Adjusted Price Index and Monthly Adjusted Consumer Expenditure Basket Weights

by Gerry O’Donnell and Clément Yélou

Release date: November 10, 2021

Skip to text

Text begins

1. Background: COVID-19 Pandemic and Price Indexes Based on Current Consumer Spending

The COVID-19 outbreak, declared a pandemic on March 11, 2020, has led to economic disruptions that continue to affect financial and labour markets across the globe. At the onset of the pandemic, prices shifted significantly as Canadians entered a sustained period of physical distancing and business closures. As Canadians adapted to staying home and travelling less, demand for a number of consumer goods and services changed, contributing to the first year-over-year decline in the Consumer Price Index (CPI) since 2009. In April and May of 2020, consumer prices were 0.2% and 0.4% lower, respectively, compared with the same months of 2019. While prices for some commodities, such as energy products, have since recovered to pre-pandemic levels, and prices for durable goods, such as passenger vehicles and furniture and services, such as traveller accommodation and real estate commission fees have risen in recent months, the impact of COVID-19 and various measures to contain its spread continue to impact the CPI.

The COVID-19 pandemic created an unprecedented situation where the behaviours of Canadians were significantly altered over a very short period of time, undoubtedly affecting consumption patterns which, by design, are not accounted for in the official CPI fixed basket weights. In order to assess the impact of COVID-19 on Canadian household expenditures, Statistics Canada, in partnership with the Bank of Canada, explored more current sources of expenditure data to estimate basket weights that reflected shifting consumption patterns during the pandemic. These data were supplemented with transaction and survey data as well as subject matter expertise to derive an alternate set of expenditure weights, used to calculate an Adjusted price index series for the months of March 2020 to February 2021. Both the official CPI and the Adjusted price index will continue to play key roles in measuring our highly fluid economy and supporting the trajectory of Canada’s post-pandemic economic recovery.

Shifts in household purchasing patterns have implications for the basket weights used in the calculation of the CPI. Typically, expenditure patterns evolve slowly and in a sustained manner over time in response to shifts in relative prices, changes in the level or distribution of household incomes, changing demographics, evolving habits and the availability of new technology. A fixed-basket price index, such as the Canadian CPI, can only reflect these changes when the CPI basket weights are updated. Under normal economic circumstances, any over- or under-estimation of the importance of a given good or service in the CPI is minimized by scheduling basket updates at regular intervals.Note 

On July 13, 2020 Statistics Canada published Consumer expenditures during COVID-19: An exploratory analysis of the effects of changing consumption patterns on consumer price indexes Note  , the agency’s first publication measuring consumer price trends using basket weights updated to reflect the latest monthly consumer spending patterns. This alternative and experimental price index showed a slightly higher rate of price inflation than the official CPI based on 2017 expenditure patterns when, in the early months of the pandemic, Canadian consumers reduced consumption of goods and services whose prices dropped, such as traveller accommodation and clothing, and increased their consumption of products with above average price increases, such as food and household cleaning products.

As the pandemic evolved, Statistics Canada updated the study with new methods and results, publishing the Adjusted price index and monthly adjusted consumer expenditure basket weights in The Daily, and data tables 18-10-0263 and 18-10-0264 on October 8 2020, and again on January 12 2021 and April 12 2021.

The monthly adjusted consumer expenditure basket weights made extensive use of aggregate High Frequency Expenditure Network (HFEN) data provided by the Bank of Canada to estimate changes in spending for the majority of products in the 2017 CPI basket. The major component shelter and the sub-component purchase and leasing of passenger vehicles were not covered by the available expenditure data. This data was supplemented by a number of other data sources to estimate monthly expenditures for more than 500 detailed product classes in the CPI.

The Adjusted price index was derived from these monthly expenditures and used a monthly-chained Laspeyres index, a formulation which used estimates of the previous month’s expenditures to aggregate current month price changes emanating from the CPI.

The CPI basket weights were updated with the release of the June 2021 CPI.Note  The new basket weight reference period is 2020, based on data from the national Household Final Consumption Expenditures (HFCE) series, in addition to data from the Survey of Household Spending and the provincial HFCE series. Alternative data for 2020 was used to account for pandemic-related shifts at more detailed levels of CPIs and geographies.

At the same time, Statistics Canada was working to redevelop the methods and data sources for the Adjusted price index and monthly adjusted consumer expenditure basket weights. In addition to the use of a broader range of data sources, a new price index formula was applied to aggregate monthly price changes into an All-items Adjusted price index to address important limitations observed with the monthly-chained Laspeyres index.

2. Methodology

2.1 Data

In order to estimate monthly consumer expenditures, a number of data sources and methods have been used to adjust the 2020 weights used in the CPI to reflect the consumption patterns that evolved during the COVID-19 pandemic.

Each of the CPI’s 515 elementary product classes was escalated at the Canada-level using one or more of the sources listed in Table 1. Where possible, the sources used were similar to those used to update the CPI basket weights.


Table 1
Data sources used to estimate monthly adjusted consumer expenditure basket weightsTable 1 Note 1
Table summary
This table displays the results of Data sources used to estimate monthly adjusted consumer expenditure basket weights. The information is grouped by Supplier type (appearing as row headers), Data source, Type of variable used, Periodicity of data, Latest data available and Basket share ( p 2020 q 2020 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWHWbWdamaaBaaaleaapeGaaCOmaiaahcdacaWHYaGaaCimaaWd aeqaaOWdbiaahghapaWaaSbaaSqaa8qacaWHYaGaaCimaiaahkdaca WHWaaapaqabaaaaa@3EA7@ / p 2020 q 2020 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqGHris5caWHWbWdamaaBaaaleaapeGaaCOmaiaahcdacaWHYaGa aCimaaWdaeqaaOWdbiaahghapaWaaSbaaSqaa8qacaWHYaGaaCimai aahkdacaWHWaaapaqabaaaaa@404B@ ) of elementary products adjusted using this source, percent (appearing as column headers).
Supplier type Data source Type of variable used Periodicity of data Latest data available Basket share ( p 2020 q 2020 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWHWbWdamaaBaaaleaapeGaaCOmaiaahcdacaWHYaGaaCimaaWd aeqaaOWdbiaahghapaWaaSbaaSqaa8qacaWHYaGaaCimaiaahkdaca WHWaaapaqabaaaaa@3EA7@ / p 2020 q 2020 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqGHris5caWHWbWdamaaBaaaleaapeGaaCOmaiaahcdacaWHYaGa aCimaaWdaeqaaOWdbiaahghapaWaaSbaaSqaa8qacaWHYaGaaCimai aahkdacaWHWaaapaqabaaaaa@404B@ ) of elementary products adjusted using this source, percentTable 1 Note 2
Data from Statistics Canada programs Household Final Consumption Expenditures expenditure quarterly 2021Q2 83.48
Retail Commodity Survey revenue monthly Jun-21 32.66
Monthly Retail Trade Survey revenue monthly Aug-21 8.79
New Motor Vehicle Sales revenue monthly Aug-21 6.31
Population estimates, quarterly number of people quarterly 2021Q3 19.16
Monthly Survey of Food Services and Drinking Places revenue monthly Aug-21 5.12
Domestic and international Itinerant aircraft movements volume weekly Sep-21 0.26
New Housing Price Index data price index monthly Sep-21 7.01
Passenger bus and urban transit statistics revenue monthly Jul-21 0.20
Electric power generation statistics volume monthly Jul-21 2.66
Canadian monthly natural gas distribution statistics revenue monthly Aug-21 0.70
Consumer Price Index price index monthly Sep-21 11.14
Labour Force Survey rent data average price monthly Sep-21 6.59
Data supplied to Statistics Canada from an external provider Bank of Canada High Frequency Expenditure Network data year-over-year growth in revenue monthly Sep-21 60.56
Canada Revenue Agency Goods and Services Tax revenue data revenue monthly Sep-21 58.97
Grocery retailer scanner data sales daily or weekly Sep-21 15.29
Airline statistics revenue monthly Sep-21 0.26
Office of the Superintendent of Financial Institutions mortgage data mortgage interest outstanding monthly Sep-21 3.85
Other published data Electricity volume data volume hourly Sep-21 2.66

In some cases, the individual series from the data source was very similar in coverage to the CPI elementary products. For example, the Monthly Retail Trade Survey’s monthly sales estimates for full-service restaurants were used to adjust basket weights for the CPI class food purchased from table-service restaurants. In other cases, the individual proxy series was mapped to a higher-level product class and its monthly expenditure estimates were applied to all lowest product classes. And in a few cases with limited data availability, a proxy series with a different scope was used to escalate a CPI elementary product. One such example was for the shelter utility, water, which was escalated using the Electric power generation survey’s total electricity available for use within specific geographic border on the assumption that electricity and water consumption would be similarly impacted by the increased demand from working from home and on-line schooling.

Access to reliable and timely expenditure information at the appropriate level of detail and quality will be required to enable Statistics Canada to monitor shifts in consumer spending and pursue the development of other sought-after indicators, such as measures of inflation for different groups, household types and geography. 

This analytical work is experimental and should not be used instead of the official measure of consumer inflation. Updating the weights in the official CPI basket of goods and services to account for consumption changes in the absence of a reliable and robust source of expenditure data would compromise the accuracy of the index values.

2.2 Derivation of monthly adjusted consumer expenditure basket weights

Given the variety of data sources providing indicators about consumer behaviour across the 515 elementary products in the Canadian CPI, a number of techniques were used to estimate monthly consumer expenditures.

The expenditures used in the most recent CPI basket update were based primarily on Statistics Canada’s Household Final Consumption Expenditures for 2020. These annual values were then projected forward using proxy series based on data sources in Table 1 by applying the proxy’s growth rate between 2020 and the reference period of the Adjusted price index. For most elementary products, the proxy series was measured in the dollar value of revenues, whereas for some products, the projection of expenditures used a combination of changes in quantities and changes in prices.

Projected monthly expenditures were then constrained to be consistent with the quarterly growth rate in Household Final Consumption Expenditures and the 12-month change in High Frequency Expenditure Network estimates.

2.3 Index calculations

The official CPI is calculated using a Laspeyres-type formula at the upper level of price aggregation; this is consistent with the fixed basket concept. The Laspeyres formula expresses the change in the cost between period 0 and period t of buying a fixed basket of goods and services, and is calculated by aggregating the prices of the products in the basket using quantities consumed from the price reference period 0 as weights.Note 

The Adjusted price index series for March 2020 to February 2021 was produced using the same geographic and product aggregation structure as the official CPI. However, unlike the official CPI, a monthly-chained Laspeyres-type index was calculated at the upper level, providing adjusted relatives for the March 2020 to February 2021 Adjusted price index, based on estimated previous month weights in order to reflect COVID-19 consumption patterns.

One of the limitations of a Laspeyres price index is that it uses quantities from an earlier period to aggregate prices. A Paasche price index uses quantities from the current period and often reflects substitutions made by consumers in response to price change. A Fisher price index is the geometric average of the Laspeyres and Paasche price indexes, and makes equal use of weights from the earlier period and current period to aggregate prices. With this release, the Adjusted price index used a Fisher price index formula. Appendix 1 provides further details on the Laspeyres, Paasche and Fisher price index formulae.

Another limitation of a monthly-chained Laspeyres-type index is that the index is subject to chain drift. Chain drift can occur in a chained Laspeyres price index when consumers respond to price increases by reducing quantities consumed, or the reverse, leading to a gap between the chained Laspeyres and fixed-base Laspeyres price index. Appendix 1 provides an example of chain drift.

To overcome the chain drift issue, Statistics Canada redeveloped the Adjusted price index using a Similarity-linked Fisher price index, which is regarded as the most appropriate approach by leading price index experts.Note 

In short, the Similarity-linked Fisher is calculated between two periods t and r such that r is prior to t and has the least dissimilar (or most similar) set of prices or quantities to period t. In our example in Appendix 1, time period 0 has identical prices and quantities to those of period 2, and so period 0 is less dissimilar to period 2 than period 1. The Fisher price index at t=2 would be based on the Fisher price index between period 0 and period 2-in our case a relative of 1, meaning no price change between period 0 and period 2. Appendix 2 provides details on how the Similarity-linked Fisher price index was calculated up to September 2021.

The Adjusted price index uses Canada-level price changes from the 515 elementary products in the CPI.

3. Results

Using the methods above, monthly adjusted consumer expenditure basket weights (Table 2) and a Similarity-linked Fisher month-over-month change (Table 3) were derived up to September 2021.


Table 2
Official CPI basket weights and monthly adjusted consumer expenditure basket weights
Table summary
This table displays the results of Official CPI basket weights and monthly adjusted consumer expenditure basket weights . The information is grouped by CPI Component (appearing as row headers), Official CPI basket weights, Monthly adjusted consumer expenditure basket weights, 2020 weights expressed at May 2021 (link month) prices, May 2021, June 2021, July 2021, August 2021 and September 2021, calculated using percent units of measure (appearing as column headers).
CPI Component Official CPI basket weights Monthly adjusted consumer expenditure basket weights
2020 weights expressed at May 2021 (link month) prices May 2021 June 2021 July 2021 August 2021 September 2021
percent
Food 16.24 15.92 15.78 17.24 17.39 16.54
Shelter 30.03 29.28 28.86 27.86 28.34 28.37
Household operations 14.89 16.02 15.69 14.89 14.73 14.91
Clothing and footwear 3.99 3.26 4.58 4.29 4.62 4.57
Transportation 15.96 16.87 16.08 15.97 15.78 16.53
Health and personal care 4.68 4.65 4.50 4.47 4.45 4.60
Recreation, education and reading 9.40 9.36 9.58 10.15 9.77 10.17
Alcoholic beverages, tobacco products and recreational cannabis 4.80 4.64 4.93 5.14 4.93 4.32

While monthly adjusted consumer expenditure basket weights were calculated between May 2021 and September 2021, the following analysis will focus on weights for September 2021, the most recent period.

Chart 1 Largest differences between official CPI weights at link month prices and monthly adjusted consumer expenditure basket weights for September 2021

Data table for Chart 1 
Data table for Chart 1
Table summary
This table displays the results of Data table for Chart 1 Official CPI 2020 basket weights at link month prices and Monthly adjusted consumer expenditure basket weights, calculated using percent units of measure (appearing as column headers).
Official CPI 2020 basket weights at link month prices Monthly adjusted consumer expenditure basket weights
percent
Food purchased from restaurants 4.50 5.80
Tuition fees 1.41 1.85
Purchase of passenger vehicles 6.21 6.58
Women's clothing 1.25 1.61
Passenger vehicle insurance premiums 1.78 2.09
Homeowners' home and mortgage insurance 1.38 1.12
Alcoholic beverages purchased from stores 2.30 1.97
Cigarettes 1.34 0.99
Electricity 1.85 1.42
Natural gas 0.77 0.30

In September 2021, the monthly adjusted basket weight for food purchased from restaurants surpassed its published value, as Canadians eased back into restaurant patios and indoor dining.

The monthly adjusted basket weight for tuition fees exceeded its published value in September as Canadian students returned to in-person and on-line classes.

The monthly adjusted basket weight for women’s clothing also rose above the published value. After a year of reduced spending on clothing, Canadians restocked their wardrobes.

For other products such as natural gas, seasonal factors affected the monthly adjusted basket weight, as low demand for home heating in September 2021 reduced Canadian’s budget allocation to natural gas compared to its published value.

Statistics Canada calculated price indexes using these monthly adjusted weights and the Similarity-linked Fisher price index formula from May 2021 to September 2021, where May 2021=100. Month-over-month percent change for All-items, Canada are in Table 3.


Table 3
1-month change in the official CPI and the Adjusted price index, All-items, Canada
Table summary
This table displays the results of 1-month change in the official CPI and the Adjusted price index. The information is grouped by 1-month change (percent) (appearing as row headers), Official CPI and Adjusted price index, calculated using pourcent units of measure (appearing as column headers).
1-month change (percent) Official CPI Adjusted price index
percent
June 2021 0.3 0.3
July 2021 0.6 0.6
August 2021 0.2 0.2
September 2021 0.2 0.2

For every reference period, the Adjusted price index and the official CPI had the same month-over-month movements at the all-items level. This confirms that the 2020 basket weights and the monthly adjusted consumer expenditure basket weights yield the same results for the all-items CPI for the June to September reference months.

4. Conclusion

The Adjusted price index provides Canadians with data and insights they need on Canada’s shifting consumer prices and expenditures as Canada recovers from the COVID-19 pandemic. This adjusted series provides an alternative estimate of inflation as consumer behaviour and expenditures evolve towards the end of 2021.

While the partnership with the Bank of Canada allows for temporary access to the necessary expenditure data, ongoing access to reliable and timely expenditure information at the appropriate level of detail and quality will enable Statistics Canada to continue monitoring shifts in consumer spending and pursue the development of other sought-after indicators, such as measures of inflation for different groups, household types and geography. Statistics Canada continues to work with price experts, national statistical organizations and other partners to ensure the data and methods used in the calculation of the official CPI and the Adjusted price index are aligned with international standards, as well as to explore new potential sources of expenditure information for future basket updates and to keep Canadians informed with relevant statistics.

Appendix 1: Common Price Index Formulae

Table A1 presents the formulae and example data for the calculation of commonly used price indexes.Note 


Table A1
Common price index formulae, with example
Table summary
This table displays the results of Common price index formulae. The information is grouped by index name (appearing as row headers), index formula, item, t = 0, t = 1, t = 2, q0, p0, p0q0, P0, q1, p1, p1q1, p1 / p0, p1q0 = p0q0 * p1 / p0, p0q1 = p1q1 / (p1/ p0) , P1 , q2, p2, p2q2, p2 / p1, p2 / p0 = p1 / p0 * p2 / p1, p2q1 = p1q1 * p2 / p1, p1q2 = p2q2 / (p2 / p1), p2q0 = p1q0 * p2 / p1, p0q2 = p2q2 / (p2 / p0), P2, beef, 1, 10, 2, 20, pork, 40, 25, 1.25, 50 and 0.8, calculated using sum, 50, 45, 60 and 40 units of measure (appearing as column headers).
index name index formula item t = 0 t = 1 t = 2
q0 p0 p0q0 P0 q1 p1 p1q1 p1 / p0 p1q0 =
p0q0 *
p1 / p0
p0q1 =
p1q1 /
(p1/ p0)
P1 q2 p2 p2q2 p2 / p1 p2 / p0 =
p1 / p0*
p2 / p1
p2q1 =
p1q1*
p2 / p1
p1q2 =
p2q2 /
(p2 / p1)
p2q0 =
p1q0 *
p2 / p1
p0q2 =
p2q2 /
(p2 / p0)
P2
beef 1 10 10 This is an empty cell 2 10 20 1.00 10 20 This is an empty cell 1 10 10 1.00 1.00 20 10 10 10 This is an empty cell
pork 2 20 40 This is an empty cell 1 25 25 1.25 50 20 This is an empty cell 2 20 40 0.80 1.00 20 50 40 40 This is an empty cell
sum This is an empty cell This is an empty cell 50 This is an empty cell This is an empty cell This is an empty cell 45 This is an empty cell 60 40 This is an empty cell This is an empty cell This is an empty cell 50 This is an empty cell This is an empty cell 40 60 50 50 This is an empty cell
Fixed-base Laspeyres Price Index P L(F) = 100 *Σ p t q 0 /Σ p 0 q 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbWdamaaBaaaleaapeGaamita8aacaGGOaWdbiaadAeapaGa aiykaaqabaGcpeGaeyypa0JaaeiiaiaaigdacaaIWaGaaGimaiaabc cacaGGQaGaeu4OdmLaamiCa8aadaWgaaWcbaWdbiaadshaa8aabeaa k8qacaWGXbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaac+cacq qHJoWucaWGWbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaadgha paWaaSbaaSqaa8qacaaIWaaapaqabaaaaa@4C0A@ This is an empty cell This is an empty cell This is an empty cell This is an empty cell 100.0 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell 120.0 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell 100.0
Fixed-base
Paasche Price Index
   P P(F) = 100 *Σ p t q t /Σ p 0 q t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcGaaiiOaiaadcfapaWaaSbaaSqaa8qacaWGqbWdaiaacIca peGaamOra8aacaGGPaaabeaak8qacqGH9aqpcaqGGaGaaGymaiaaic dacaaIWaGaaeiiaiaacQcacqqHJoWucaWGWbWdamaaBaaaleaapeGa amiDaaWdaeqaaOWdbiaadghapaWaaSbaaSqaa8qacaWG0baapaqaba GcpeGaai4laiabfo6atjaadchapaWaaSbaaSqaa8qacaaIWaaapaqa baGcpeGaamyCa8aadaWgaaWcbaWdbiaadshaa8aabeaaaaa@4ED4@ This is an empty cell This is an empty cell This is an empty cell This is an empty cell 100.0 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell 112.5 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell 100.0
Fixed-base
Fisher Price Index
  P F(F) = 100 *  ( (Σ p t q 0 /Σ p 0 q 0 ) * (Σ p t q t /Σ p 0 q t ) ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcGaamiua8aadaWgaaWcbaWdbiaadAeapaGaaiika8qacaWG gbWdaiaacMcaaeqaaOWdbiabg2da9iaabccacaaIXaGaaGimaiaaic dacaqGGaGaaiOkaiaabccapaGaaiika8qacaqGGaWdaiaacIcapeGa eu4OdmLaamiCa8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacaWGXb WdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaac+cacqqHJoWucaWG WbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaadghapaWaaSbaaS qaa8qacaaIWaaapaqabaGccaGGPaWdbiaabccacaGGQaGaaeiia8aa caGGOaWdbiabfo6atjaadchapaWaaSbaaSqaa8qacaWG0baapaqaba GcpeGaamyCa8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacaGGVaGa eu4OdmLaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaWGXb WdamaaBaaaleaapeGaamiDaaWdaeqaaOGaaiyka8qacaqGGaWdaiaa cMcadaahaaWcbeqaa8qacaaIXaGaai4laiaaikdaaaaaaa@6503@ This is an empty cell This is an empty cell This is an empty cell This is an empty cell 100.0 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell 116.2 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell 100.0
Monthly Chained Laspeyres Price Index when t=0,  P L(MCh) = 100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG0bGaeyypa0JaaGimaiaacYcacaqGGaGaamiua8aadaWgaaWc baWdbiaadYeapaGaaiika8qacaWGnbGaam4qaiaadIgapaGaaiykaa qabaGcpeGaeyypa0JaaeiiaiaaigdacaaIWaGaaGimaaaa@4413@
when t>0,  P L(MCh) =  P L( MCh ),t1 *Σ p t q t1 /Σ p t1 q t1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG0bGaeyOpa4JaaGimaiaacYcacaqGGaGaamiua8aadaWgaaWc baWdbiaadYeapaGaaiika8qacaWGnbGaam4qaiaadIgapaGaaiykaa qabaGcpeGaeyypa0JaaeiiaiaadcfapaWaaSbaaSqaa8qacaWGmbWd amaabmaabaWdbiaad2eacaWGdbGaamiAaaWdaiaawIcacaGLPaaape GaaiilaiaadshacqGHsislcaaIXaaapaqabaGcpeGaaiOkaiabfo6a tjaadchapaWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaamyCa8aada WgaaWcbaWdbiaadshacqGHsislcaaIXaaapaqabaGcpeGaai4laiab fo6atjaadchapaWaaSbaaSqaa8qacaWG0bGaeyOeI0IaaGymaaWdae qaaOWdbiaadghapaWaaSbaaSqaa8qacaWG0bGaeyOeI0IaaGymaaWd aeqaaaaa@5E70@
This is an empty cell This is an empty cell This is an empty cell This is an empty cell 100.0 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell 120.0 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell 106.7
Monthly Chained Paasche Price Index when t=0,  P L(MCh) = 100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG0bGaeyypa0JaaGimaiaacYcacaqGGaGaamiua8aadaWgaaWc baWdbiaadYeapaGaaiika8qacaWGnbGaam4qaiaadIgapaGaaiykaa qabaGcpeGaeyypa0JaaeiiaiaaigdacaaIWaGaaGimaaaa@4413@
when t>0,  P P(MCh) =  P P( MCh ),t1 *Σ p t q t /Σ p t1 q t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG0bGaeyOpa4JaaGimaiaacYcacaqGGaGaamiua8aadaWgaaWc baWdbiaadcfapaGaaiika8qacaWGnbGaam4qaiaadIgapaGaaiykaa qabaGcpeGaeyypa0JaaeiiaiaadcfapaWaaSbaaSqaa8qacaWGqbWd amaabmaabaWdbiaad2eacaWGdbGaamiAaaWdaiaawIcacaGLPaaape GaaiilaiaadshacqGHsislcaaIXaaapaqabaGcpeGaaiOkaiabfo6a tjaadchapaWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaamyCa8aada WgaaWcbaWdbiaadshaa8aabeaak8qacaGGVaGaeu4OdmLaamiCa8aa daWgaaWcbaWdbiaadshacqGHsislcaaIXaaapaqabaGcpeGaamyCa8 aadaWgaaWcbaWdbiaadshaa8aabeaaaaa@5B28@
This is an empty cell This is an empty cell This is an empty cell This is an empty cell 100.0 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell 112.5 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell 93.8
Monthly Chained Fisher Price Index when t=0,  P F(MCh) = 100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG0bGaeyypa0JaaGimaiaacYcacaqGGaGaamiua8aadaWgaaWc baWdbiaadAeapaGaaiika8qacaWGnbGaam4qaiaadIgapaGaaiykaa qabaGcpeGaeyypa0JaaeiiaiaaigdacaaIWaGaaGimaaaa@440D@
when  t>0,  P F(MCh) =  P F( MCh ),t1 *  ( (Σ p t q t1 /Σ p t1 q t1 ) * (Σ p t q t /Σ p t1 q t ) ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG0bGaeyOpa4JaaGimaiaacYcacaqGGaGaamiua8aadaWgaaWc baWdbiaadAeapaGaaiika8qacaWGnbGaam4qaiaadIgapaGaaiykaa qabaGcpeGaeyypa0JaaeiiaiaadcfapaWaaSbaaSqaa8qacaWGgbWd amaabmaabaWdbiaad2eacaWGdbGaamiAaaWdaiaawIcacaGLPaaape GaaiilaiaadshacqGHsislcaaIXaaapaqabaGcpeGaaiOkaiaabcca paGaaiika8qacaqGGaWdaiaacIcapeGaeu4OdmLaamiCa8aadaWgaa WcbaWdbiaadshaa8aabeaak8qacaWGXbWdamaaBaaaleaapeGaamiD aiabgkHiTiaaigdaa8aabeaak8qacaGGVaGaeu4OdmLaamiCa8aada WgaaWcbaWdbiaadshacqGHsislcaaIXaaapaqabaGcpeGaamyCa8aa daWgaaWcbaWdbiaadshacqGHsislcaaIXaaapaqabaGccaGGPaWdbi aabccacaGGQaGaaeiia8aacaGGOaWdbiabfo6atjaadchapaWaaSba aSqaa8qacaWG0baapaqabaGcpeGaamyCa8aadaWgaaWcbaWdbiaads haa8aabeaak8qacaGGVaGaeu4OdmLaamiCa8aadaWgaaWcbaWdbiaa dshacqGHsislcaaIXaaapaqabaGcpeGaamyCa8aadaWgaaWcbaWdbi aadshaa8aabeaakiaacMcapeGaaeiia8aacaGGPaWaaWbaaSqabeaa peGaaGymaiaac+cacaaIYaaaaaaa@7826@
This is an empty cell This is an empty cell This is an empty cell This is an empty cell 100.0 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell 116.2 This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell This is an empty cell 100.0

Note that in time period 1, the result P1 for the Laspeyres—either the fixed-base or monthly chained—is higher than the Paasche. The Laspeyres uses the earlier period quantities to weight the prices, whereas the Paasche uses the current period’s quantities after consumers have substituted some beef for pork, and so the Laspeyres is higher. This occurs in markets where consumers respond to price change by shifting quantities consumed in the opposite direction.

The Fisher is the geometric average of the Laspeyres and the Paasche price indexes, either fixed-base or monthly-chained, and its level will always bisect the Laspeyres and Paasche. The Fisher is in the class of “superlative” price indexes which make equal use of weights from both periods whose prices are being compared. Superlative indexes remove the effects of substitution, and can be used to measure its effects when compared to the Laspeyres or Paasche price indexes.

Note also that in time period 2 in the example, the prices and quantities consumed have returned to time period 0 levels, but the monthly-chained Laspeyres price index does not return to their period 0 level, and the monthly-chained Laspeyres price index diverges from the fixed-base Laspeyres price index.

This can be explained using the following:

P L(Ch) , 1 :2 = n N p n,2 q n,1 / n N p n,1 q n,1 = n N ( p n,1 q n,1 / n N p n,1 q n,1 *  p n,2 /  p n,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbWdamaaBaaaleaapeGaamita8aacaGGOaWdbiaadoeacaWG ObWdaiaacMcaaeqaaOWdbiaacYcapaWaaSbaaSqaa8qacaaIXaGaai iOaiaacQdacaaIYaaapaqabaGcpeGaeyypa0JaeyyeIu+damaaBaaa leaapeGaamOBaaWdaeqaaOWaaWbaaSqabeaapeGaamOtaaaakiaadc hapaWaaSbaaSqaa8qacaWGUbGaaiilaiaaikdaa8aabeaak8qacaWG XbWdamaaBaaaleaapeGaamOBaiaacYcacaaIXaaapaqabaGcpeGaai 4laiabggHiL=aadaWgaaWcbaWdbiaad6gaa8aabeaakmaaCaaaleqa baWdbiaad6eaaaGccaWGWbWdamaaBaaaleaapeGaamOBaiaacYcaca aIXaaapaqabaGcpeGaamyCa8aadaWgaaWcbaWdbiaad6gacaGGSaGa aGymaaWdaeqaaOWdbiabg2da9iabggHiL=aadaWgaaWcbaWdbiaad6 gaa8aabeaakmaaCaaaleqabaWdbiaad6eaaaGcpaGaaiika8qacaWG WbWdamaaBaaaleaapeGaamOBaiaacYcacaaIXaaapaqabaGcpeGaam yCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaaGymaaWdaeqaaOWdbiaa c+cacqGHris5paWaaSbaaSqaa8qacaWGUbaapaqabaGcdaahaaWcbe qaa8qacaWGobaaaOGaamiCa8aadaWgaaWcbaWdbiaad6gacaGGSaGa aGymaaWdaeqaaOWdbiaadghapaWaaSbaaSqaa8qacaWGUbGaaiilai aaigdaa8aabeaak8qacaGGQaGaaeiiaiaadchapaWaaSbaaSqaa8qa caWGUbGaaiilaiaaikdaa8aabeaak8qacaGGVaGaaeiiaiaadchapa WaaSbaaSqaa8qacaWGUbGaaiilaiaaigdaa8aabeaakiaacMcaaaa@7D7B@
P L(F) , 1 :2 = n N p n,2 q n,0 / n N p n,1 q n,0 = n N ( p n,1 q n,0 / n N p n,1 q n,0 *  p n,2 /  p n,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbWdamaaBaaaleaapeGaamita8aacaGGOaWdbiaadAeapaGa aiykaaqabaGcpeGaaiila8aadaWgaaWcbaWdbiaaigdacaGGGcGaai Ooaiaaikdaa8aabeaak8qacqGH9aqpcqGHris5paWaaSbaaSqaa8qa caWGUbaapaqabaGcdaahaaWcbeqaa8qacaWGobaaaOGaamiCa8aada WgaaWcbaWdbiaad6gacaGGSaGaaGOmaaWdaeqaaOWdbiaadghapaWa aSbaaSqaa8qacaWGUbGaaiilaiaaicdaa8aabeaak8qacaGGVaGaey yeIu+damaaBaaaleaapeGaamOBaaWdaeqaaOWaaWbaaSqabeaapeGa amOtaaaakiaadchapaWaaSbaaSqaa8qacaWGUbGaaiilaiaaigdaa8 aabeaak8qacaWGXbWdamaaBaaaleaapeGaamOBaiaacYcacaaIWaaa paqabaGcpeGaeyypa0JaeyyeIu+damaaBaaaleaapeGaamOBaaWdae qaaOWaaWbaaSqabeaapeGaamOtaaaak8aacaGGOaWdbiaadchapaWa aSbaaSqaa8qacaWGUbGaaiilaiaaigdaa8aabeaak8qacaWGXbWdam aaBaaaleaapeGaamOBaiaacYcacaaIWaaapaqabaGcpeGaai4laiab ggHiL=aadaWgaaWcbaWdbiaad6gaa8aabeaakmaaCaaaleqabaWdbi aad6eaaaGccaWGWbWdamaaBaaaleaapeGaamOBaiaacYcacaaIXaaa paqabaGcpeGaamyCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaaGimaa WdaeqaaOWdbiaacQcacaqGGaGaamiCa8aadaWgaaWcbaWdbiaad6ga caGGSaGaaGOmaaWdaeqaaOWdbiaac+cacaqGGaGaamiCa8aadaWgaa WcbaWdbiaad6gacaGGSaGaaGymaaWdaeqaaOGaaiykamaaBaaaleaa aeqaaaaa@7CB9@

P L(Ch) , 1 :2   P L(F) , 1 :2 = n N ( p n,1 q n,1 / n N p n,1 q n,1 *  p n,2 /  p n,1 )  n N ( p n,1 q n,0 / n N p n,1 q n,0 *  p n,2 /  p n,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbWdamaaBaaaleaapeGaamita8aacaGGOaWdbiaadoeacaWG ObWdaiaacMcaaeqaaOWdbiaacYcapaWaaSbaaSqaa8qacaaIXaGaai iOaiaacQdacaaIYaaapaqabaGcpeGaeyOeI0IaaeiiaiaadcfapaWa aSbaaSqaa8qacaWGmbWdaiaacIcapeGaamOra8aacaGGPaaabeaak8 qacaGGSaWdamaaBaaaleaapeGaaGymaiaacckacaGG6aGaaGOmaaWd aeqaaOWdbiabg2da9iabggHiL=aadaWgaaWcbaWdbiaad6gaa8aabe aakmaaCaaaleqabaWdbiaad6eaaaGcpaGaaiika8qacaWGWbWdamaa BaaaleaapeGaamOBaiaacYcacaaIXaaapaqabaGcpeGaamyCa8aada WgaaWcbaWdbiaad6gacaGGSaGaaGymaaWdaeqaaOWdbiaac+cacqGH ris5paWaaSbaaSqaa8qacaWGUbaapaqabaGcdaahaaWcbeqaa8qaca WGobaaaOGaamiCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaaGymaaWd aeqaaOWdbiaadghapaWaaSbaaSqaa8qacaWGUbGaaiilaiaaigdaa8 aabeaak8qacaGGQaGaaeiiaiaadchapaWaaSbaaSqaa8qacaWGUbGa aiilaiaaikdaa8aabeaak8qacaGGVaGaaeiiaiaadchapaWaaSbaaS qaa8qacaWGUbGaaiilaiaaigdaa8aabeaakiaacMcapeGaaeiiaiaa cobicqGHris5paWaaSbaaSqaa8qacaWGUbaapaqabaGcdaahaaWcbe qaa8qacaWGobaaaOWdaiaacIcapeGaamiCa8aadaWgaaWcbaWdbiaa d6gacaGGSaGaaGymaaWdaeqaaOWdbiaadghapaWaaSbaaSqaa8qaca WGUbGaaiilaiaaicdaa8aabeaak8qacaGGVaGaeyyeIu+damaaBaaa leaapeGaamOBaaWdaeqaaOWaaWbaaSqabeaapeGaamOtaaaakiaadc hapaWaaSbaaSqaa8qacaWGUbGaaiilaiaaigdaa8aabeaak8qacaWG XbWdamaaBaaaleaapeGaamOBaiaacYcacaaIWaaapaqabaGcpeGaai OkaiaabccacaWGWbWdamaaBaaaleaapeGaamOBaiaacYcacaaIYaaa paqabaGcpeGaai4laiaabccacaWGWbWdamaaBaaaleaapeGaamOBai aacYcacaaIXaaapaqabaGccaGGPaWaaSbaaSqaaaqabaaaaa@9410@

where
n is an elementary product
N is the total number of elementary products
0, 1 and 2 are periods
pn,t is the price for elementary product n in period t
pn,uqn,v is the expenditure on elementary product n with period u prices and period v quantities

The monthly-chained Laspeyres uses period 1 quantities to aggregate period 1 to period 2 price change, whereas the fixed-base Laspeyres uses period 0 quantities.

In our example, consumers have reduced quantities of pork from period 0 to period 1 as the price increased. The relative importance of pork in period 1 used in the monthly-chained Laspeyres ( p n,1 q n,1 / n N p n,1 q n,1 = 25 / 45 = 56% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGWbWdamaaBaaaleaapeGaamOBaiaacYcacaaIXaaapaqabaGc peGaamyCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaaGymaaWdaeqaaO Wdbiaac+cacqGHris5paWaaSbaaSqaa8qacaWGUbaapaqabaGcdaah aaWcbeqaa8qacaWGobaaaOGaamiCa8aadaWgaaWcbaWdbiaad6gaca GGSaGaaGymaaWdaeqaaOWdbiaadghapaWaaSbaaSqaa8qacaWGUbGa aiilaiaaigdaa8aabeaak8qacqGH9aqpcaqGGaGaaGOmaiaaiwdaca qGGaGaai4laiaabccacaaI0aGaaGynaiaabccacqGH9aqpcaqGGaGa aGynaiaaiAdacaGGLaaaaa@550A@ ) is less than the period 0 weight of pork used in the fixed-base Laspeyres ( p n,1 q n,0 / n N p n,1 q n,0 = 40 / 50 = 80% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGWbWdamaaBaaaleaapeGaamOBaiaacYcacaaIXaaapaqabaGc peGaamyCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaaGimaaWdaeqaaO Wdbiaac+cacqGHris5paWaaSbaaSqaa8qacaWGUbaapaqabaGcdaah aaWcbeqaa8qacaWGobaaaOGaamiCa8aadaWgaaWcbaWdbiaad6gaca GGSaGaaGymaaWdaeqaaOWdbiaadghapaWaaSbaaSqaa8qacaWGUbGa aiilaiaaicdaa8aabeaak8qacqGH9aqpcaqGGaGaaGinaiaaicdaca qGGaGaai4laiaabccacaaI1aGaaGimaiaabccacqGH9aqpcaqGGaGa aGioaiaaicdacaGGLaaaaa@54FE@ ). As a result, in period 2, the price drop for pork from period 1 to period 2 will have less impact in the monthly-chained Laspeyres index than in the fixed-base Laspeyres index.

When prices and quantities interact in this way, the monthly-chained Laspeyres price index will exceed the fixed-base Laspeyres price index. This divergence is often referred to as chain drift.

Appendix 2: The Similarity-linked Fisher using predicted share measure of relative price dissimilarity and predicted share measure of relative quantity dissimilarity, 202105 to 202109

The following method was used to derive the Similarity-linked Fisher price index used in the Adjusted price index. Starting with period 1, for each value of t, and for all prior periods r = 0:t-1, compute a Predicted Share measure of relative price dissimilarity:

Δ SP ( p r , p t , q r , q t ) = n=1 N ( p n,t q n,t / p n,t q n,t ( p n,r q n,t / p n,r q n,t ) ) 2 +  n=1 N ( p n,r q n,r / p n,r q n,r ( p n,t q n,r / p n,t q n,r ) ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaaeaaaaaa aaa8qacqWFuoarpaWaaSbaaSqaa8qacaWGtbGaamiuaaWdaeqaaOWa aeWaaeaapeGaamiCa8aadaahaaWcbeqaa8qacaWGYbaaaOGaaiilai aadchapaWaaWbaaSqabeaapeGaamiDaaaakiaacYcacaWGXbWdamaa CaaaleqabaWdbiaadkhaaaGccaGGSaGaamyCa8aadaahaaWcbeqaa8 qacaWG0baaaaGcpaGaayjkaiaawMcaa8qacaqGGaGaeyypa0Jaeyye Iu+damaaBaaaleaapeGaamOBaiabg2da9iaaigdaa8aabeaakmaaCa aaleqabaWdbiaad6eaaaGcpaGaaiika8qacaWGWbWdamaaBaaaleaa peGaamOBaiaacYcacaWG0baapaqabaGcpeGaamyCa8aadaWgaaWcba Wdbiaad6gacaGGSaGaamiDaaWdaeqaaOWdbiaac+cacqGHris5caWG WbWdamaaBaaaleaapeGaamOBaiaacYcacaWG0baapaqabaGcpeGaam yCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaamiDaaWdaeqaaOWdbiab gkHiT8aadaqadaqaa8qacaWGWbWdamaaBaaaleaapeGaamOBaiaacY cacaWGYbaapaqabaGcpeGaamyCa8aadaWgaaWcbaWdbiaad6gacaGG SaGaamiDaaWdaeqaaOWdbiaac+cacqGHris5caWGWbWdamaaBaaale aapeGaamOBaiaacYcacaWGYbaapaqabaGcpeGaamyCa8aadaWgaaWc baWdbiaad6gacaGGSaGaamiDaaWdaeqaaaGccaGLOaGaayzkaaWdbi aabccapaGaaiykamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaqG GaGaeyyeIu+damaaBaaaleaapeGaamOBaiabg2da9iaaigdaa8aabe aakmaaCaaaleqabaWdbiaad6eaaaGcpaGaaiika8qacaWGWbWdamaa BaaaleaapeGaamOBaiaacYcacaWGYbaapaqabaGcpeGaamyCa8aada WgaaWcbaWdbiaad6gacaGGSaGaamOCaaWdaeqaaOWdbiaac+cacqGH ris5caWGWbWdamaaBaaaleaapeGaamOBaiaacYcacaWGYbaapaqaba GcpeGaamyCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaamOCaaWdaeqa aOWdbiabgkHiT8aadaqadaqaa8qacaWGWbWdamaaBaaaleaapeGaam OBaiaacYcacaWG0baapaqabaGcpeGaamyCa8aadaWgaaWcbaWdbiaa d6gacaGGSaGaamOCaaWdaeqaaOWdbiaac+cacqGHris5caWGWbWdam aaBaaaleaapeGaamOBaiaacYcacaWG0baapaqabaGcpeGaamyCa8aa daWgaaWcbaWdbiaad6gacaGGSaGaamOCaaWdaeqaaaGccaGLOaGaay zkaaWdbiaabccapaGaaiykamaaCaaaleqabaWdbiaaikdaaaaaaa@AA5F@

and a Predicted Share measure of relative quantity dissimilarity:

Δ SQ ( p r , p t , q r , q t ) = n=1 N ( p n,t q n,t / p n,t q n,t ( p n,t q n,r / p n,t q n,r ) ) 2 +  n=1 N ( p n,r q n,r / p n,r q n,r ( p n,r q n,t / p n,r q n,t ) ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaaeaaaaaa aaa8qacqWFuoarpaWaaSbaaSqaa8qacaWGtbGaamyuaaWdaeqaaOWa aeWaaeaapeGaamiCa8aadaahaaWcbeqaa8qacaWGYbaaaOGaaiilai aadchapaWaaWbaaSqabeaapeGaamiDaaaakiaacYcacaWGXbWdamaa CaaaleqabaWdbiaadkhaaaGccaGGSaGaamyCa8aadaahaaWcbeqaa8 qacaWG0baaaaGcpaGaayjkaiaawMcaa8qacaqGGaGaeyypa0Jaeyye Iu+damaaBaaaleaapeGaamOBaiabg2da9iaaigdaa8aabeaakmaaCa aaleqabaWdbiaad6eaaaGcpaGaaiika8qacaWGWbWdamaaBaaaleaa peGaamOBaiaacYcacaWG0baapaqabaGcpeGaamyCa8aadaWgaaWcba Wdbiaad6gacaGGSaGaamiDaaWdaeqaaOWdbiaac+cacqGHris5caWG WbWdamaaBaaaleaapeGaamOBaiaacYcacaWG0baapaqabaGcpeGaam yCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaamiDaaWdaeqaaOWdbiab gkHiT8aadaqadaqaa8qacaWGWbWdamaaBaaaleaapeGaamOBaiaacY cacaWG0baapaqabaGcpeGaamyCa8aadaWgaaWcbaWdbiaad6gacaGG SaGaamOCaaWdaeqaaOWdbiaac+cacqGHris5caWGWbWdamaaBaaale aapeGaamOBaiaacYcacaWG0baapaqabaGcpeGaamyCa8aadaWgaaWc baWdbiaad6gacaGGSaGaamOCaaWdaeqaaaGccaGLOaGaayzkaaWdbi aabccapaGaaiykamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaqG GaGaeyyeIu+damaaBaaaleaapeGaamOBaiabg2da9iaaigdaa8aabe aakmaaCaaaleqabaWdbiaad6eaaaGcpaGaaiika8qacaWGWbWdamaa BaaaleaapeGaamOBaiaacYcacaWGYbaapaqabaGcpeGaamyCa8aada WgaaWcbaWdbiaad6gacaGGSaGaamOCaaWdaeqaaOWdbiaac+cacqGH ris5caWGWbWdamaaBaaaleaapeGaamOBaiaacYcacaWGYbaapaqaba GcpeGaamyCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaamOCaaWdaeqa aOWdbiabgkHiT8aadaqadaqaa8qacaWGWbWdamaaBaaaleaapeGaam OBaiaacYcacaWGYbaapaqabaGcpeGaamyCa8aadaWgaaWcbaWdbiaa d6gacaGGSaGaamiDaaWdaeqaaOWdbiaac+cacqGHris5caWGWbWdam aaBaaaleaapeGaamOBaiaacYcacaWGYbaapaqabaGcpeGaamyCa8aa daWgaaWcbaWdbiaad6gacaGGSaGaamiDaaWdaeqaaaGccaGLOaGaay zkaaWdbiaabccapaGaaiykamaaCaaaleqabaWdbiaaikdaaaaaaa@AA60@

where
Δ SP ( p r , p t , q r , q t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaaeaaaaaa aaa8qacqWFuoarpaWaaSbaaSqaa8qacaWGtbGaamiuaaWdaeqaaOWa aeWaaeaapeGaamiCa8aadaahaaWcbeqaa8qacaWGYbaaaOGaaiilai aadchapaWaaWbaaSqabeaapeGaamiDaaaakiaacYcacaWGXbWdamaa CaaaleqabaWdbiaadkhaaaGccaGGSaGaamyCa8aadaahaaWcbeqaa8 qacaWG0baaaaGcpaGaayjkaiaawMcaaaaa@4657@ is the Predicted Share measure of relative price dissimilarity
Δ SQ ( p r , p t , q r , q t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaaeaaaaaa aaa8qacqWFuoarpaWaaSbaaSqaa8qacaWGtbGaamyuaaWdaeqaaOWa aeWaaeaapeGaamiCa8aadaahaaWcbeqaa8qacaWGYbaaaOGaaiilai aadchapaWaaWbaaSqabeaapeGaamiDaaaakiaacYcacaWGXbWdamaa CaaaleqabaWdbiaadkhaaaGccaGGSaGaamyCa8aadaahaaWcbeqaa8 qacaWG0baaaaGcpaGaayjkaiaawMcaaaaa@4658@ is the Predicted Share measure of relative quantity dissimilarity
n is an elementary product
N is the total number of elementary products (N = 515)
t is the later period
r is a prior period
p n,t q n,t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGWbWdamaaBaaaleaapeGaamOBaiaacYcacaWG0baapaqabaGc peGaamyCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaamiDaaWdaeqaaa aa@3E07@ is the expenditure on elementary product n in period t
p n,r q n,r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGWbWdamaaBaaaleaapeGaamOBaiaacYcacaWGYbaapaqabaGc peGaamyCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaamOCaaWdaeqaaa aa@3E03@ is the expenditure on elementary product n in period r
p n,r q n,t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGWbWdamaaBaaaleaapeGaamOBaiaacYcacaWGYbaapaqabaGc peGaamyCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaamiDaaWdaeqaaa aa@3E05@ is the expenditure on elementary product n in period t, multiplied by the change in price on elementary product n from period t:r
p n,t q n,r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGWbWdamaaBaaaleaapeGaamOBaiaacYcacaWG0baapaqabaGc peGaamyCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaamOCaaWdaeqaaa aa@3E05@ is the expenditure on elementary product n in period r, multiplied by the change in price on elementary product n from period r:t.

Find the minimum of Δ SP ( p r , p t , q r , q t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaaeaaaaaa aaa8qacqWFuoarpaWaaSbaaSqaa8qacaWGtbGaamiuaaWdaeqaaOWa aeWaaeaapeGaamiCa8aadaahaaWcbeqaa8qacaWGYbaaaOGaaiilai aadchapaWaaWbaaSqabeaapeGaamiDaaaakiaacYcacaWGXbWdamaa CaaaleqabaWdbiaadkhaaaGccaGGSaGaamyCa8aadaahaaWcbeqaa8 qacaWG0baaaaGcpaGaayjkaiaawMcaaaaa@4657@ and Δ SQ ( p r , p t , q r , q t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaaeaaaaaa aaa8qacqWFuoarpaWaaSbaaSqaa8qacaWGtbGaamyuaaWdaeqaaOWa aeWaaeaapeGaamiCa8aadaahaaWcbeqaa8qacaWGYbaaaOGaaiilai aadchapaWaaWbaaSqabeaapeGaamiDaaaakiaacYcacaWGXbWdamaa CaaaleqabaWdbiaadkhaaaGccaGGSaGaamyCa8aadaahaaWcbeqaa8 qacaWG0baaaaGcpaGaayjkaiaawMcaaaaa@4658@ , denoted as min ( Δ SP ( p r , p t , q r , q t ),Δ   SQ ( p r , p t , q r , q t ) )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaGGaaa baaaaaaaaapeGae8hLdq0damaaBaaaleaapeGaam4uaiaadcfaa8aa beaakmaabmaabaWdbiaadchapaWaaWbaaSqabeaapeGaamOCaaaaki aacYcacaWGWbWdamaaCaaaleqabaWdbiaadshaaaGccaGGSaGaamyC a8aadaahaaWcbeqaa8qacaWGYbaaaOGaaiilaiaadghapaWaaWbaaS qabeaapeGaamiDaaaaaOWdaiaawIcacaGLPaaapeGaaiilaiab=r5a ejaacckapaWaaSbaaSqaa8qacaWGtbGaamyuaaWdaeqaaOWaaeWaae aapeGaamiCa8aadaahaaWcbeqaa8qacaWGYbaaaOGaaiilaiaadcha paWaaWbaaSqabeaapeGaamiDaaaakiaacYcacaWGXbWdamaaCaaale qabaWdbiaadkhaaaGccaGGSaGaamyCa8aadaahaaWcbeqaa8qacaWG 0baaaaGcpaGaayjkaiaawMcaa8qacaqGGaWdaiaacMcapeGaaiiOaa aa@5BC2@ . Then find the period r with the lowest min ( Δ SP ( p r , p t , q r , q t ),Δ   SQ ( p r , p t , q r , q t ) )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaGGaaa baaaaaaaaapeGae8hLdq0damaaBaaaleaapeGaam4uaiaadcfaa8aa beaakmaabmaabaWdbiaadchapaWaaWbaaSqabeaapeGaamOCaaaaki aacYcacaWGWbWdamaaCaaaleqabaWdbiaadshaaaGccaGGSaGaamyC a8aadaahaaWcbeqaa8qacaWGYbaaaOGaaiilaiaadghapaWaaWbaaS qabeaapeGaamiDaaaaaOWdaiaawIcacaGLPaaapeGaaiilaiab=r5a ejaacckapaWaaSbaaSqaa8qacaWGtbGaamyuaaWdaeqaaOWaaeWaae aapeGaamiCa8aadaahaaWcbeqaa8qacaWGYbaaaOGaaiilaiaadcha paWaaWbaaSqabeaapeGaamiDaaaakiaacYcacaWGXbWdamaaCaaale qabaWdbiaadkhaaaGccaGGSaGaamyCa8aadaahaaWcbeqaa8qacaWG 0baaaaGcpaGaayjkaiaawMcaa8qacaqGGaWdaiaacMcapeGaaiiOaa aa@5BC2@ . Finally, calculate the Fisher price index between r and t using:

P F( SPQ ),r:t =  ( n=1 N p n,t q n,t /  n=1 N p n,r q n,t *  n=1 N p n,t q n,r /  n=1 N p n,r q n,r ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbWdamaaBaaaleaapeGaamOra8aadaqadaqaa8qacaWGtbGa amiuaiaadgfaa8aacaGLOaGaayzkaaWdbiaacYcacaWGYbGaaiOoai aadshaa8aabeaak8qacqGH9aqpcaqGGaWdamaabmaabaWdbiabggHi L=aadaWgaaWcbaWdbiaad6gacqGH9aqpcaaIXaaapaqabaGcdaahaa Wcbeqaa8qacaWGobaaaOGaamiCa8aadaWgaaWcbaWdbiaad6gacaGG SaGaamiDaaWdaeqaaOWdbiaadghapaWaaSbaaSqaa8qacaWGUbGaai ilaiaadshaa8aabeaak8qacaGGVaGaaeiiaiabggHiL=aadaWgaaWc baWdbiaad6gacqGH9aqpcaaIXaaapaqabaGcdaahaaWcbeqaa8qaca WGobaaaOGaamiCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaamOCaaWd aeqaaOWdbiaadghapaWaaSbaaSqaa8qacaWGUbGaaiilaiaadshaa8 aabeaak8qacaGGQaGaaeiiaiabggHiL=aadaWgaaWcbaWdbiaad6ga cqGH9aqpcaaIXaaapaqabaGcdaahaaWcbeqaa8qacaWGobaaaOGaam iCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaamiDaaWdaeqaaOWdbiaa dghapaWaaSbaaSqaa8qacaWGUbGaaiilaiaadkhaa8aabeaak8qaca GGVaGaaeiiaiabggHiL=aadaWgaaWcbaWdbiaad6gacqGH9aqpcaaI XaaapaqabaGcdaahaaWcbeqaa8qacaWGobaaaOGaamiCa8aadaWgaa WcbaWdbiaad6gacaGGSaGaamOCaaWdaeqaaOWdbiaadghapaWaaSba aSqaa8qacaWGUbGaaiilaiaadkhaa8aabeaaaOGaayjkaiaawMcaam aaCaaaleqabaWdbiaaigdacaGGVaGaaGOmaaaaaaa@80F3@

where
P F( SPQ ),r:t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbWdamaaBaaaleaapeGaamOra8aadaqadaqaa8qacaWGtbGa amiuaiaadgfaa8aacaGLOaGaayzkaaWdbiaacYcacaWGYbGaaiOoai aadshaa8aabeaaaaa@3FB8@ is the Similarity-linked Fisher price index between periods r and t using the Predicted Share measure of relative price dissimilarity and the Predicted Share measure of relative quantity dissimilarity
n is an elementary product
N is the total number of elementary products
t is the later period
r is a prior period
p n,t q n,t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGWbWdamaaBaaaleaapeGaamOBaiaacYcacaWG0baapaqabaGc peGaamyCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaamiDaaWdaeqaaa aa@3E07@ is the expenditure on elementary product n in period t
p n,r q n,t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGWbWdamaaBaaaleaapeGaamOBaiaacYcacaWGYbaapaqabaGc peGaamyCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaamiDaaWdaeqaaa aa@3E05@ is the expenditure on elementary product n in period t, multiplied by the elementary price index for product n from period t:r
p n,r q n,r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGWbWdamaaBaaaleaapeGaamOBaiaacYcacaWGYbaapaqabaGc peGaamyCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaamOCaaWdaeqaaa aa@3E03@ is the expenditure on elementary product n in period r
p n,t q n,r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGWbWdamaaBaaaleaapeGaamOBaiaacYcacaWG0baapaqabaGc peGaamyCa8aadaWgaaWcbaWdbiaad6gacaGGSaGaamOCaaWdaeqaaa aa@3E05@ is the expenditure on elementary product n in period r, multiplied by the elementary price index for product n from period r:t

Table A2 illustrates the similarity in prices and quantities between each period from May 2021 to September 2021. Table A2 also presents the resulting Fisher price index between each period from May 2021 to September 2021. The symbol † indicates the period r which satisfies the minimum of Δ S P ( p r , p t , q r , q t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaaeaaaaaa aaa8qacqWFuoarpaWaaSbaaSqaa8qacaWGtbGaamiuaaWdaeqaaOWa aeWaaeaapeGaamiCa8aadaahaaWcbeqaa8qacaWGYbaaaOGaaiilai aadchapaWaaWbaaSqabeaapeGaamiDaaaakiaacYcacaWGXbWdamaa CaaaleqabaWdbiaadkhaaaGccaGGSaGaamyCa8aadaahaaWcbeqaa8 qacaWG0baaaaGcpaGaayjkaiaawMcaaaaa@4657@ , Δ S Q ( p r , p t , q r , q t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaaeaaaaaa aaa8qacqWFuoarpaWaaSbaaSqaa8qacaWGtbGaamyuaaWdaeqaaOWa aeWaaeaapeGaamiCa8aadaahaaWcbeqaa8qacaWGYbaaaOGaaiilai aadchapaWaaWbaaSqabeaapeGaamiDaaaakiaacYcacaWGXbWdamaa CaaaleqabaWdbiaadkhaaaGccaGGSaGaamyCa8aadaahaaWcbeqaa8 qacaWG0baaaaGcpaGaayjkaiaawMcaaaaa@4658@ for each period t.


Table A2
Predicted share measure of relative price and quantity dissimilarity and Fisher price index between each period from May 2021 and September 2021 
Table summary
This table displays the results of Predicted share measure of relative price and quantity dissimilarity and Fisher price index between each period from May 2021 and September 2021  period r (appearing as column headers).
period r
202105 202106 202107 202108
period t Predicted Share measure of relative price dissimilarity 202106 0.000005Table A2
Predicted share measure of relative price and quantity dissimilarity and Fisher price index between each period from May 2021 and September 2021  Note 
Note ..: not available for a specific reference period Note ..: not available for a specific reference period Note ..: not available for a specific reference period
202107 0.000011 0.000004Table A2
Predicted share measure of relative price and quantity dissimilarity and Fisher price index between each period from May 2021 and September 2021  Note 
Note ..: not available for a specific reference period Note ..: not available for a specific reference period
202108 0.000019 0.000010 0.000006Table A2
Predicted share measure of relative price and quantity dissimilarity and Fisher price index between each period from May 2021 and September 2021  Note 
Note ..: not available for a specific reference period
202109 0.000021 0.000010 0.000006 0.000002Table A2
Predicted share measure of relative price and quantity dissimilarity and Fisher price index between each period from May 2021 and September 2021  Note 
Predicted Share measure of relative quantity dissimilarity 202106 0.000492 Note ..: not available for a specific reference period Note ..: not available for a specific reference period Note ..: not available for a specific reference period
202107 0.001092 0.000396 Note ..: not available for a specific reference period Note ..: not available for a specific reference period
202108 0.001429 0.000700 0.000107 Note ..: not available for a specific reference period
202109 0.000880 0.000625 0.000323 0.000292
Bilateral Fisher Price Index between period r and t 202106 1.003Table A2
Predicted share measure of relative price and quantity dissimilarity and Fisher price index between each period from May 2021 and September 2021  Note 
Note ..: not available for a specific reference period Note ..: not available for a specific reference period Note ..: not available for a specific reference period
202107 1.009 1.006Table A2
Predicted share measure of relative price and quantity dissimilarity and Fisher price index between each period from May 2021 and September 2021  Note 
Note ..: not available for a specific reference period Note ..: not available for a specific reference period
202108 1.011 1.008 1.002Table A2
Predicted share measure of relative price and quantity dissimilarity and Fisher price index between each period from May 2021 and September 2021  Note 
Note ..: not available for a specific reference period
202109 1.013 1.010 1.004 1.002Table A2
Predicted share measure of relative price and quantity dissimilarity and Fisher price index between each period from May 2021 and September 2021  Note 

Date modified: