Exploring recursion for optimal estimators under cascade rotation

Warning View the most recent version.

Archived Content

Information identified as archived is provided for reference, research or recordkeeping purposes. It is not subject to the Government of Canada Web Standards and has not been altered or updated since it was archived. Please "contact us" to request a format other than those available.

Jan Kowalski and Jacek WesołowskiNote 1

Abstract

We are concerned with optimal linear estimation of means on subsequent occasions under sample rotation where evolution of samples in time is designed through a cascade pattern. It has been known since the seminal paper of Patterson (1950) that when the units are not allowed to return to the sample after leaving it for certain period (there are no gaps in the rotation pattern), one step recursion for optimal estimator holds. However, in some important real surveys, e.g., Current Population Survey in the US or Labour Force Survey in many countries in Europe, units return to the sample after being absent in the sample for several occasions (there are gaps in rotation patterns). In such situations difficulty of the question of the form of the recurrence for optimal estimator increases drastically. This issue has not been resolved yet. Instead alternative sub-optimal approaches were developed, as K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGlbGaey OeI0caaa@3C45@ composite estimation (see e.g., Hansen, Hurwitz, Nisselson and Steinberg (1955)), AK MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbGaam 4saiabgkHiTaaa@3D0B@ composite estimation (see e.g., Gurney and Daly (1965)) or time series approach (see e.g., Binder and Hidiroglou (1988)).

In the present paper we overcome this long-standing difficulty, that is, we present analytical recursion formulas for the optimal linear estimator of the mean for schemes with gaps in rotation patterns. It is achieved under some technical conditions: ASSUMPTION I and ASSUMPTION II (numerical experiments suggest that these assumptions might be universally satisfied). To attain the goal we develop an algebraic operator approach which allows to reduce the problem of recursion for the optimal linear estimator to two issues: (1) localization of roots (possibly complex) of a polynomial Q p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaadchaaeqaaaaa@3C7E@ defined in terms of the rotation pattern ( Q p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaadchaaeqaaaaa@3C7E@ happens to be conveniently expressed through Chebyshev polynomials of the first kind), (2) rank of a matrix S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaGaam4uaaaa@38DF@ defined in terms of the rotation pattern and the roots of the polynomial Q p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaadchaaeqaaaaa@3C7E@ . In particular, it is shown that the order of the recursion is equal to one plus the size of the largest gap in the rotation pattern. Exact formulas for calculation of the recurrence coefficients are given - of course, to use them one has to check (in many cases, numerically) that ASSUMPTIONs I and II are satisfied. The solution is illustrated through several examples of rotation schemes arising in real surveys.

Key Words: Repeated surveys; Rotation of sample; Recursive BLUE of the current mean; Chebyshev polynomials; Algebra of shift operators; Exponential correlations.

Table of content

Notes

Date modified: