8UaaGymaiaaykW7caaMe8UaamyAaiaaysW7cqGHGjsUca aMe8UaamOAaaaa@46D1@ by one and add one to n j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaamOAaaWdaeqaaOGaaiOlaaaa@38C1@ Hence, if n i = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaamyAaaWdaeqaaOGaaGjbV=qacqGH 9aqpcaaMe8UaaGymaaaa@3CF9@ for all i j R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGPbGaaGjbVlabgcMi5kaaysW7caWGQbGaaGjbVlabgIGiolaa ysW7tCvAUfKttLearyat1nwAKfgidfgBSL2zYfgCOLhaiuaacqWFsb Guaaa@4BC0@ and n j = n R + 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaamOAaaWdaeqaaOGaaGjbV=qacqGH 9aqpcaaMe8UaamOBaiaaysW7cqGHsislcaaMe8UaamOuaiaaysW7cq GHRaWkcaaMe8UaaGymaaaa@46C7@ then i n i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaaeqaqaaiaad6gapaWaa0baaSqaa8qacaWGPbaapaqaa8qacaaI YaaaaaqaaiaadMgaaeqaniabggHiLdaaaa@3B97@ is at its maximum, with i n i 2 = ( R 1 ) + ( n R + 1 ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaaeqaqaaiaad6gapaWaa0baaSqaa8qacaWGPbaapaqaa8qacaaI YaaaaOWdaiaaysW7peGaeyypa0JaaGjbVpaabmaapaqaa8qacaWGsb GaaGjbVlabgkHiTiaaysW7caaIXaaacaGLOaGaayzkaaGaaGjbVlab gUcaRiaaysW7daqadaqaaiaad6gacaaMe8UaeyOeI0IaaGjbVlaadk facaaMe8Uaey4kaSIaaGjbVlaaigdaaiaawIcacaGLPaaapaWaaWba aSqabeaapeGaaGOmaaaaaeaacaWGPbaabeqdcqGHris5aOGaaiOlaa aa@58F2@

Result 4

Proof: Given Result 2, to prove the right-hand side of Result 4 we need to show that

eff 2 * 0 * ( w ) n q i k w q i k 2 ( q i k w q i k ) 2 ( 1 + ρ I [ n R 1 ] + ρ C [ n K 1 ] + ρ I C [ n R K 1 ] ) . ( A .8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGLbGaaeOzaiaabAgapaWaa0baaSqaa8qacaaIYaGaaiOkaiaa icdaa8aabaGaaiOkaaaak8qadaqadaWdaeaapeGaaC4DaaGaayjkai aawMcaaiaaysW7cqGHKjYOcaaMe8+aaSaaa8aabaWdbiaad6gadaqf qaqabSWdaeaapeGaamyCaiaadMgacaWGRbaabeqdpaqaa8qacqGHri s5aaGccaWG3bWdamaaDaaaleaapeGaamyCaiaadMgacaWGRbaapaqa a8qacaaIYaaaaaGcpaqaa8qadaqadaWdaeaapeWaaubeaeqal8aaba WdbiaadghacaWGPbGaam4Aaaqab0WdaeaapeGaeyyeIuoaaOGaam4D a8aadaWgaaWcbaWdbiaadghacaWGPbGaam4AaaWdaeqaaaGcpeGaay jkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaaakmaabmaapaqa a8qacaaIXaGaaGjbVlabgUcaRiaaysW7cqaHbpGCpaWaaSbaaSqaa8 qacaWGjbaapaqabaGcpeWaamWaa8aabaWdbmaalaaapaqaa8qacaWG Ubaapaqaa8qacaWGsbaaaiaaysW7cqGHsislcaaMe8UaaGymaaGaay 5waiaaw2faaiaaysW7cqGHRaWkcaaMe8UaeqyWdi3damaaBaaaleaa peGaam4qaaWdaeqaaOWdbmaadmaapaqaa8qadaWcaaWdaeaapeGaam OBaaWdaeaapeGaam4saaaacaaMe8UaeyOeI0IaaGjbVlaaigdaaiaa wUfacaGLDbaacaaMe8Uaey4kaSIaaGjbVlabeg8aY9aadaWgaaWcba WdbiaadMeacaWGdbaapaqabaGcpeWaamWaa8aabaWdbmaalaaapaqa a8qacaWGUbaapaqaa8qacaWGsbGaam4saaaacaaMe8UaeyOeI0IaaG jbVlaaigdaaiaawUfacaGLDbaacaaMi8oacaGLOaGaayzkaaGaaiOl aiaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaeyqaiaab6cacaqG4a Gaaiykaaaa@9A39@

To prove inequality (A.8) we only need to show that

q i ( k w q i k ) 2 q i k w q i k 2 n R K . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeWaaubeaeqal8aabaWdbiaadghacaWGPbaabeqd paqaa8qacqGHris5aaGcdaqadaWdaeaapeWaaubeaeqal8aabaWdbi aadUgaaeqan8aabaWdbiabggHiLdaakiaadEhapaWaaSbaaSqaa8qa caWGXbGaamyAaiaadUgaa8aabeaaaOWdbiaawIcacaGLPaaapaWaaW baaSqabeaapeGaaGOmaaaaaOWdaeaapeWaaubeaeqal8aabaWdbiaa dghacaWGPbGaam4Aaaqab0WdaeaapeGaeyyeIuoaaOGaam4Da8aada qhaaWcbaWdbiaadghacaWGPbGaam4AaaWdaeaapeGaaGOmaaaaaaGc caaMe8UaaGjbVlabgsMiJkaaysW7caaMe8+aaSaaa8aabaWdbiaad6 gaa8aabaWdbiaadkfacaWGlbaaaiaac6caaaa@59D6@

The rest follows from the proofs of inequalities (A.1) and (A.2). Thus it is sufficient to show that

( k w q i k ) 2 = ( k w q i k a q i k ) 2 n q i k w q i k 2 = k a q i k 2 k w q i k 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaapeWaaabuaeaacaWG3bWdamaaBaaaleaapeGaamyC aiaadMgacaWGRbaapaqabaaapeqaaiaadUgaaeqaniabggHiLdaaki aawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaak8aacaaMe8+d biabg2da9iaaysW7daqadaWdaeaapeWaaabuaeaacaWG3bWdamaaBa aaleaapeGaamyCaiaadMgacaWGRbaapaqabaGcpeGaamyya8aadaWg aaWcbaWdbiaadghacaWGPbGaam4AaaWdaeqaaaWdbeaacaWGRbaabe qdcqGHris5aaGccaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikda aaGcpaGaaGjbV=qacqGHKjYOcaaMe8UaamOBa8aadaWgaaWcbaWdbi aadghacaWGPbaapaqabaGcpeWaaabuaeaacaWG3bWaa0baaSqaaiaa dghacaWGPbGaam4AaaqaaiaaikdaaaaabaGaam4Aaaqab0GaeyyeIu oakiaaysW7cqGH9aqpcaaMe8+aaabuaeaacaWGHbWdamaaDaaaleaa peGaamyCaiaadMgacaWGRbaapaqaa8qacaaIYaaaaOWdamaaqafaba WdbiaadEhapaWaa0baaSqaa8qacaWGXbGaamyAaiaadUgaa8aabaWd biaaikdaaaaapaqaaiaadUgaaeqaniabggHiLdaal8qabaGaam4Aaa qab0GaeyyeIuoakiaacYcaaaa@775A@

if a q i k = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGHbWdamaaBaaaleaapeGaamyCaiaadMgacaWGRbaapaqabaGc caaMe8+dbiabg2da9iaaysW7caaIXaaaaa@3ED2@ for all q K , i R , k s q i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGXbGaaGjbVlabgIGiolaaysW7tCvAUfKttLearyat1nwAKfgi dfgBSL2zYfgCOLhaiuaacqWFlbWscaGGSaGaaGjbVlaaykW7caWGPb GaaGjbVlabgIGiolaaysW7cqWFsbGucaGGSaGaaGjbVlaaykW7caWG RbGaaGjbVlabgIGiolaaysW7caWGZbWdamaaBaaaleaapeGaamyCai aadMgaa8aabeaakiaacYcaaaa@5DAD@ which also follows from the Cauchy-Schwarz inequality. Inequality (A.8) then follows if n q i = n R K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaBaaaleaapeGaamyCaiaadMgaa8aabeaakiaaysW7 peGaeyypa0JaaGjbVpaaleaaleaacaWGUbaabaGaamOuaiaadUeaaa aaaa@3FEA@ for i = 1 , , R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGPbGaaGjbVlabg2da9iaaysW7caaIXaGaaiilaiaaysW7cqGH MacVcaGGSaGaaGjbVlaadkfaaaa@4271@ and q = 1 , , K . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xe9GqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGXbGaaGjbVlabg2da9iaaysW7caaIXaGaaiilaiaaysW7cqGH MacVcaGGSaGaaGjbVlaadUeacaGGUaaaaa@4324@

The left-hand side of Result 4 follows from the proof of Result 6 in Gabler and Lahiri (2009) and Result 2.

ESS6 variables used for empirical evaluation


Table A.1
ESS6 variables used for empirical evaluation
Table summary
This table displays the results of ESS6 variables used for empirical evaluation % (appearing as column headers).
pplfair trstprt stfdem imueclt iorgact
pplhlp trstep stfedu imwbcnt agea
polintr trstun stfhlth happy gndr
trstprl lrscale gincdif aesfdrk This is an empty cell
trstlgl stflife freehms health This is an empty cell
trstplc stfeco euftf rlgdgr This is an empty cell
trstplt stfgov imbgeco wkdcorga This is an empty cell

The definition of these variables including question text can be found in ESS (2013).

References

Bates, D.M., Mächler, M., Bolker, B.M. and Walker, S.C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1, 1-48. https://doi.org/10.18637/jss.v067.i01.

Bates, D.M., Mächler, M., Bolker, B.M. and Walker, S.C. (2019). Lme4: Linear Mixed-Effects Models Using ‘Eigen’ and S4. https://CRAN.R-project.org/package=lme4.

Beullens, K., and Loosveldt, G. (2016). Interviewer effects in the European social survey. Survey Research Methods, 10, 2, 103-118.

Biemer, P.P. (2010). Total survey error: Design, implementation, and evaluation. Public Opinion Quarterly, Oxford University Press, 74, 5, 817-848.

Chambers, R.L., and Skinner, C.J. (2003). Analysis of Survey Data. New York: John Wiley & Sons, Inc.

Chaudhuri, A., and Stenger, H. (2005). Survey Sampling: Theory and Methods. CRC Press.

Davis, P., and Scott, A.(1995). The effect of interviewer variance on domain comparisons. Survey Methodology, 21, 2, 99-106. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/1995002/article/14405-eng.pdf.

Ellis, P.D. (2010). The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation of Research Results. Cambridge University Press.

European Social Survey (ESS) (2013). ESS6 Data Protocol. 1.4. London: ESS ERIC. http://www.europeansocialsurvey.org/data/download.html?r=6.

European Social Survey (ESS) (2014a). European Social Survey Round 6 Interviewer Questionnaire. Dataset edition: 2.1. London: ESS ERIC.

European Social Survey (ESS) (2014b). Weighting European Social Survey Data. London: ESS ERIC. www.europeansocialsurvey.org/docs/methodology/ESS_weighting_data_1.pdf.

European Social Survey (ESS) (2014c). ESS6 - 2012 Documentation Report. Edition: 2.3. London: ESS ERIC. http://www.europeansocialsurvey.org/docs/round6/survey/ESS6_data_documentation_report_e02_3.pdf.

European Social Survey (ESS) (2016). European Social Survey Round 6 Data. Dataset edition: 2.2. London: ESS ERIC.

European Social Survey (ESS) (2018a). Countries by Round (Year). London: ESS ERIC. http://www.europeansocialsurvey.org/data/country_index.html.

European Social Survey (ESS) (2018b). Data and Documentation by Round European Social Survey (ESS). London: ESS ERIC. http://www.europeansocialsurvey.org/data/download.html?r=6.

Fahrmeir, L., Heumann, C., Künstler, R., Pigeot, I. and Tutz, G. (1997). Statistik: Der Weg Zur Datenanalyse. 1sted. Berlin: Springer-Verlag.

Fischer, M., West, B.T., Elliott, M.R. and Kreuter, F. (2018). The impact of interviewer effects on regression coefficients. Journal of Survey Statistics and Methodology, May. https://doi.org/10.1093/jssam/smy007.

Gabler, S., Häder, S. and Lahiri, P. (1999). A model based justification of Kish’s formula for design effects for weighting and clustering. Survey Methodology, 25, 1, 105-106. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/1999001/article/4718-eng.pdf.

Gabler, S., Häder, S. and Lynn, P. (2006). Design effects for multiple design samples. Survey Methodology, 32, 1, 115-120. Paper available at https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2006001/article/9256-eng.pdf.

Gabler, S., and Lahiri, P. (2009). On the definition and interpretation of interviewer variability for a complex sampling design. Survey Methodology, 35, 1, 85-99. Paper available at https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2009001/article/10886-eng.pdf.

Ganninger, M. (2010). Design Effects: Model-Based Versus Design-Based Approach. Edited by GESIS -Leibniz-Institut für Sozialwissenschaften. Array 3.

Genz, A., Bretz, F., Miwa, T., Mi, X. and Hothorn, T. (2019). Mvtnorm: Multivariate Normal and T Distributions. https://CRAN.R-project.org/package=mvtnorm.

Groves, R.M. (2009). Survey Methodology. 2nd ed. Wiley Series in Survey Methodology. Hoboken, New York: John Wiley& Sons, Inc.

Groves, R.M., and Lyberg, L. (2010). Total survey error: Past, present, and future. Public Opinion Quarterly, Oxford University Press, 74, 5, 849-879.

Henningsen, A. (2012). Linprog: Linear Programming/Optimization. https://CRAN.R-project.org/package=linprog.

Kish, L. (1962). Studies of interviewer variance for attitudinal variables. Journal of the American Statistical Association, 57, 297, 92-115. https://doi.org/10.1080/01621459.1962.10482153.

Kish, L. (1965). Survey Sampling. New York: John Wiley & Sons, Inc.

Lohr, S.L. (2014). Design effects for a regression slope in a cluster sample. Journal of Survey Statistics and Methodology, 2, 2, 97-125. https://doi.org/10.1093/jssam/smu003.

Lynn, P., and Gabler, S. (2004). Approximations to B* in the Prediction of Design Effects Due to Clustering. ISER Working Paper Series.

Lynn, P., Häder, S., Gabler, S. and Laaksonen, S. (2007). Methods for achieving equivalence of samples in cross-national surveys: The European social survey experience. Journal of Official Statistics, 23, 1, 107.

O’Muircheartaigh, C., and Campanelli, P. (1998). The relative impact of interviewer effects and sample design effects on survey precision. Journal of the Royal Statistical Society: Series A (Statistics in Society), 161, 1, 63-77.

Raudenbush, S.W. (1993). A crossed random effects model for unbalanced data with applications in cross-sectional and longitudinal research. Journal of Educational Statistics, 18, 4, 321-349. https://doi.org/10.2307/1165158.

R Core Team (2019). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling. New York: Springer-Verlag.

Scheipl, F., Greven, S. and Kuechenhoff, H. (2008). Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models. Computational Statistics & Data Analysis, 52, 7, 3283-3299.

Schnell, R., and Kreuter, F. (2005). Separating interviewer and sampling-point effects. Journal of Official Statistics, 21, 3, 389-410.

The ESS Sampling Expert Panel (2016). Sampling Guidelines: Principles and Implementation for the European Social Survey. London: ESS ERIC Headquarters. http://www.europeansocialsurvey.org/docs/round8/methods/ESS8_sampling_guidelines.pdf.

Vassallo, R., Durrant, G. and Smith, P. (2017). Separating interviewer and area effects by using a cross-classified multilevel logistic model: Simulation findings and implications for survey designs. Journal of the Royal Statistical Society: Series A (Statistics in Society), 180, 2, 531-550.

Von Sanden, N.D. (2004). Interviewer Effects in Household Surveys: Estimation and Design. Ph.d. Thesis, Wollongong: University of Wollongong. http://ro.uow.edu.au/theses/312.

West, B.T., and Blom, A.G. (2017). Explaining interviewer effects: A research synthesis. Journal of Survey Statistics and Methodology, 5, 2, 175-211. https://doi.org/10.1093/jssam/smw024.

West, B.T., and Elliott, M.R. (2014). Frequentist and Bayesian approaches for comparing interviewer variance components in two groups of survey interviewers. Survey Methodology, 40, 2, 163-188. Paper available at https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2014002/article/14092-eng.pdf.


Date modified: