Bayesian benchmarking of the Fay-Herriot model using random deletion
Section 4. Empirical studies

The purposes of these empirical studies are twofold. First, it is demonstrated that the BFH model can be fit as stated in Section 2 and the deleting the last one benchmarking and random benchmarking methods are performed. Second, the benchmarking methods are compared in a simulation study that uses a well-used dataset in the small area literature.

In the data generation process, we use the data on corn and soybean acres in Battese, Harter and Fuller (1988), available for 12 counties (areas) in Iowa. The resulting county-level corn and soybean acreages are constructed using a number of segments sampled from the population (known number of segments). Landsat satellite data on the number of pixels of corn and soybean in the sampled segments (i.e., two covariates) are also available. The finite population means of the number of pixels classified as corn and soybean for each county are also reported. Starting with this dataset, we construct new datasets with any number of areas.

The data generation process has two steps. In the first step, the unit-level model y i j = x i j β + e i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbGaamOAaaqabaGccqGH9aqpcaWH4bWaa0baaSqaaiaa dMgacaWGQbaabaqcLbwacWaGyBOmGikaaOGaaCOSdiabgUcaRiaadw gadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiilaaaa@469F@ i = 1 , , l , j = 1 , , n i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2 da9iaaigdacaGGSaGaaGjbVlablAciljaacYcacaaMc8UaeS4eHWMa aiilaiaaysW7caWGQbGaeyypa0JaaGymaiaacYcacaaMe8UaeSOjGS KaaiilaiaaysW7caWGUbWaaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa @4CC1@ where e i j iid ( 0 , σ 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbGaamOAaaqabaGccaaMe8+aaybyaeqaleqabaGaaeyA aiaabMgacaqGKbaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbwacqWF8i IoaaGccaaMe8+aaeWaaeaacaaIWaGaaiilaiaaysW7cqaHdpWCdaah aaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaGGSaaaaa@4DCF@ is fit to the data available for the l = 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWMaey ypa0JaaGymaiaaikdaaaa@39A5@ counties in Iowa. The area sample sizes are n 1 = n 2 = n 3 = 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaaabeaakiabg2da9iaad6gadaWgaaWcbaGaaGOmaaqa baGccqGH9aqpcaWGUbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaaG ymaiaacYcaaaa@4023@ n 4 = 2 , n 5 = n 6 = n 7 = n 8 = 3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaI0aaabeaakiabg2da9iaaikdacaGGSaGaaGjbVlaad6ga daWgaaWcbaGaaGynaaqabaGccqGH9aqpcaWGUbWaaSbaaSqaaiaaiA daaeqaaOGaeyypa0JaamOBamaaBaaaleaacaaI3aaabeaakiabg2da 9iaad6gadaWgaaWcbaGaaGioaaqabaGccqGH9aqpcaaIZaGaaiilaa aa@4908@ n 9 = 4 , n 10 = n 11 = 5 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaI5aaabeaakiabg2da9iaaisdacaGGSaGaaGjbVlaad6ga daWgaaWcbaGaaGymaiaaicdaaeqaaOGaeyypa0JaamOBamaaBaaale aacaaIXaGaaGymaaqabaGccqGH9aqpcaaI1aGaaiilaaaa@449C@ and n 12 = 6. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaGaaGOmaaqabaGccqGH9aqpcaaI2aGaaiOlaaaa@3B0F@ Using least squares, we estimate β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdaaa@3735@ and σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaW baaSqabeaacaaIYaaaaaaa@38A3@ by β ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja aaaa@3745@ and σ ^ 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaahaaWcbeqaaiaaikdaaaGccaGGSaaaaa@396D@ respectively. For the areas with sample size greater than one, we set s i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDa aaleaacaWGPbaabaGaaGOmaaaaaaa@38C6@ equal to the estimated variance of the sample mean y ¯ i ( y ¯ i = j = 1 n i y i j / n i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaara WaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaaceWG5bGbaebadaWgaaWc baGaamyAaaqabaGccqGH9aqpdaaeWaqaamaalyaabaGaamyEamaaBa aaleaacaWGPbGaamOAaaqabaaakeaacaWGUbWaaSbaaSqaaiaadMga aeqaaaaaaeaacaWGQbGaeyypa0JaaGymaaqaaiaad6gadaWgaaadba GaamyAaaqabaaaniabggHiLdaakiaawIcacaGLPaaaaaa@48ED@ and we let S 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaaaaa@37B8@ be their geometric mean. For the areas with sample size equal to one, we set s i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDa aaleaacaWGPbaabaGaaGOmaaaaaaa@38C6@ equal to S 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaakiaac6caaaa@3874@ The vector of covariates X ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCiwayaara WaaSbaaSqaaiaadMgaaeqaaaaa@380A@ has three elements, the integer one (for the intercept), followed by the population means of pixels classified as corn and soybean.

In the second step, the data generation process for any desired number l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWgaaa@3728@ of small areas is illustrated. The covariates x i , i = 1 , , l , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEamaaBa aaleaacaWGPbaabeaakiaacYcacaaMe8UaamyAaiabg2da9iaaigda caGGSaGaaGjbVlablAciljaacYcacaaMe8UaeS4eHWMaaiilaaaa@4485@ are sampled with replacement from X ¯ i , i = 1 , , 12. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCiwayaara WaaSbaaSqaaiaadMgaaeqaaOGaaiilaiaaysW7caWGPbGaeyypa0Ja aGymaiaacYcacaaMe8UaeSOjGSKaaiilaiaaysW7caaIXaGaaGOmai aac6caaaa@44C5@ Then, the area-level means are drawn using

θ i ind Normal ( x i β ^ , σ ^ 2 ) , i = 1 , , l , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaOGaaGjbVpaawagabeWcbeqaaiaabMgacaqG UbGaaeizaaqaaebbfv3ySLgzGueE0jxyaGqbaKqzGfGae8hpIOdaaO GaaGjbVlaab6eacaqGVbGaaeOCaiaab2gacaqGHbGaaeiBamaabmaa baGaaCiEamaaDaaaleaacaWGPbaabaqcLbwacWaGyBOmGikaaOGabC OSdyaajaGaaiilaiaaysW7cuaHdpWCgaqcamaaCaaaleqabaGaaGOm aaaaaOGaayjkaiaawMcaaiaacYcacaaMe8UaamyAaiabg2da9iaaig dacaGGSaGaaGjbVlablAciljaacYcacaaMe8UaeS4eHWMaaiilaaaa @655D@

where β ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja aaaa@3745@ and σ ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaahaaWcbeqaaiaaikdaaaaaaa@38B3@ are the least squares estimates defined above. The sample variances s i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDa aaleaacaWGPbaabaGaaGOmaaaaaaa@38C6@ are generated in two steps. First, the sample sizes are drawn from a uniform distribution, n i iid Uniform ( 5, 25 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGPbaabeaakiaaysW7daGfGbqabSqabeaacaqGPbGaaeyA aiaabsgaaeaarqqr1ngBPrgifHhDYfgaiuaajugybiab=XJi6aaaki aaysW7caqGvbGaaeOBaiaabMgacaqGMbGaae4BaiaabkhacaqGTbWa aeWaaeaacaaI1aGaaGilaiaaysW7caaIYaGaaGynaaGaayjkaiaawM caaiaaiYcaaaa@5234@ i = 1, , l . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2 dacaaIXaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlabloriSjaa c6caaaa@3FF2@ Second, let s i 2 = S 2 V i / ( n i 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDa aaleaacaWGPbaabaGaaGOmaaaakiaai2dadaWcgaqaaiaadofadaah aaWcbeqaaiaaikdaaaGccaWGwbWaaSbaaSqaaiaadMgaaeqaaaGcba WaaeWaaeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaaGym aaGaayjkaiaawMcaaaaacaGGSaaaaa@436F@ where V i ind χ n i 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGPbaabeaakiaaysW7daGfGbqabSqabeaacaqGPbGaaeOB aiaabsgaaeaarqqr1ngBPrgifHhDYfgaiuaajugybiab=XJi6aaaki aaysW7cqaHhpWydaqhaaWcbaGaamOBamaaBaaameaacaWGPbaabeaa liabgkHiTiaaigdaaeaacaaIYaaaaaaa@4B51@ and S 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaaaaa@37B8@ defined above. Finally, the small area survey estimates are drawn using θ ^ i ind Normal ( θ i , s i 2 ) , i = 1, , l . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaGccaaMe8+aaybyaeqaleqabaGaaeyA aiaab6gacaqGKbaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbwacqWF8i IoaaGccaaMe8UaaeOtaiaab+gacaqGYbGaaeyBaiaabggacaqGSbWa aeWaaeaacqaH4oqCdaWgaaWcbaGaamyAaaqabaGccaaISaGaaGjbVl aadohadaqhaaWcbaGaamyAaaqaaiaaikdaaaaakiaawIcacaGLPaaa caGGSaGaaGjbVlaadMgacaaI9aGaaGymaiaaiYcacaaMe8UaeSOjGS KaaGilaiaaysW7cqWItecBcaGGUaaaaa@610D@ The benchmarking target is set equal to the sum of the θ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaaaaa@38D7@ and variants of this value, i = 1 l θ ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabmaeaacu aH4oqCgaqcamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaaGypaiaa igdaaeaacqWItecBa0GaeyyeIuoaaaa@3E6F@ scaled up or down by 50%. In NASS’s practice, for crop county estimates, this target is an already set state value. To evaluate the benchmarking methods in extreme cases, we consider additional simulation scenarios, where an area sample size is set to 2 or 50, or where the factor S 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaaaaa@37B8@ is multiplied by ten.

In what follows, we report empirical results mostly for a simulation scenario using 12 areas. Examples using larger number of areas are briefly discussed. For example, Iowa has 99 counties, and one of NASS’s interests is in benchmarking county estimates for planted acres, harvested acres and production (bushels) to the predefined state-level total. For such small numbers of areas, no adjustment is needed to the benchmarking procedures, deleting the last one or random deletion, introduced in the previous sections. However, the computation may be intolerable for an extremely large number of areas (say, one million), and some adjustments would be needed to the current procedures.

It is pertinent to discuss the computations for the simulation scenario with 12 areas. For posterior inference under the BFH model, we have used 1,000 random draws, and this runs in just a few seconds. On the other hand, it is more difficult to run a Gibbs sampler for deleting one at a time or random deletion benchmarking. However, we have provided an efficient Gibbs sampler as follows. We used a long run of 20,000 iterations, with a “burn in” of the first 10,000 iterations, choosing every tenth iterate thereafter. This was obtained by trial and error that is gauged by the autocorrelations, the Geweke test for stationarity and the effective sample sizes. For the 1,000 selected iterations, the autocorrelations are all negligible. For random deletion benchmarking, the p-values of the Geweke test for the three regression coefficients and δ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaW baaSqabeaacaaIYaaaaaaa@3885@ are, respectively, 0.651, 0.087, 0.828 and 0.699 (i.e., stationarity is not rejected), and the effective sample sizes are all 1,000. Also, the trace plots show no evidence of nonstationarity. Therefore, the Gibbs sampler is efficient, taking a few seconds despite the large number of runs.

The performance of benchmarking methods is assessed using a set of metrics that include posterior means (PM) and posterior standard deviations (PSD), and when it is convenient, posterior coefficients of variation (PCV), numerical standard errors (NSE) of the estimates and 95% highest posterior density intervals (95% HPD). Numerical results are presented in Tables 4.1-4.8.

A summarized version of the basic results is presented in Table 4.1, and serves for comparison of the average, standard error and coefficient of variation of the observed data with the PMs, PSDs, PCVs from the BFH model, benchmarking (deleting the last one, LO) model and random benchmarking (RD) model. The results in Table 4.1 apply to two simulation scenarios, where S 2 = 163 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaakiaai2dacaaIXaGaaGOnaiaaiodacaGGSaaa aa@3B71@ small variation in the observed data, and where S 2 = 1,630 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaakiaai2dacaqGXaGaaeilaiaabAdacaqGZaGa aeimaiaacYcaaaa@3CBE@ relatively larger variation in the observed data. When S 2 = 163 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaakiaai2dacaaIXaGaaGOnaiaaiodacaGGSaaa aa@3B71@ there are very little differences between the observed data and the posterior quantities from the BFH, LO and RD models. Given the small coefficients of variation for the survey estimates, it is difficult for any model to further reduce variability. Hence, the PCVs are comparable to the CVs of the survey estimates. On the other hand, three interesting points can be made for the scenario where S 2 = 1,630 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaakiaai2dacaqGXaGaaeilaiaabAdacaqGZaGa aeimaiaac6caaaa@3CC0@ First, the PMs under the BFH model can be very different from those of LO and RD models and these latter two PMs are very close. Second, the PSDs are much smaller than the standard errors of the observed data; there are substantial gains in precision under the BFH model. However, the PSDs are about four to five times smaller than those for the observed data and the PSDs under the LO and RD model are about twice those of the BFH model. The PCVs follow the same pattern. Third, LO and RD are very close in all three measures (PMs, PSDs, PCVs) with RD model having just slightly smaller PSDs. As expected, there is small difference between the LO model and the RD model. But one must also observe that benchmarking the BFH model is important because we can get answers that are different from the BFH model at least in terms of posterior standard deviations and coefficients of variation. Benchmarking is a jittering procedure, which helps to protect the model from misspecification, and therefore it must lead to increased variability in the small area estimates.


Table 4.1
Comparison of BFH model with no benchmarking, deleting the last one benchmarking and random benchmarking via posterior mean (PM), posterior standard deviation (PSD) and posterior coefficient of variation (PCV) for two values of S 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaaaaa@37B2@
Table summary
This table displays the results of Comparison of BFH model with no benchmarking A, PM, PSD and PCV (appearing as column headers).
A PM PSD PCV
OB BFH LO RD OB BFH LO RD OB BFH LO RD
a. S 2 =163;a=1,435 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaakiaai2dacaqGXaGaaeOnaiaabodacaqG7aGa aGjbVlaaykW7caWGHbGaeyypa0JaaeymaiaabYcacaqG0aGaae4mai aabwdaaaa@4619@ 1 135.6 134.0 133.8 133.5 6.03 5.62 5.47 5.41 0.044 0.042 0.041 0.041
2 102.0 103.5 103.1 103.0 7.10 6.50 6.11 5.82 0.070 0.063 0.059 0.057
3 117.7 121.0 120.7 120.5 7.31 6.72 6.55 6.25 0.062 0.056 0.054 0.052
4 77.0 81.5 81.4 81.0 5.88 6.00 5.46 5.53 0.076 0.074 0.067 0.068
5 126.9 127.8 127.5 127.5 5.63 5.25 5.25 5.06 0.044 0.041 0.041 0.040
6 113.1 113.4 112.9 113.1 8.06 7.15 6.82 6.74 0.071 0.063 0.060 0.060
7 137.2 133.7 133.5 133.9 6.74 6.38 5.93 6.02 0.049 0.048 0.044 0.045
8 124.8 124.7 124.7 124.7 4.03 3.91 3.83 3.76 0.032 0.031 0.031 0.030
9 118.3 116.5 115.8 116.6 7.54 6.79 6.29 6.65 0.064 0.058 0.054 0.057
10 156.5 153.4 153.3 153.3 4.37 4.45 4.12 4.18 0.028 0.029 0.027 0.027
11 109.5 110.3 110.3 110.2 4.88 4.64 4.70 4.70 0.045 0.042 0.043 0.043
12 116.3 118.1 117.9 117.7 7.23 6.62 6.26 6.00 0.062 0.056 0.053 0.051
b. S 2 =1,630;a=1,482 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaakiaai2dacaqGXaGaaeilaiaabAdacaqGZaGa aeimaiaabUdacaaMe8UaaGPaVlaadggacqGH9aqpcaqGXaGaaeilai aabsdacaqG4aGaaeOmaaaa@477D@ 1 129.1 129.8 127.2 126.5 19.07 4.64 10.71 10.45 0.148 0.036 0.084 0.083
2 117.3 126.3 122.1 122.1 22.46 5.08 12.73 12.51 0.191 0.040 0.104 0.102
3 120.0 145.5 137.3 136.9 23.11 5.93 12.91 12.68 0.193 0.041 0.094 0.093
4 68.8 107.3 94.0 93.6 18.60 7.47 12.04 11.86 0.270 0.070 0.128 0.127
5 142.4 146.4 142.3 142.2 17.80 4.52 11.98 11.15 0.125 0.031 0.084 0.078
6 108.8 120.2 115.2 115.4 25.49 5.43 11.75 11.66 0.234 0.045 0.102 0.101
7 136.8 116.2 118.2 119.0 21.31 5.37 11.32 11.90 0.156 0.046 0.096 0.100
8 124.5 132.5 127.3 127.3 12.76 4.39 9.00 8.91 0.102 0.033 0.071 0.070
9 144.2 127.5 128.0 129.5 23.86 5.33 12.74 14.00 0.165 0.042 0.100 0.108
10 172.9 129.2 145.5 145.3 13.81 9.23 10.28 10.37 0.080 0.071 0.071 0.071
11 109.1 114.7 110.6 110.2 15.42 4.31 10.53 10.43 0.141 0.038 0.095 0.095
12 108.4 120.3 114.6 114.2 22.87 5.10 12.42 12.01 0.211 0.042 0.108 0.105

Under the basic simulation scenario, we compare the deletion benchmarking methods to one of the methods in DGSM that provides benchmarked posterior estimates without deletion. To match the notation in DGSM, the benchmarking equation must be rewritten as

i = 1 l ω i θ i = a l = t , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacq aHjpWDdaWgaaWcbaGaamyAaaqabaGccqaH4oqCdaWgaaWcbaGaamyA aaqabaaabaGaamyAaiaai2dacaaIXaaabaGaeS4eHWganiabggHiLd GccaaI9aWaaSaaaeaacaWGHbaabaGaeS4eHWgaaiaai2dacaWG0bGa aGilaaaa@46FD@

where ω i = 1 / l , i = 1 l ω i = 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadMgaaeqaaOGaaGypamaalyaabaGaaGymaaqaaiablori SbaacaaISaGaaGjbVpaaqadabaGaeqyYdC3aaSbaaSqaaiaadMgaae qaaaqaaiaadMgacaaI9aGaaGymaaqaaiabloriSbqdcqGHris5aOGa aGypaiaaigdacaGGUaaaaa@48B1@ Let θ ^ i ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaamaabmaabaGaamOq aaGaayjkaiaawMcaaaaaaaa@3B5E@ denote the posterior means from the BFH model. Now, define θ ^ ¯ B = i = 1 l ω i θ ^ i ( B ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK GbaebadaWgaaWcbaGaamOqaaqabaGccaaI9aWaaabmaeaacqaHjpWD daWgaaWcbaGaamyAaaqabaaabaGaamyAaiaai2dacaaIXaaabaGaeS 4eHWganiabggHiLdGccuaH4oqCgaqcamaaDaaaleaacaWGPbaabaWa aeWaaeaacaWGcbaacaGLOaGaayzkaaaaaOGaaiilaaaa@480C@

ϕ i = ω i θ ^ i ( B ) , r i = ω i ϕ i , i = 1, , l , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2aaS baaSqaaiaadMgaaeqaaOGaaGypamaalaaabaGaeqyYdC3aaSbaaSqa aiaadMgaaeqaaaGcbaGafqiUdeNbaKaadaqhaaWcbaGaamyAaaqaam aabmaabaGaamOqaaGaayjkaiaawMcaaaaaaaGccaaISaGaaGjbVlaa dkhadaWgaaWcbaGaamyAaaqabaGccaaI9aWaaSaaaeaacqaHjpWDda WgaaWcbaGaamyAaaqabaaakeaacqaHvpGzdaWgaaWcbaGaamyAaaqa baaaaOGaaGilaiaaysW7caWGPbGaaGypaiaaigdacaaISaGaaGjbVl ablAciljaaiYcacaaMe8UaeS4eHWMaaGilaaaa@5939@

and S * = i = 1 l ω i 2 / ϕ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaiOkaaaakiaai2dadaaeWaqabSqaaiaadMgacaaI9aGa aGymaaqaaiabloriSbqdcqGHris5aOWaaSGbaeaacqaHjpWDdaqhaa WcbaGaamyAaaqaaiaaikdaaaaakeaacqaHvpGzdaWgaaWcbaGaamyA aaqabaaaaOGaaGzaVlaac6caaaa@4715@ Note that among the several specifications in DGSM, we have selected ϕ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2aaS baaSqaaiaadMgaaeqaaaaa@38D9@ at random (no preference). Then, the benchmarked Bayes estimators of DGSM are

θ ^ i ( B M ) = θ ^ i ( B ) + ( t θ ^ ¯ B ) r i / S * , i = 1, , l . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaamaabmaabaGaamOqaiaad2eaaiaawIca caGLPaaaaaGccaaI9aGafqiUdeNbaKaadaqhaaWcbaGaamyAaaqaam aabmaabaGaamOqaaGaayjkaiaawMcaaaaakiabgUcaRmaabmaabaGa amiDaiabgkHiTiqbeI7aXzaajyaaraWaaSbaaSqaaiaadkeaaeqaaa GccaGLOaGaayzkaaWaaSGbaeaacaWGYbWaaSbaaSqaaiaadMgaaeqa aaGcbaGaam4uamaaCaaaleqabaGaaiOkaaaaaaGccaaMb8Uaaiilai aaysW7caWGPbGaaGypaiaaigdacaaISaGaaGjbVlablAciljaaiYca caaMe8UaeS4eHWMaaGOlaaaa@5AE6@

Empirical results using the estimator θ ^ i ( B M ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaqhaaWcbaGaamyAaaqaamaabmaabaGaamOqaiaad2eaaiaawIca caGLPaaaaaaaaa@3BFA@ are presented in the note to Table 4.1. The largest difference between the benchmarked estimates under different benchmarking methods is for area 10 ( OB: 172.9; BFH: 129.2; LO: 145.5; RD: 145.3; DGSM: 126.4). In general, the PMs from LO and RD are closer to OB (observed data). Otherwise, these estimates compare reasonably well with the LO benchmarking and RD deletion although there are some small differences; DGSM does not provide posterior standard deviations and credible intervals.

More detailed results for S 2 = 163 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaakiaai2dacaaIXaGaaGOnaiaaiodacaGGSaaa aa@3B71@ are presented in Tables 4.2-4.8 and in Figures 4.1-4.4. Our interest is mainly to compare deletion of a single area (e.g., LO) and RD.

Using the results in Table 4.2, we conclude that the PMs from the BFH model (without benchmarking) are slightly different from the direct estimates, and as expected, larger than the smaller direct estimates and smaller than the larger ones. Except for two areas, as expected, the PSDs are smaller than the direct standard deviations. For example, the smallest direct estimate (76.997) has the largest shrinkage with a larger standard deviation (5.881 vs. 5.995); the results are consistent with the standard shrinkage that occurs in small area estimation. We note that the PCVs are all small and the NSEs are reasonably small, too.


Table 4.2
Comparison of the direct estimator with posterior inference from the Bayesian Fay-Herriot model for the area parameters
Table summary
This table displays the results of Comparison of the direct estimator with posterior inference from the Bayesian Fay-Herriot model for the area parameters. The information is grouped by Area (appearing as row headers), n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaaaa@3917@ , θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGafqiUdeNbaK aaaaa@39EA@ , s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4Caaaa@391C@ , PM, PSD, PCV, NSE and 95% HPD (appearing as column headers).
Area n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaaaa@3917@ θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGafqiUdeNbaK aaaaa@39EA@ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4Caaaa@391C@ PM PSD PCV NSE 95% HPD
1 5 135.575 6.031 133.985 5.617 0.042 0.057 (123.422, 145.402)
2 7 101.980 7.101 103.461 6.498 0.063 0.065 (90.598, 116.134)
3 24 117.655 7.309 121.006 6.716 0.056 0.066 (107.730, 134.124)
4 23 76.997 5.881 81.473 5.995 0.074 0.058 (69.046, 92.578)
5 21 126.917 5.629 127.832 5.248 0.041 0.052 (117.850, 138.406)
6 9 113.132 8.061 113.393 7.147 0.063 0.068 (99.441, 127.451)
7 5 137.236 6.739 133.661 6.378 0.048 0.064 (121.771, 146.662)
8 20 124.839 4.034 124.732 3.906 0.031 0.039 (117.233, 132.309)
9 16 118.306 7.544 116.479 6.785 0.058 0.071 (103.225, 130.003)
10 9 156.503 4.368 153.355 4.449 0.029 0.045 (144.785, 162.031)
11 23 109.546 4.877 110.348 4.637 0.042 0.047 (101.179, 119.294)
12 9 116.314 7.232 118.098 6.623 0.056 0.068 (105.135, 131.186)

The estimates from the BFH model with deleting the last area and with random deletion under a uniform prior (equal weights) are presented in Tables 4.3 and 4.4. The posterior weights barely differ from 0.083 with the largest one (0.097) of the last area and smallest one (0.056) of the 8 th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGioamaaCa aaleqabaGaaeiDaiaabIgaaaaaaa@38C8@ area. Both random deletion and deleting the last one provide improved precision, as the PSDs of the benchmarked estimates are all smaller than the observed standard errors, for both benchmarking methods. The NSEs are larger than for no benchmarking, but this barely matters as these are errors of the PMs (the characteristic of the PM has three digits).


Table 4.3
Comparison of the direct estimator with posterior inference from the Bayesian Fay-Herriot model for the area parameters under random deletion benchmarking
Table summary
This table displays the results of Comparison of the direct estimator with posterior inference from the Bayesian Fay-Herriot model for the area parameters under random deletion benchmarking. The information is grouped by Area (appearing as row headers), n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaaaa@3917@ , θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGafqiUdeNbaK aaaaa@39EA@ , s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4Caaaa@391C@ , PM, PSD, PCV, NSE and 95% HPD (appearing as column headers).
Area n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaaaa@3917@ θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGafqiUdeNbaK aaaaa@39EA@ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4Caaaa@391C@ PM PSD PCV NSE 95% HPD
1 5 135.575 6.031 133.516 5.431 0.041 0.171 (123.414, 143.541)
2 7 101.980 7.101 102.903 5.793 0.056 0.199 (92.378, 114.250)
3 24 117.655 7.309 120.671 6.237 0.052 0.194 (107.744, 132.190)
4 23 76.997 5.881 81.170 5.597 0.069 0.202 (69.781, 91.177)
5 21 126.917 5.629 127.652 5.036 0.039 0.170 (118.293, 137.228)
6 9 113.132 8.061 112.805 6.707 0.059 0.223 (100.926, 126.074)
7 5 137.236 6.739 133.908 6.007 0.045 0.177 (122.135, 145.344)
8 20 124.839 4.034 124.703 3.757 0.030 0.120 (117.962, 132.304)
9 16 118.306 7.544 116.451 6.650 0.057 0.249 (103.400, 129.316)
10 9 156.503 4.368 153.222 4.216 0.028 0.134 (144.392, 160.854)
11 23 109.546 4.877 110.221 4.694 0.043 0.150 (101.038, 119.570)
12 9 116.314 7.232 117.780 5.997 0.051 0.208 (104.619, 128.158)

Table 4.4
Comparison of the direct estimator with posterior inference from the Bayesian Fay-Herriot model for the area parameters under deleting the last area
Table summary
This table displays the results of Comparison of the direct estimator with posterior inference from the Bayesian Fay-Herriot model for the area parameters under deleting the last area. The information is grouped by Area (appearing as row headers), n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaaaa@3917@ , θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGafqiUdeNbaK aaaaa@39EA@ , s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4Caaaa@391C@ , PM, PSD, PCV, NSE and 95% HPD (appearing as column headers).
Area n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaaaa@3917@ θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGafqiUdeNbaK aaaaa@39EA@ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4Caaaa@391C@ PM PSD PCV NSE 95% HPD
1 5 135.575 6.031 133.772 5.519 0.041 0.151 (122.213, 143.991)
2 7 101.980 7.101 103.026 6.319 0.061 0.171 (89.424, 113.857)
3 24 117.655 7.309 120.470 6.458 0.054 0.209 (108.783, 134.261)
4 23 76.997 5.881 81.391 5.906 0.073 0.171 (69.636, 92.634)
5 21 126.917 5.629 127.883 5.158 0.040 0.142 (117.282, 137.305)
6 9 113.132 8.061 112.895 6.270 0.056 0.216 (100.664, 124.320)
7 5 137.236 6.739 133.298 5.948 0.045 0.178 (121.831, 144.727)
8 20 124.839 4.034 124.664 3.810 0.031 0.124 (117.321, 131.941)
9 16 118.306 7.544 116.542 6.531 0.056 0.203 (104.238, 129.622)
10 9 156.503 4.368 153.229 4.353 0.028 0.132 (144.443, 161.593)
11 23 109.546 4.877 109.997 4.563 0.041 0.168 (101.428, 118.953)
12 9 116.314 7.232 117.835 6.344 0.054 0.215 (106.421, 131.483)

The three methods (BFH, RD, LO) are compared using the results in Table 4.5. The PMs are comparable, so that benchmarking (RD, LO) does not distort (shrink) the estimates much beyond the shrinkage under the BFH model. Also, the PSDs under LO and RD are almost always smaller than those under the BFH model. For eight of the twelve areas, RD has smaller PSDs than LO; in these areas, RD shows roughly 1% decrease in PSD over LO and roughly 4% over the PSDs from BFH.

To investigate how sensitive the PSDs are to different benchmarking targets, we present results using three choices of targets in Table 4.6. The PSDs change only slightly over different targets and are still better than the standard errors of the direct estimates.

As part of designing a complex set of simulations, we consider using unequal probabilities (weights) in the random deletion benchmarking, and present results in Table 4.7. Uniform weights (EW) are compared to weights inversely proportional (IW) to the sample sizes and to weights directly proportional (DW) to the samples sizes. Again, small differences are present among the three PMs and among the three PSDs. The PSDs are still smaller than those of the direct estimates.

Using the results in Table 4.8, we study how extreme sample sizes in the last county (to be deleted) affect posterior inference. For this, we set the sample size of the last county to be outside the simulation range (5-25), at 2 and 50. First, consider the case in which the sample size of the last county is 2. Consistent with previous findings, there are minor differences of the PMs over no benchmarking, deleting the last one and random deletion for all counties. The PSDs for LO and RD are smaller than those of BFH with nine of these PSDs for RD smaller than LO. However, for the last county, we observe relatively large posterior standard deviations (10.00, 8.771, 8.525), roughly 15% decrease in PSD of RD over no benchmarking. Next, consider the case in which the sample size of the last county is 50. The patterns are similar, except the PSDs for the last county are comparable to the others under BFH, LO and RD and again there is an approximately 10% decrease (6.282, 5.958, 5.702) in PSD of RD over no benchmarking. It appears that deliberately putting the county with the most extreme sample size (small or large) as the last county can affect the benchmarking procedure. In contrast, minor changes are observed when the areas with extreme sample size are not systematically deleted. When the sample size is 2, the new PMs and PSDs are the following, BFH: 124.307, 9.993; LO: 123.371, 9.000 RD: 123.540, 8.887. When the sample size is 50, the new PMs and PSDs are the following, BFH: 118.167, 6.284; LO: 117.802, 6.094; RD: 117.716, 5.948.


Table 4.5
A summary of the comparison of inference from the direct estimator, the Bayesian Fay-Herriot (BFH) model, random deletion (RD) benchmarking and deleting the last one (LO)
Table summary
This table displays the results of A summary of the comparison of inference from the direct estimator. The information is grouped by Area (appearing as row headers), n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaaaa@3917@ , θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGafqiUdeNbaK aaaaa@39EA@ , s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4Caaaa@391C@ , BFH, RD and LO (appearing as column headers).
Area n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaaaa@3917@ θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGafqiUdeNbaK aaaaa@39EA@ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4Caaaa@391C@ BFH RD LO
PM PSD PM PSD PM PSD
1 5 135.575 6.031 133.985 5.617 133.516 5.431 133.772 5.519
2 7 101.980 7.101 103.461 6.498 102.903 5.793 103.026 6.319
3 24 117.655 7.309 121.006 6.716 120.671 6.237 120.470 6.458
4 23 76.997 5.881 81.473 5.995 81.170 5.597 81.391 5.906
5 21 126.917 5.629 127.832 5.248 127.652 5.036 127.883 5.158
6 9 113.132 8.061 113.393 7.147 112.805 6.707 112.895 6.270
7 5 137.236 6.739 133.661 6.378 133.908 6.007 133.298 5.948
8 20 124.839 4.034 124.732 3.906 124.703 3.757 124.664 3.810
9 16 118.306 7.544 116.479 6.785 116.451 6.650 116.542 6.531
10 9 156.503 4.368 153.355 4.449 153.222 4.216 153.229 4.353
11 23 109.546 4.877 110.348 4.637 110.221 4.694 109.997 4.563
12 9 116.314 7.232 118.098 6.623 117.780 5.997 117.835 6.344

Table 4.6
Comparison of posterior inference of the area parameters under random deletion benchmarking with different targets (a = 1,435)
Table summary
This table displays the results of Comparison of posterior inference of the area parameters under random deletion benchmarking with different targets (a = 1. The information is grouped by Area (appearing as row headers), n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaaaa@3917@ , θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGafqiUdeNbaK aaaaa@39EA@ , s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4Caaaa@391C@ , a, 1.5a and 0.5a (appearing as column headers).
Area n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaaaa@3917@ θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGafqiUdeNbaK aaaaa@39EA@ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4Caaaa@391C@ a 1.5a 0.5a
PM PSD PM PSD PM PSD
1 5 135.575 6.031 133.516 5.431 189.249 5.385 77.769 5.561
2 7 101.980 7.101 102.903 5.793 175.963 5.794 29.847 5.899
3 24 117.655 7.309 120.671 6.237 197.219 6.099 44.145 6.461
4 23 76.997 5.881 81.170 5.597 134.628 5.871 27.771 5.460
5 21 126.917 5.629 127.652 5.036 177.209 5.165 78.125 5.053
6 9 113.132 8.061 112.805 6.707 201.949 7.145 23.614 6.995
7 5 137.236 6.739 133.908 6.007 200.989 6.018 66.781 6.024
8 20 124.839 4.034 124.703 3.757 151.951 3.952 97.484 3.924
9 16 118.306 7.544 116.451 6.650 196.849 6.990 35.990 6.607
10 9 156.503 4.368 153.222 4.216 184.720 4.019 121.708 4.706
11 23 109.546 4.877 110.221 4.694 148.724 4.966 71.752 4.760
12 9 116.314 7.232 117.780 5.997 193.050 5.954 42.514 6.081

Table 4.7
Comparison of posterior inference of the area parameters under random deletion benchmarking with equal weights (EW), weights inversely proportional sample sizes (IW) and weights directly proportional to sample sizes (DW)
Table summary
This table displays the results of Comparison of posterior inference of the area parameters under random deletion benchmarking with equal weights (EW). The information is grouped by Area (appearing as row headers), n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaaaa@3917@ , θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGafqiUdeNbaK aaaaa@39EA@ , s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4Caaaa@391C@ , EW, IW and DW (appearing as column headers).
Area n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaaaa@3917@ θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGafqiUdeNbaK aaaaa@39EA@ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4Caaaa@391C@ EW IW DW
PM PSD PM PSD PM PSD
1 5 135.575 6.031 133.516 5.431 133.508 5.518 133.436 5.404
2 7 101.980 7.101 102.903 5.793 103.042 5.737 103.049 5.809
3 24 117.655 7.309 120.671 6.237 120.529 6.176 120.634 6.247
4 23 76.997 5.881 81.170 5.597 81.167 5.571 81.111 5.567
5 21 126.917 5.629 127.652 5.036 127.669 5.079 127.541 5.055
6 9 113.132 8.061 112.805 6.707 112.762 6.704 113.074 6.716
7 5 137.236 6.739 133.908 6.007 133.965 5.968 133.798 6.027
8 20 124.839 4.034 124.703 3.757 124.829 3.734 124.719 3.757
9 16 118.306 7.544 116.451 6.650 116.300 6.707 116.502 6.640
10 9 156.503 4.368 153.222 4.216 153.238 4.198 153.204 4.220
11 23 109.546 4.877 110.221 4.694 110.190 4.697 110.208 4.690
12 9 116.314 7.232 117.780 5.997 117.802 6.010 117.726 5.989

For comparison, different posterior densities are presented in Figures 4.1-4.4. In Figures 4.1 and 4.2, we present posterior densities of all twelve area parameters when each area, in turn, is deleted. We observe that the posterior densities are slightly different around the modes, but nothing remarkable. In Figures 4.3 and 4.4, we present posterior densities of all twelve area parameters under the FH model (unconstrained), random deletion benchmarking and deleting the last one. There are some differences among the three densities, but again these are not alarmingly different.

Finally, empirical results are presented for a simulation scenario with 99 areas, reflecting the 99 counties in Iowa. The data are generated as previously described, and the BFH model without benchmarking, with random deletion benchmarking, and with deleting the last one benchmarking is fit using 20,000 iterations for the Gibbs sampler. For each model fit, the first 10,000 iterations are used as a burn-in and every tenth iteration is kept thereafter. The BFH model fitting takes 15 seconds, while the deletion benchmarking models takes slightly less than three minutes each. For the random deletion benchmarking model parameters, the regression coefficients β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdaaa@3735@ and the variance σ 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaW baaSqabeaacaaIYaaaaOGaaiilaaaa@395D@ the p-values of the Geweke test are, respectively, 0.822, 0.128, 0.752 and 0.219, and the effective sample sizes are all 1,000 for the 1,000 selected iterations (i.e., an efficient Gibbs sampler). Note that the target is 12,162.93 and the sum of the PMs from the BFH model is 12,168.49, a difference of 5.56. In Figure 4.5, we present a plot of the coefficients of variation under random deletion benchmarking, deleting the last one benchmarking and BFH model versus the direct estimates by area. The differences among these models are not remarkable. Most of the points with direct CVs larger than about 0.04 fall below the 45 o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaaiw dadaahaaWcbeqaaiaab+gaaaaaaa@3893@ straight line. However, some points (diamond) under the BFH model are above the 45 o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaaiw dadaahaaWcbeqaaiaab+gaaaaaaa@3893@ line, four of them are noticeable, possibly shrinking too much. We conclude that it is sensible to perform the random deletion benchmarking.


Table 4.8
A summary of the comparison of inference from the direct estimator, the Bayesian Fay-Herriot (BFH) model, deleting the last one (LO) and random deletion (RD) benchmarking when the last county is extreme
Table summary
This table displays the results of A summary of the comparison of inference from the direct estimator Area, n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaaaa@3917@ , θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGafqiUdeNbaK aaaaa@39EA@ , s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4Caaaa@391C@ , BFH, LO and RD (appearing as column headers).
Area n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamOBaaaa@3917@ θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGafqiUdeNbaK aaaaa@39EA@ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4Caaaa@391C@ BFH LO RD
PM PSD PM PSD PM PSD
a. The last county size is 2. 1 5 135.575 6.031 134.116 5.607 133.772 5.473 133.510 5.409
2 7 101.980 7.101 103.205 6.482 102.818 6.118 102.745 5.837
3 24 117.655 7.309 121.110 6.730 120.911 6.577 120.666 6.260
4 23 76.997 5.881 81.586 6.021 81.741 5.544 81.196 5.631
5 21 126.917 5.629 127.901 5.252 127.552 5.264 127.619 5.041
6 9 113.132 8.061 113.454 7.147 112.889 6.818 113.074 6.815
7 5 137.236 6.739 133.938 6.339 133.479 5.968 133.947 5.994
8 20 124.839 4.034 124.753 3.906 124.699 3.824 124.738 3.735
9 16 118.306 7.544 116.199 6.806 115.329 6.327 116.065 6.785
10 9 156.503 4.368 153.419 4.434 153.148 4.174 153.240 4.213
11 23 109.546 4.877 110.512 4.645 110.473 4.696 110.324 4.686
12 2 121.881 12.75 124.243 10.00 123.755 8.771 123.444 8.525
b. The last county size is 50. 1 5 135.575 6.031 133.984 5.618 133.745 5.461 133.452 5.385
2 7 101.980 7.101 103.462 6.499 103.136 6.086 103.044 5.780
3 24 117.655 7.309 121.006 6.716 120.832 6.536 120.698 6.232
4 23 76.997 5.881 81.473 5.995 81.596 5.512 81.162 5.728
5 21 126.917 5.629 127.832 5.248 127.519 5.238 127.661 5.001
6 9 113.132 8.061 113.393 7.146 112.929 6.777 112.899 6.675
7 5 137.236 6.739 133.659 6.380 133.351 5.947 133.851 5.941
8 20 124.839 4.034 124.732 3.906 124.713 3.821 124.726 3.825
9 16 118.306 7.544 116.480 6.785 115.766 6.269 116.319 6.601
10 9 156.503 4.368 153.355 4.449 153.225 4.173 153.306 4.230
11 23 109.546 4.877 110.347 4.637 110.378 4.692 110.155 4.689
12 50 116.538 6.791 118.117 6.282 118.035 5.958 117.952 5.702

Figure 4.1 Comparison of the posterior densities for 01 to 06 when each area is deleted at a time (e.g., the first area is deleted in the first panel etc.)

Description for Figure 4.1 

Figure presenting the posterior densities for θ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaigdaaeqaaaaa@3884@  to θ 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaiAdaaeqaaaaa@3889@  when each area is deleted at a time (e.g., the first area is deleted in the first panel etc.). There are six graphs, one for each theta, overlapping the density curves of the twelve areas. The posterior density is on the y-axis, ranging from 0.0 to 0.12. Theta is on the x-axis, ranging from 60 to 180. The posterior densities are similar in width, but the modes differ. It’s around theta = 130 for theta_1 and theta_5; around theta = 105 for theta_2; around theta = 120 for theta_3; around theta = 80 for theta_4 and around theta = 110 for theta_6.

Figure 4.2 Comparison of the posterior densities for 07 to 012 when each area is deleted at a time

Description for Figure 4.2 

Figure presenting the posterior densities for θ 7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaiEdaaeqaaaaa@388A@  to θ 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaigdacaaIYaaabeaaaaa@3940@  when each area is deleted at a time (e.g., the first area is deleted in the first panel etc.). There are six graphs, one for each theta, overlapping the density curves of the twelve areas. The posterior density is on the y-axis, ranging from 0.0 to 0.12. Theta is on the x-axis, ranging from 60 to 180. The posterior densities are similar, but there are slight differences. The mode is around theta = 130 for theta_7; around theta = 120 for theta_8, theta_9 and theta_12; around theta = 150 for theta_10 and around theta = 110 for theta_11. Densities are narrower and higher for theta_8, theta_10 and theta_11.

Figure 4.3 Comparison of the posterior densities for 01 to 06 under the Fay-Herriot model (-1), random deletion benchmarking (0) and area-12 deletion

Description for Figure 4.3 

Figure presenting the posterior densities for θ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaigdaaeqaaaaa@3884@  to θ 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaiAdaaeqaaaaa@3889@  under the Fay-Herriot model, under random deletion benchmarking and for area-12 deletion. There are six graphs, one for each theta, overlapping the density curves of the three deletion types. The posterior density is on the y-axis, ranging from 0.0 to 0.10. Theta is on the x-axis, ranging from 60 to 180. The posterior densities are similar in width, but the modes differ. It’s around theta = 130 for theta_1 and theta_5; around theta = 105 for theta_2; around theta = 120 for theta_3; around theta = 80 for theta_4 and around theta = 110 for theta_6.

Figure 4.4 Comparison of the posterior densities of 07 to 012  under the Fay-Herriot model (-1), random deletion benchmarking (0) and area-12 deletion

Description for Figure 4.4 

Figure presenting the posterior densities for θ 7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaiEdaaeqaaaaa@388A@  to θ 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaigdacaaIYaaabeaaaaa@3940@  under the Fay-Herriot model, under random deletion benchmarking and for area-12 deletion. There are six graphs, one for each theta, overlapping the density curves of the three deletion types. The posterior density is on the y-axis, ranging from 0.0 to 0.10. Theta is on the x-axis, ranging from 60 to 180. The posterior densities are similar, but there are slight differences. The mode is around theta = 130 for theta_7; around theta = 120 for theta_8, theta_9 and theta_12; around theta = 150 for theta_10 and around theta = 110 for theta_11. Densities are narrower and higher for theta_8, theta_10 and theta_11.

Figure 4.5 Plot of the coefficients of variation under the random deletion benchmarking, deleting the last one and the Bayesian Fay-Herriot model for 99 areas

Description for Figure 4.5 

Figure presenting a scatter plot of the coefficients of variation under the random deletion benchmarking, deleting the last one and the Bayesian Fay-Herriot model for 99 areas. The posterior CV is on the y-axis, ranging from 0.0 to 0.10. The direct CV is on the x-axis, ranging from 0.0 to 0.10. A 45° straight line is added to the graph. The differences among these models are not remarkable. Most of the points with direct CVs larger than about 0.04 fall below the 45° straight line. However, some points under the BFH model are above the 45° line, four of them are noticeable, possibly shrinking too much.


Date modified: