Using Multiple Imputation of Latent Classes to construct population census tables with data from multiple sources
Section 4. Simulation results

First, cell-proportions of univariate and multivariate cross-tables are evaluated in terms of bias and root mean squared error (RMSE) over the 500 simulation replications. Second, these cell-proportions are evaluated in terms of variance by investigating the average of the estimated standard error divided by the standard deviation over the 500 estimates obtained from the 500 simulation replications (SESD). Due to the log-transformations we made in equations 3.2, 3.3 and 3.4 to account for small cell frequencies, the RMSE and SESD are reported on a log scale.

4.1  Results in terms of bias

4.1.1  Univariate marginal frequencies of imputed variables

In Table 4.1, the simulation results can be found that cover the univariate marginal frequencies of the imputed latent variable “Gender” in terms of bias and RMSE. Results from all simulation conditions are shown. Here, it can be seen that a smaller amount of bias is obtained if Y 1,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbWaaSbaaSqaaiaaigdacaaISa GaaGymaaqabaaaaa@34E6@  is used, compared to results obtained using MILC under all conditions. In addition, it can be seen that the RMSE is also smaller if Y 1,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbWaaSbaaSqaaiaaigdacaaISa GaaGymaaqabaaaaa@34E6@  is used instead of the MILC method. Furthermore, it can be seen that both bias and RMSE slightly decrease as M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbaaaa@3282@  increases, and that the quality of the results appears to be unrelated to the missingness mechanism.


Table 4.1
Results in terms of bias and root mean squared error for the two categories of the imputed latent variable “Gender”
Table summary
This table displays the results of Results in terms of bias and root mean squared error for the two categories of the imputed latent variable “Gender” Gender, Frequency, Y 1,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaaigdacaaISa GaaGjbVlaaigdaaeqaaaaa@3ACE@ , MCAR and MAR (appearing as column headers).
Gender Frequency Y 1,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaaigdacaaISa GaaGjbVlaaigdaaeqaaaaa@3ACE@ MCAR MAR
M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@ M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@
Bias F. 1,367,167 -2,126 3,386 3,308 3,325 3,231 3,153 3,109
M. 1,324,310 2,126 -3,386 -3,308 -3,325 -3,231 -3,153 -3,109
RMSE F. 1,367,167 2,154 6,008 5,888 5,760 5,914 5,637 5,512
M. 1,324,310 2,154 6,008 5,888 5,760 5,914 5,637 5,512

In Table 4.2, the simulation results can be found that cover the univariate marginal frequencies of the imputed latent variable “Type of family nucleus” in terms of bias and RMSE. Here, the results are very different from the results we found for “Gender”, the bias obtained for Y 2,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbWaaSbaaSqaaiaaikdacaaISa GaaGymaaqabaaaaa@34E7@  is much higher compared to the bias obtained using MILC under all conditions and the same holds for RMSE. In addition, whether the results for the MILC method depend on the missingness mechanism differ per category. In terms of bias and RMSE, this is the case for the categories “N.A.” and “Partners”.


Table 4.2
Results in terms of bias and root mean squared error for the four observed categories of the imputed latent variable “Type of family nucleus”
Table summary
This table displays the results of Results in terms of bias and root mean squared error for the four observed categories of the imputed latent variable “Type of family nucleus” Type of family nucleus, Frequency, Y 2, 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaaikdacaaISa GaaGjbVlaaigdaaeqaaaaa@3ACF@ , MCAR and MAR (appearing as column headers).
Type of family nucleus Frequency Y 2,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaaikdacaaISa GaaGjbVlaaigdaaeqaaaaa@3ACF@ MCAR MAR
M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@ M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@
Bias Lone parents 97,360 2,670 185 182 176 224 226 220
N.A. 604,032 8,985 -957 -975 -989 -1,601 -1,612 -1,611
Partners 1,272,339 -19,686 401 411 427 932 935 932
Sons/daughters 717,746 8,030 371 381 386 446 451 459
RMSE Lone parents 97,360 2,672 425 408 395 426 421 414
N.A. 604,032 8,989 1,337 1,318 1,312 1,837 1,833 1,818
Partners 1,272,339 19,688 954 914 904 1,256 1,235 1,218
Sons/daughters 717,746 8,034 630 624 617 715 692 688

In Table 4.3, the simulation results can be found that cover the univariate marginal frequencies of the imputed latent variable “Citizen” in terms of bias and RMSE. Here, the results are comparable to the results we found for “Type of family nucleus”, as the bias obtained when only Y 3,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbWaaSbaaSqaaiaaiodacaaISa GaaGymaaqabaaaaa@34E8@  is used is again much higher compared to the bias obtained using MILC method and the same holds for RMSE. As was also the case for “Type of family nucleus”, whether the results for the MILC method depend on the missingness mechanism differ per category, although this is more the case for the bias here, and not so much in terms of RMSE.


Table 4.3
Results in terms of bias and root mean squared error for the four observed categories of the imputed latent variable “Citizen”
Table summary
This table displays the results of Results in terms of bias and root mean squared error for the four observed categories of the imputed latent variable “Citizen” Citizen, Frequency, Y 3,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaaiodacaaISa GaaGjbVlaaigdaaeqaaaaa@3AD0@ , MCAR and MAR (appearing as column headers).
Citizen Frequency Y 3,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaaiodacaaISa GaaGjbVlaaigdaaeqaaaaa@3AD0@ MCAR MAR
M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@ M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@
Bias EU 79,212 51,365 -5 -7 -12 -199 -211 -216
NL 2,511,214 -116,899 -555 -546 -545 117 124 107
not EU 89,592 58,085 512 502 507 62 69 89
Not stated 11,459 7,448 49 51 49 21 18 20
RMSE EU 79,212 51,365 410 398 388 488 486 475
NL 2,511,214 116,899 925 894 883 767 756 720
not EU 89,592 58,086 800 770 767 618 611 590
Not stated 11,459 7,449 201 197 190 204 205 198

Boeschoten et al. (2017) concluded that the quality of the output when MILC is applied related to how well the latent class model is able to make classifications based on the observed data, which is summarized in the entropy R 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaaWbaaSqabeaacaaIYaaaaO GaaiOlaaaa@342C@  The entropy R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaaWbaaSqabeaacaaIYaaaaa aa@3370@  values for “Gender”, “Type of family nucleus” and “Citizen” are approximately 0.7352, 0.9191, and 0.8571 respectively under MCAR. So this corresponds to the quality of the results for the latent variables in terms of bias and RMSE. An additional explanation for “Gender” is that the two categories are of comparable size and the amount of misclassification in both categories is approximately equal and behaves symmetrical in our simulation study. This causes that the marginal distribution of Y 1,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbWaaSbaaSqaaiaaigdacaaISa GaaGymaaqabaaaaa@34E6@  is very similar to the marginal distribution of X 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaaSbaaSqaaiaaigdaaeqaaa aa@3374@  and not so much affected by misclassification.

4.1.2  Joint frequencies of imputed variables

In Table 4.4, the simulation results can be found that cover the joint marginal frequencies of the three imputed latent variables in terms of bias and RMSE. Again, it can be seen here that if only Y v,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbWaaSbaaSqaaiaadAhacaaISa GaaGymaaqabaaaaa@3526@  is used, severe bias is present in all cells of the joint frequency table. The results obtained when the MILC method is applied show much lower amounts of bias and RMSE. Here, the differences between different numbers for M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbaaaa@3282@  or different missingness mechanism are much smaller compared to the differences between MILC and Y v,1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbWaaSbaaSqaaiaadAhacaaISa GaaGymaaqabaGccaGGUaaaaa@35E2@  Furthermore, the differences in the amount of bias for particular cells after applying the MILC method seem to be related to imbalances in cell frequencies within particular variables. More specifically, the variable “Citizen” knows substantive differences in cell frequencies and within Table 4.4, it can be seen that particular the category “not EU” is affected in terms of bias by this imbalance.


Table 4.4
Results in terms of bias and root mean squared error for the 32 observed categories of the joint distribution of the three imputed latent variables “Gender”, “Type of family nucleus” and “Citizen”
Table summary
This table displays the results of Results in terms of bias and root mean squared error for the 32 observed categories of the joint distribution of the three imputed latent variables “Gender” Gender (équation) Type of family nucleus (équation) Citizen, Frequency, Y v,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaadAhacaaISa GaaGjbVlaaigdaaeqaaaaa@3B0E@ , MCAR and MAR (appearing as column headers).
Gender × MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacqGHxdaTaaa@3821@ Type of family nucleus × MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacqGHxdaTaaa@3821@ Citizen Frequency Y v,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaadAhacaaISa GaaGjbVlaaigdaaeqaaaaa@3B0E@ MCAR MAR
Gender Family nucleus Citizen M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@ M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@
Bias F. Lone parents EU 2,091 1,434 8 7 7 1 0 0
F. Lone parents NL 76,131 -6,620 652 650 646 240 241 234
F. Lone parents not EU 3,120 1,513 33 32 32 39 39 38
F. Lone parents N.S. 646 154 -5 -5 -6 -13 -13 -13
F. N.A. EU 12,436 5,971 433 432 432 431 427 427
F. N.A. NL 293,960 -11,998 -595 -618 -623 905 891 880
F. N.A. not EU 9,509 7,317 1,032 1,031 1,032 1,069 1,069 1,071
F. N.A. N.S. 1,221 982 182 182 182 198 197 197
F. Partners EU 20,443 11,185 237 236 235 24 19 21
F. Partners NL 584,547 -34,001 294 262 279 -564 -599 -624
F. Partners not EU 26,877 12,022 404 402 401 254 255 258
F. Partners N.S. 1,292 1,837 -19 -18 -18 -23 -24 -24
F. Sons/daughters EU 4,368 7,541 -778 -779 -780 -851 -853 -854
F. Sons/daughters NL 321,364 -8,738 2,483 2,471 2,479 2,620 2,601 2,588
F. Sons/daughters not EU 7,680 8,303 -764 -768 -766 -876 -874 -869
F. Sons/daughters N.S. 1,482 971 -209 -208 -208 -223 -223 -222
M. Lone parents EU 389 591 -10 -11 -11 9 9 9
M. Lone parents NL 14,536 4,791 -553 -552 -554 -134 -131 -130
M. Lone parents not EU 372 707 35 35 35 53 53 53
M. Lone parents N.S. 75 100 27 27 27 28 29 29
M. N.A. EU 16,308 4,444 -306 -304 -305 -349 -349 -350
M. N.A. NL 253,493 -3,733 -714 -708 -717 -2,730 -2,722 -2,713
M. N.A. not EU 13,636 5,548 -904 -903 -902 -1,023 -1,023 -1,020
M. N.A. N.S. 3,469 455 -85 -86 -87 -102 -103 -104
M. Partners EU 18,444 11,881 793 796 794 905 906 906
M. Partners NL 599,278 -38,164 -3,170 -3,128 -3,127 -1,528 -1,490 -1,474
M. Partners not EU 19,776 13,709 1,794 1,793 1,793 1,785 1,790 1,791
M. Partners N.S. 1,682 1,846 69 69 69 78 78 79
M. Sons/daughters EU 4,733 8,319 -382 -382 -384 -370 -371 -374
M. Sons/daughters NL 367,905 -18,435 1,049 1,076 1,072 1,308 1,333 1,346
M. Sons/daughters not EU 8,622 8,966 -1,118 -1,120 -1,117 -1,240 -1,239 -1,233
M. Sons/daughters N.S. 1,592 1,103 90 90 91 77 77 78
RMSE F. Lone parents EU 2,091 1,434 45 42 41 45 42 40
F. Lone parents NL 76,131 6,621 742 734 724 418 408 394
F. Lone parents not EU 3,120 1,514 67 64 64 71 68 66
F. Lone parents N.S. 646 155 22 21 20 26 25 24
F. N.A. EU 12,436 5,972 449 446 445 447 442 440
F. N.A. NL 293,960 12,001 1,260 1,245 1,222 1,433 1,374 1,348
F. N.A. not EU 9,509 7,317 1,038 1,037 1,037 1,075 1,075 1,076
F. N.A. N.S. 1,221 983 185 185 185 202 201 201
F. Partners EU 20,443 11,186 291 285 282 173 163 157
F. Partners NL 584,547 34,003 2,332 2,285 2,204 2,364 2,248 2,197
F. Partners not EU 26,877 12,023 456 450 447 330 327 327
F. Partners N.S. 1,292 1,838 46 44 43 48 48 47
F. Sons/daughters EU 4,368 7,541 787 787 787 860 862 863
F. Sons/daughters NL 321,364 8,742 2,820 2,796 2,781 2,959 2,903 2,879
F. Sons/daughters not EU 7,680 8,304 779 782 780 892 889 883
F. Sons/daughters N.S. 1,482 972 216 214 214 230 230 229
M. Lone parents EU 389 592 18 17 17 17 17 16
M. Lone parents NL 14,536 4,792 605 600 600 271 260 257
M. Lone parents not EU 372 707 38 38 37 55 55 55
M. Lone parents N.S. 75 101 27 27 27 29 29 29
M. N.A. EU 16,308 4,445 331 328 327 373 371 370
M. N.A. NL 253,493 3,742 1,390 1,349 1,314 2,959 2,931 2,911
M. N.A. not EU 13,636 5,549 913 912 911 1,033 1,031 1,028
M. N.A. N.S. 3,469 456 107 105 104 121 121 120
M. Partners EU 18,444 11,881 808 810 807 919 919 917
M. Partners NL 599,278 38,165 3,898 3,837 3,794 2,755 2,617 2,568
M. Partners not EU 19,776 13,709 1,804 1,803 1,803 1,797 1,800 1,800
M. Partners N.S. 1,682 1,846 88 87 85 98 95 95
M. Sons/daughters EU 4,733 8,319 403 403 403 401 401 402
M. Sons/daughters NL 367,905 18,437 1,728 1,723 1,687 1,905 1,872 1,854
M. Sons/daughters not EU 8,622 8,967 1,129 1,130 1,127 1,252 1,250 1,244
M. Sons/daughters N.S. 1,592 1,104 109 108 107 103 102 101

4.1.3  Restricted cells

In Table 4.5, the simulation results can be found for the six cells that are restricted in the marginal cross-table between “Age” and “Type of family nucleus”. Under “Frequency”, it can be seen that these six cells should all contain zero observations. A combination of these scores is logically impossible. Furthermore, it can be seen that due to misclassification in Y 2,1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbWaaSbaaSqaaiaaikdacaaISa GaaGymaaqabaGccaGGSaaaaa@35A1@  observations containing these combinations of scores are present when Y 2,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbWaaSbaaSqaaiaaikdacaaISa GaaGymaaqabaaaaa@34E7@  is used to estimate this cross-table directly. In addition, it can be seen that if the MILC method is applied, such impossible combinations of scores will never be present, regardless of the missingness mechanism or the number of imputations. Furthermore, as the cells in this marginal table contain zero observations, all cells of more detailed tables covering these logically impossible combinations of scores automatically also contain zero observations.


Table 4.5
Results in terms of bias and root mean squared error for the six restricted categories from cross-table between “Type of family nucleus” and the covariate “Age”
Table summary
This table displays the results of Results in terms of bias and root mean squared error for the six restricted categories from cross-table between “Type of family nucleus” and the covariate “Age” Type of family nucleus, Frequency, Y 2, 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaaikdacaaISa GaaGjbVlaaigdaaeqaaaaa@3ACF@ , MCAR and MAR (appearing as column headers).
Type of family nucleus Frequency Y 2,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaaikdacaaISa GaaGjbVlaaigdaaeqaaaaa@3ACF@ MCAR MAR
M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@ M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@
Bias Lone parents under 5 years 0 377 0 0 0 0 0 0
Lone parents 5 to 9 years 0 386 0 0 0 0 0 0
Lone parents 10 to 14 years 0 376 0 0 0 0 0 0
Partners under 5 years 0 4,934 0 0 0 0 0 0
Partners 5 to 9 years 0 5,041 0 0 0 0 0 0
Partners 10 to 14 years 0 4,937 0 0 0 0 0 0
RMSE Lone parents under 5 years 0 377 0 0 0 0 0 0
Lone parents 5 to 9 years 0 386 0 0 0 0 0 0
Lone parents 10 to 14 years 0 377 0 0 0 0 0 0
Partners under 5 years 0 4,934 0 0 0 0 0 0
Partners 5 to 9 years 0 5,041 0 0 0 0 0 0
Partners 10 to 14 years 0 4,937 0 0 0 0 0 0

4.1.4  The complete population frequency table

Figures 4.1 and 4.2 show results in terms of bias and root mean squared error (RMSE) when the complete census table, so the cross-table between the six variables, is estimated. As these are 42,000 cells in total, it is not feasible to evaluate them individually. Figure 4.1 and Figure 4.2 give an overview of how size of the cell frequency is related to the quality of the results. Here it can be seen that if Y v,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbWaaSbaaSqaaiaadAhacaaISa GaaGymaaqabaaaaa@3526@  are used, results in terms of bias and RMSE are related directly to cell frequency. More specifically, the relationship between cell frequency and absolute bias is approximately linear where the amount of bias is approximately 10% of the cell frequency.

Description of Figure 4.1

Figure presenting the relationship between size of the cell frequency and quality of the results in terms of bias when the complete cross-table between the latent variables “Gender”, “Type of family nucleus” and “Citizen” and the three covariates “Age”, “Marital status” and “Place of birth” is estimated. The X-axis represents cell frequency and the Y-axis represents the bias. Results are shown for Y v,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbf9F4rqqrFfpC0xe9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWG2bGaaiilaiaaigdaaeqaaaaa@3BDA@ (graph 1), MILC-MCAR-20 (graph 2) and MILC-MAR-20 (graph 3).

Description of Figure 4.2

Figure presenting the relationship between size of the cell frequency and quality of the results in terms of root mean squared error (RMSE) when the complete cross-table between the latent variables “Gender”, “Type of family nucleus” and “Citizen” and the three covariates “Age”, “Marital status” and “Place of birth” is estimated. The X-axis represents cell frequency and the Y-axis represents the RMSE. Results are shown for Y v,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbf9F4rqqrFfpC0xe9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWG2bGaaiilaiaaigdaaeqaaaaa@3BDA@  (graph 1), MILC-MCAR-20 (graph 2) and MILC-MAR-20 (graph 3).

4.2  Results in terms of variance

4.2.1  Univariate marginal frequencies of imputed variables

In Table 4.6, the simulation results can be found that cover the univariate marginal frequencies “Gender” in terms of se/sd. As this ratio measures whether the average standard error estimated at each replication in the simulation correctly describes the uncertainty (standard deviation) that is found over the estimates, it should be close to one. In addition, as a completely observed and finite population is assumed, variance is not estimated when Y v,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbWaaSbaaSqaaiaadAhacaaISa GaaGymaaqabaaaaa@3526@  is used. The results obtained using MILC are generally close to one and comparable to the results in terms of bias as only minor differences can be found between different values for M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbaaaa@3282@  or between the different missingness mechanisms.


Table 4.6
Results in terms of average standard error of the estimates divided by standard deviation over the estimates (se/sd) for the two categories of the imputed latent variable “Gender”
Table summary
This table displays the results of Results in terms of average standard error of the estimates divided by standard deviation over the estimates (se/sd) for the two categories of the imputed latent variable “Gender” Gender, Frequency, Y v,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaadAhacaaISa GaaGjbVlaaigdaaeqaaaaa@3B0E@ , MCAR and MAR (appearing as column headers).
Gender Frequency Y v,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaadAhacaaISa GaaGjbVlaaigdaaeqaaaaa@3B0E@ MCAR MAR
M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@ M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@
se/sd F. 1,367,167 - 1.0540 1.0317 1.0363 1.0030 1.0235 1.0237
M. 1,324,310 - 1.0546 1.0317 1.0363 1.0034 1.0236 1.0236

In Table 4.7 and 4.8, the simulation results can be found that cover the univariate marginal frequencies for “Type of family nucleus” and “Citizen” respectively in terms of se/sd. The results found here have a very comparable structure compared to the results we found for “Gender”.


Table 4.7
Results in terms of average standard error of the estimates divided by standard deviation over the estimates (se/sd) for the four observed categories of the imputed latent variable “Type of family nucleus”
Table summary
This table displays the results of Results in terms of average standard error of the estimates divided by standard deviation over the estimates (se/sd) for the four observed categories of the imputed latent variable “Type of family nucleus” Type of family nucleus, Frequency, Y v,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaadAhacaaISa GaaGjbVlaaigdaaeqaaaaa@3B0E@ , MCAR and MAR (appearing as column headers).
Type of family nucleus Frequency Y v,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaadAhacaaISa GaaGjbVlaaigdaaeqaaaaa@3B0E@ MCAR MAR
M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@ M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@
se/sd Lone parents 97,360 - 1.0457 1.0510 1.0529 1.0561 1.0337 1.0336
N.A. 604,032 - 0.9706 0.9874 0.9922 0.9751 0.9829 0.9863
Partners 1,272,339 - 1.0332 1.0418 1.0456 1.0052 1.0269 1.0298
Sons/daughters 717,746 - 0.9594 0.9615 0.9606 0.9696 0.9880 0.9938

Table 4.8
Results in terms of average standard error of the estimates divided by standard deviation over the estimates for the four observed categories of the imputed latent variable “Citizen”
Table summary
This table displays the results of Results in terms of average standard error of the estimates divided by standard deviation over the estimates for the four observed categories of the imputed latent variable “Citizen” Type of family nucleus, Frequency, Y v,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaadAhacaaISa GaaGjbVlaaigdaaeqaaaaa@3B0E@ , MCAR and MAR (appearing as column headers).
Type of family nucleus Frequency Y v,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaadAhacaaISa GaaGjbVlaaigdaaeqaaaaa@3B0E@ MCAR MAR
M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@ M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@
se/sd Citizen EU 79,212 - 1.0417 1.0172 1.0362 1.0768 1.0539 1.0571
Citizen NL 2,511,214 - 1.0136 1.0113 1.0235 1.0925 1.0645 1.0927
Citizen not EU 89,592 - 0.9478 0.9632 0.9709 1.0282 0.9916 1.0125
Not stated 11,459 - 1.0063 1.0208 1.0238 1.1057 1.0861 1.1143

4.2.2  Joint frequencies of imputed variables

In Table 4.9, the simulation results can be found that cover the joint marginal frequencies of the imputed latent variables “Gender”, “Type of family nucleus” and “Citizen” in terms of absolute se/sd. The results found for these joint frequencies are very comparable to the results we found for the marginal frequencies. For cells with a relatively low frequency, it can be seen that the ratio is in general larger than one, indicating that the variance estimated for these frequencies (and thereby the differences between the imputations) incorporate more uncertainty than is actually found over different replications. Summarizing, the uncertainty for cells containing low frequencies is overestimated.

Results in terms for variance are not shown for the restricted cells, as a variance term cannot be estimated here.


Table 4.9
Results in terms of average standard error of tde estimates divided by standard deviation over tde estimates for tde 32 observed categories of tde joint distribution of tde tdree imputed latent variables “Gender”, “Type of family nucleus” and “Citizen”
Table summary
This table displays tde results of Results in terms of average standard error of tde estimates divided by standard deviation over tde estimates for tde 32 observed categories of tde joint distribution of tde tdree imputed latent variables “Gender”. The information is grouped by Gender × MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacqGHxdaTaaa@3821@ Type of family nucleus × MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacqGHxdaTaaa@3821@ Citizen (appearing as row headers), Frequency, Y v,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaadAhacaaISa GaaGjbVlaaigdaaeqaaaaa@3B0E@ , MCAR and MAR (appearing as column headers).
Gender × MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacqGHxdaTaaa@3821@ Type of family nucleus × MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacqGHxdaTaaa@3821@ Citizen Frequency Y v,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaadAhacaaISa GaaGjbVlaaigdaaeqaaaaa@3B0E@ MCAR MAR
M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@ M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@ M=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaiwdaaaa@3863@ M=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaigdacaaIWaaaaa@3919@ M=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbGaaGypaiaaikdacaaIWaaaaa@391A@
F. Lone parents EU 2,091 - 1.1813 1.2097 1.2032 1.1495 1.1654 1.1997
F. Lone parents NL 76,131 - 1.0371 1.0471 1.0504 1.0270 1.0252 1.0349
F. Lone parents not EU 3,120 - 1.1659 1.1590 1.1519 1.1607 1.1634 1.1870
F. Lone parents N.S. 646 - 1.0963 1.1004 1.1272 1.1110 1.1000 1.1054
F. N.A. EU 12,436 - 1.0850 1.0838 1.1172 1.0888 1.1065 1.1456
F. N.A. NL 293,960 - 1.0840 1.0652 1.0575 1.0158 1.0406 1.0461
F. N.A. not EU 9,509 - 1.1636 1.1822 1.1892 1.1574 1.1383 1.1562
F. N.A. N.S. 1,221 - 1.1789 1.1964 1.2097 1.1959 1.1826 1.2133
F. Partners EU 20,443 - 1.0508 1.0537 1.0653 1.0689 1.0684 1.0925
F. Partners NL 584,547 - 1.0313 1.0099 1.0189 1.0035 1.0253 1.0197
F. Partners not EU 26,877 - 1.0532 1.0766 1.0720 1.0765 1.0725 1.0733
F. Partners N.S. 1,292 - 1.1471 1.1566 1.1504 1.2157 1.1855 1.1940
F. Sons/daughters EU 4,368 - 1.0135 1.0147 1.0338 1.0430 1.0518 1.0479
F. Sons/daughters NL 321,364 - 1.0548 1.0379 1.0527 1.0017 1.0222 1.0221
F. Sons/daughters not EU 7,680 - 0.9977 0.9966 0.9909 1.0249 1.0132 1.0416
F. Sons/daughters N.S. 1,482 - 1.0344 1.0325 1.0357 1.0836 1.0688 1.0890
M. Lone parents EU 389 - 1.3198 1.4136 1.4316 1.2941 1.3575 1.4470
M. Lone parents NL 14,536 - 1.0784 1.0762 1.0736 1.0755 1.0690 1.0650
M. Lone parents not EU 372 - 1.4159 1.3857 1.4511 1.4814 1.4481 1.4619
M. Lone parents N.S. 75 - 1.4330 1.5192 1.5659 1.4598 1.5035 1.5373
M. N.A. EU 16,308 - 1.0990 1.0908 1.1165 1.0894 1.1022 1.1366
M. N.A. NL 253,493 - 1.0035 1.0100 1.0193 0.9920 1.0175 1.0238
M. N.A. not EU 13,636 - 1.1168 1.1100 1.1141 1.0826 1.1054 1.0952
M. N.A. N.S. 3,469 - 1.0241 1.0818 1.1052 1.1592 1.1478 1.1780
M. Partners EU 18,444 - 1.1618 1.1593 1.1579 1.1473 1.1335 1.1476
M. Partners NL 599,278 - 1.0668 1.0444 1.0487 1.0081 1.0329 1.0231
F. Partners not EU 19,776 - 1.0932 1.0788 1.0816 1.0674 1.0612 1.0911
F. Partners N.S. 1,682 - 1.1068 1.1411 1.1418 1.1335 1.1719 1.1770
F. Sons/daughters EU 4,733 - 1.0598 1.0396 1.0548 1.0528 1.0497 1.0414
F. Sons/daughters NL 367,905 - 1.0549 1.0347 1.0365 1.0098 1.0298 1.0340
F. Sons/daughters not EU 8,622 - 1.0077 1.0093 1.0100 1.0413 1.0449 1.0471
F. Sons/daughters N.S. 1,592 - 1.0472 1.0617 1.0699 1.0458 1.0362 1.0627

4.2.3  The complete population frequency table

In Figure 4.3, results can be found in terms of average standard error of the cell frequencies divided by the standard deviation over the frequencies estimated in the 500 replications in the simulation study (se/sd). Here it can be seen that the standard error estimated per cell frequency is especially too large when cell frequencies are close to zero, and become closer to the nominal rate of one as the cell frequencies become larger. Apparently, variability due to missing and conflicting values is overestimated by MILC for cells with a frequency close to zero. In addition, this becomes more apparent when the number of imputations increases and it is not influenced by missingness mechanism.

Description of Figure 4.3

Figure illustrating the results in terms of average standard error of the cell frequencies divided by the standard deviation over the frequencies estimated in the 500 replications in the simulation study (se/sd), when the complete cross-table between the latent variables “Gender”, “Type of family nucleus” and “Citizen” and the three covariates “Age”, “Marital status” and “Place of birth” is estimated. The X-axis represents cell frequency and the Y-axis represents the se/sd ratio. Results are shown for MILC-MCAR-5, MILC-MCAR-10, MILC-MCAR-20, MILC-MAR-5, MILC-MAR-10 and MILC-MAR-20. Here it can be seen that the standard error estimated per cell frequency is especially too large when cell frequencies are close to zero, and become closer to the nominal rate of one as the cell frequencies become larger.

4.3  Sensitivity to violations of assumptions

The simulation study presented in this paper is aimed at investigating the performance of the MILC method in a situation of misclassification in a finite population setting. When applying the MILC method in practice, a number of assumptions are made and during this simulation study these assumptions were met. To further investigate the sensitivity to violations of these assumptions, additional simulation studies were performed.

An important assumption made when applying the MILC method is that the missingness mechanism is either MCAR or MAR. Therefore, a first sensitivity analysis involves a Missing Not At Random (MNAR) mechanism. More specifically, we generated this mechanism in such a way that the probability of being missing in the survey indicator for “Type of family nucleus” depends on the latent variable “type of family nucleus” and is smallest for the first category and largest for the last category. In Table 4.10, it can be seen that the bias and RMSE increase when the mechanism is MNAR compared to MAR, while the se/sd is not affected. More specifically, it can be seen that the extent of the bias relates to how much the respective class is affected by the mechanism.

A second assumption states that the measurement error present in the indicators is random. To investigate sensitivity to the violation of this assumption, we generated a selective measurement error mechanism where the probability of measurement error in the register indicator for the variable “type of family nucleus” differs per category. Here, again the first category is least affected and the last category most. In Table 4.10 it can be seen that the effect of this selective mechanism are limited. The bias increases in a similar way as the percentage of measurement error in the respective category increases, but these are still relatively low amounts of bias. The se/sd is not affected by the mechanism.


Table 4.10
Results in terms of bias, root mean squared error and se/sd for the four observed categories of the imputed latent variable “Type of family nucleus”
Table summary
This table displays the results of Results in terms of bias Type of family nucleus, Frequency, ( Y 2,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaaikdacaaISa GaaGjbVlaaigdaaeqaaaaa@3ACF@ , MAR, MNAR, Selective and ME covar (appearing as column headers).
Type of family nucleus Frequency Y 2,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9v8qrpq0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGzbWaaSbaaSqaaiaaikdacaaISa GaaGjbVlaaigdaaeqaaaaa@3ACF@ MAR MNAR Selective ME covar
Bias Lone parents 97,360 2,670 224 6,256 105 1,172,993
N.A. 604,032 8,985 -1,601 27,002 -1,824 534
Partners 1,272,339 -19,686 932 -11,341 1,116 -1,174,697
Sons/daughters 717,746 8,030 446 -21,917 603 1,170
RMSE Lone parents 97,360 2,672 426 6,268 332 1,172,994
N.A. 604,032 8,989 1,837 27,017 2,060 1,094
Partners 1,272,339 19,688 1,256 11,377 1,466 1,174,697
Sons/daughters 717,746 8,034 715 21,924 819 1,291
se/sd Lone parents 97,360 - 1.0561 1.01936 1.0634 1.0518
N.A. 604,032 - 0.9751 1.02491 0.9722 1.0471
Partners 1,272,339 - 1.0052 0.97456 0.9291 0.9649
Sons/daughters 717,746 - 0.9696 1.02547 1.0962 1.0181

A third assumption is that covariates do not contain measurement error. This assumption is the most remarkable, as it is typically often not the case that a coviarate does not contain measurement error. It is more likely that these variables will be treated as such because no additional information about their measurement error is known. If information was known, for example because additional survey information was present, it would have been incorporated by means of a latent variable. As in practice however there is always a probability that for some variables such information is not known, we investigate the sensitivity of the method to violation of this assumption. More specifically, we generated 5% misclassification in the covariate “marital status”, which has a relatively strong association with the latent variable “type of family nucleus”. Indeed, the bias in some categories is highly affected by this misclassification.


Date modified: