Bayesian inference for a variance component model using pairwise composite likelihood with survey data
Section 2. Full likelihood, pairwise likelihood and Bayesian implementation

2.1 Model and formulae

As in Section 1, let Y ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGzbWaaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3494@  denote the response variable for second-stage unit j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGQbaaaa@329C@  in first-stage unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbaaaa@329B@  for i=1,,n, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGUbGaaiilaaaa @3E82@  and j=1,,m. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGQbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaiilaiaaysW7caWGTbGaaiOlaaaa @3E7E@  We use lower case letter y ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG5bWaaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34B4@  to represent realized values of Y ij . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGzbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaac6caaaa@3550@  Let y( n )={ y 1 ,, y n } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH5bGaaGPaVpaabmqabaGaaGjcVl aad6gacaaMi8oacaGLOaGaayzkaaGaaGjbVlaaykW7caaI9aGaaGjb VlaaykW7daGadeqaaiaahMhadaWgaaWcbaGaaGymaaqabaGccaaISa GaaGjbVlablAciljaaiYcacaaMe8UaaCyEamaaBaaaleaacaWGUbaa beaaaOGaay5Eaiaaw2haaaaa@4CC8@  denote the sample data with y i = ( y i1 ,, y im ) T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH5bWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlaai2dacaaMe8+aaeWabeaacaWG5bWaaSbaaSqaaiaadMga caaIXaaabeaakiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWG5b WaaSbaaSqaaiaadMgacaWGTbaabeaaaOGaayjkaiaawMcaamaaCaaa leqabaGaaGjcVlaabsfaaaaaaa@476C@  for i=1,,n, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGUbGaaiilaaaa @3E82@  where T denotes transpose.

In a more general random effects model, we might assume that, conditional on random effects u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaa aa@33C1@  for i=1,,n, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaiilaiaaysW7caWGUbGaaiilaaaa @3E7C@  the Y ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGzbWaaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3494@  are independently distributed as

Y ij ~ f y|u ( y ij | u i ; θ y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGzbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaaysW7ieaacaWF+bGaaGjbVlaadAgadaWgaaWcbaWaaqGa beaacaWG5bGaaGjcVdGaayjcSdGaaGjcVlaadwhaaeqaaOWaaeWabe aadaabceqaaiaadMhadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaGjc VdGaayjcSdGaaGjbVlaadwhadaWgaaWcbaGaamyAaaqabaGccaaI7a GaaGjbVlaahI7adaWgaaWcbaGaamyEaaqabaaakiaawIcacaGLPaaa aaa@50C9@   for   j=1,,m,(2.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGQbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaiilaiaaysW7caWGTbGaaGilaiaa ywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaG ymaiaacMcaaaa@49C9@

where f y|u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGMbWaaSbaaSqaamaaeiqabaGaam yEaiaayIW7aiaawIa7aiaayIW7caWG1baabeaaaaa@3975@  is a known density function and θ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH4oWaaSbaaSqaaiaadMhaaeqaaa aa@341B@  is the associated parameter vector. Next, we model random effects by assuming that the u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaa aa@33C1@  are independent and identically distributed as

u i ~ f u ( u i | θ u ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVJqaaiaa=5hacaaMe8UaamOzamaaBaaaleaacaWG1baabeaa kmaabmqabaWaaqGabeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaOGaaG jcVdGaayjcSdGaaGjbVlaayIW7caWH4oWaaSbaaSqaaiaadwhaaeqa aaGccaGLOaGaayzkaaaaaa@4669@   for   i=1,,n,(2.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaiilaiaaysW7caWGUbGaaGilaiaa ywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaG OmaiaacMcaaaa@49CA@

where f u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGMbWaaSbaaSqaaiaadwhaaeqaaa aa@33BE@  is a given density function indexed by the parameter vector θ u . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiUdmaaBaaaleaacaWG1b aabeaakiaac6caaaa@3664@

Let η= ( θ y T , θ u T ) T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oGaaGjbVlaai2dacaaMe8+aae WabeaacaWH4oWaa0baaSqaaiaadMhaaeaacaqGubaaaOGaaiilaiaa ysW7caWH4oWaa0baaSqaaiaadwhaaeaacaqGubaaaaGccaGLOaGaay zkaaWaaWbaaSqabeaacaqGubaaaaaa@4238@  be the vector of model parameters which is of interest. In the frequentist framework, the maximum likelihood method is commonly used to conduct inference about η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oaaaa@32F0@  by maximizing the likelihood function

L( η )= i=1 n f( y i ;η ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGmbGaaGPaVpaabmqabaGaaC4Tda GaayjkaiaawMcaaiaaysW7caaI9aGaaGjbVpaarahabaGaaGPaVlaa dAgadaqadeqaaiaahMhadaWgaaWcbaGaamyAaaqabaGccaaI7aGaaG jbVlaahE7aaiaawIcacaGLPaaaaSqaaiaadMgacaaI9aGaaGymaaqa aiaad6gaa0Gaey4dIunakiaaiYcaaaa@4AC5@

where

f( y i ;η )= { j=1 m i f y|u ( y ij | u i ; θ y ) } f u ( u i | θ u )d u i .(2.3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGMbWaaeWabeaacaWH5bWaaSbaaS qaaiaadMgaaeqaaOGaaG4oaiaaysW7caWH3oaacaGLOaGaayzkaaGa aGjbVlaai2dacaaMe8+aa8qaaeaadaGadeqaamaarahabaGaaGPaVd WcbaGaamOAaiaai2dacaaIXaaabaGaamyBamaaBaaameaacaWGPbaa beaaa0Gaey4dIunakiaadAgadaWgaaWcbaGaamyEaiaaiYhacaWG1b aabeaakmaabmqabaWaaqGabeaacaWG5bWaaSbaaSqaaiaadMgacaWG QbaabeaakiaaykW7aiaawIa7aiaaysW7caWG1bWaaSbaaSqaaiaadM gaaeqaaOGaaG4oaiaayIW7caaMe8UaaCiUdmaaBaaaleaacaWG5baa beaaaOGaayjkaiaawMcaaaGaay5Eaiaaw2haaaWcbeqab0Gaey4kIi pakiaaysW7caWGMbWaaSbaaSqaaiaadwhaaeqaaOWaaeWabeaadaab ceqaaiaadwhadaWgaaWcbaGaamyAaaqabaGccaaMi8oacaGLiWoaca aMe8UaaGjcVlaahI7adaWgaaWcbaGaamyDaaqabaaakiaawIcacaGL PaaacaaMe8UaamizaiaadwhadaWgaaWcbaGaamyAaaqabaGccaaIUa GaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGOmaiaac6ca caaIZaGaaiykaaaa@80BA@

An alternative to the likelihood method is the composite likelihood approach (Lindsay, 1988). In particular, the pairwise likelihood method has often been employed. Let L ij ( η )=f( y ij ;η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGmbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaaykW7daqadeqaaiaahE7aaiaawIcacaGLPaaacaaMe8Ua aGypaiaaysW7caWGMbGaaGPaVpaabmqabaGaamyEamaaBaaaleaaca WGPbGaamOAaaqabaGccaaI7aGaaGjbVlaahE7aaiaawIcacaGLPaaa aaa@4770@  be the density of Y ij , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGzbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaacYcaaaa@354D@  determined by

f( y ij ;η )= f y|u ( y ij | u i ; θ y ) f u ( u i | θ u )d u i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGMbGaaGPaVpaabmqabaGaamyEam aaBaaaleaacaWGPbGaamOAaaqabaGccaaI7aGaaGjcVlaaysW7caWH 3oaacaGLOaGaayzkaaGaaGjbVlaai2dacaaMe8+aa8qaaeaacaaMc8 UaamOzamaaBaaaleaadaabceqaaiaadMhacaaMc8oacaGLiWoacaaM c8UaamyDaaqabaGcdaqadeqaamaaeiqabaGaamyEamaaBaaaleaaca WGPbGaamOAaaqabaGccaaMc8oacaGLiWoacaaMe8UaamyDamaaBaaa leaacaWGPbaabeaakiaaiUdacaaMi8UaaGjbVlaahI7adaWgaaWcba GaamyEaaqabaaakiaawIcacaGLPaaacaaMe8UaamOzamaaBaaaleaa caWG1baabeaakmaabmqabaWaaqGabeaacaWG1bWaaSbaaSqaaiaadM gaaeqaaOGaaGPaVdGaayjcSdGaaGjbVlaahI7adaWgaaWcbaGaamyD aaqabaaakiaawIcacaGLPaaacaaMe8UaamizaiaadwhadaWgaaWcba GaamyAaaqabaaabeqab0Gaey4kIipakiaac6caaaa@7281@

For jk, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGQbGaaGjbVlabgcMi5kaaysW7ca WGRbGaaiilaaaa@391D@  let L ijk ( η )=f( y ij , y ik ;η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGmbWaaSbaaSqaaiaadMgacaWGQb Gaam4AaaqabaGcdaqadeqaaiaahE7aaiaawIcacaGLPaaacaaMe8Ua aGypaiaaysW7caWGMbWaaeWabeaacaWG5bWaaSbaaSqaaiaadMgaca WGQbaabeaakiaaiYcacaaMe8UaamyEamaaBaaaleaacaWGPbGaam4A aaqabaGccaaI7aGaaGjbVlaahE7aaiaawIcacaGLPaaaaaa@4A9F@  be the joint density for paired responses ( Y ij , Y ik ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqadeqaaiaadMfadaWgaaWcbaGaam yAaiaadQgaaeqaaOGaaGilaiaaysW7caWGzbWaaSbaaSqaaiaadMga caWGRbaabeaaaOGaayjkaiaawMcaaiaacYcaaaa@3C0D@  determined by

f( y ij , y ik ;η )= f y|u ( y ij | u i ; θ y ) f y|u ( y ik | u i ; θ y ) f u ( u i | θ u )d u i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGMbWaaeWabeaacaWG5bWaaSbaaS qaaiaadMgacaWGQbaabeaakiaaiYcacaaMe8UaamyEamaaBaaaleaa caWGPbGaam4AaaqabaGccaaI7aGaaGjbVlaahE7aaiaawIcacaGLPa aacaaMe8UaaGypaiaaysW7daWdbaqaaiaaykW7caWGMbWaaSbaaSqa amaaeiqabaGaamyEaiaaykW7aiaawIa7aiaaykW7caWG1baabeaakm aabmqabaWaaqGabeaacaWG5bWaaSbaaSqaaiaadMgacaWGQbaabeaa kiaaykW7aiaawIa7aiaaysW7caWG1bWaaSbaaSqaaiaadMgaaeqaaO GaaG4oaiaaysW7caWH4oWaaSbaaSqaaiaadMhaaeqaaaGccaGLOaGa ayzkaaGaaGjbVlaadAgadaWgaaWcbaWaaqGabeaacaWG5bGaaGPaVd GaayjcSdGaaGPaVlaadwhaaeqaaOWaaeWabeaadaabceqaaiaadMha daWgaaWcbaGaamyAaiaadUgaaeqaaOGaaGPaVdGaayjcSdGaaGjbVl aadwhadaWgaaWcbaGaamyAaaqabaGccaaI7aGaaGjbVlaahI7adaWg aaWcbaGaamyEaaqabaaakiaawIcacaGLPaaacaaMe8UaamOzamaaBa aaleaacaWG1baabeaakmaabmqabaWaaqGabeaacaWG1bWaaSbaaSqa aiaadMgaaeqaaOGaaGPaVdGaayjcSdGaaGjbVlaahI7adaWgaaWcba GaamyDaaqabaaakiaawIcacaGLPaaacaaMe8UaamizaiaadwhadaWg aaWcbaGaamyAaaqabaaabeqab0Gaey4kIipakiaai6caaaa@8CB5@

Then a marginal pairwise likelihood function can be formulated as

C( η )= i=1 n j<k L ijk d jk ( η )× L ij d j ( η )× L ik d k ( η ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGdbGaaGPaVpaabmqabaGaaC4Tda GaayjkaiaawMcaaiaaysW7caaI9aGaaGjbVpaarahabaGaaGPaVpaa rafabaGaaGPaVlaadYeadaqhaaWcbaGaamyAaiaadQgacaWGRbaaba GaamizamaaBaaameaacaWGQbGaam4AaaqabaaaaOWaaeWabeaacaWH 3oaacaGLOaGaayzkaaGaaGjbVlaaykW7cqGHxdaTcaaMe8UaaGPaVl aadYeadaqhaaWcbaGaamyAaiaadQgaaeaacaWGKbWaaSbaaWqaaiaa dQgaaeqaaaaakmaabmqabaGaaC4TdaGaayjkaiaawMcaaiaaysW7ca aMc8Uaey41aqRaaGjbVlaaykW7caWGmbWaa0baaSqaaiaadMgacaWG RbaabaGaamizamaaBaaameaacaWGRbaabeaaaaGcdaqadeqaaiaahE 7aaiaawIcacaGLPaaaaSqaaiaadQgacaaMe8UaaGipaiaaysW7caWG RbaabeqdcqGHpis1aaWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaa qdcqGHpis1aOGaaGilaaaa@757D@

where d jk , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGKbWaaSbaaSqaaiaadQgacaWGRb aabeaakiaacYcaaaa@355B@   d j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGKbWaaSbaaSqaaiaadQgaaeqaaO Gaaiilaaaa@346B@  and d k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGKbWaaSbaaSqaaiaadUgaaeqaaa aa@33B2@  are weights that can be user-specified to enhance efficiency or to facilitate some specific features of the formulation. Discussion on choosing weights can be found in Cox and Reid (2004), Lindsay, Yi and Sun (2011), Varin, Reid and Firth (2011), and Yi (2017). To confine our attention to the use of marginal pairwise likelihoods, in line with the approach of RVH, here we consider the case with d j = d k =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGKbWaaSbaaSqaaiaadQgaaeqaaO GaaGjbVlaai2dacaaMe8UaamizamaaBaaaleaacaWGRbaabeaakiaa ysW7caaI9aGaaGjbVlaaicdaaaa@3E46@  and d jk =1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGKbWaaSbaaSqaaiaadQgacaWGRb aabeaakiaaysW7caaI9aGaaGjbVlaaigdacaGGUaaaaa@39F9@

Returning to the special case of model (1.1), suppose that σ e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyzaaqaai aaikdaaaaaaa@3543@  is known, and take η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oaaaa@32F0@  to consist of θ y =θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH4oWaaSbaaSqaaiaadMhaaeqaaO GaaGjbVlaai2dacaaMe8UaeqiUdehaaa@39BC@  and θ u = σ u 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiUdmaaBaaaleaacaWG1b aabeaakiaaysW7caaI9aGaaGjbVlabeo8aZnaaDaaaleaacaWG1baa baGaaGOmaaaakiaac6caaaa@3DF5@  In a Bayesian approach it is necessary to choose a prior distribution for η. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oGaaiOlaaaa@33A2@  We will assume a prior distribution in which θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  and σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3553@  are independent, with a uniform distribution with large support for θ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCcaGGSaaaaa@3413@  and a distribution for σ u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaWgaaWcbaGaamyDaaqaba aaaa@3496@  that is close to uniform on an interval assumed to contain the support of the full likelihood function for σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3553@  with high probability. Gelman (2006) presents a thorough treatment of choosing a prior distribution of σ u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaWgaaWcbaGaamyDaaqaba aaaa@3496@  in the random effects model (1.1). He recommends using a uniform prior for σ u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaWgaaWcbaGaamyDaaqaba aaaa@3496@  for moderate to large values of n, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbGaaiilaaaa@3350@  but a half-Cauchy prior for smaller values of n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbaaaa@32A0@  (see, especially, Sections 3.2 and 5.2 of Gelman, 2006). The half-Cauchy prior is supported on ( 0, ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqadeqaaiaaicdacaaISaGaaGjbVl abg6HiLcGaayjkaiaawMcaaaaa@37A5@  and is given by

π( σ u ) ( 1+ ( σ u A ) 2 ) 1 ,(2.4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8+aaeWabeaacqaHdp WCdaWgaaWcbaGaamyDaaqabaaakiaawIcacaGLPaaacaaMe8Uaeyyh IuRaaGjbVpaabmaabaGaaGymaiaaysW7cqGHRaWkcaaMe8+aaeWaae aadaWcaaqaaiabeo8aZnaaBaaaleaacaWG1baabeaaaOqaaiaadgea aaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaay zkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGilaiaaywW7caaM f8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGinaiaacM caaaa@5870@

where A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGbbaaaa@3273@  is a scale hyperparameter.

2.2 Unadjusted pairwise composite likelihood

Again, assume model (1.1), and assuming σ e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyzaaqaai aaikdaaaaaaa@3543@  known, let η= ( θ, σ u 2 ) T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oGaaGjbVlaai2dacaaMe8+aae WabeaacqaH4oqCcaaISaGaaGjbVlabeo8aZnaaDaaaleaacaWG1baa baGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaeivaaaaaa a@4108@  be the vector of model parameters. We are interested in comparing the performance of the posterior distribution of η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oaaaa@32EF@  based on using the full likelihood or the pairwise likelihood, together with the adjusted posterior pairwise distribution to be described below.

To start, consider a simple situation where σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3553@  also is assumed to be known and only θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  is unknown. Let π( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8+aaeWabeaacaaMi8 UaeqiUdeNaaGjcVdGaayjkaiaawMcaaaaa@3B57@  be a prior density of θ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCcaGGUaaaaa@3415@  Then the posterior density of θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  is

p FL ( θ|y( n ) )π( θ ) i=1 n f( y i ;θ ) ,(2.5) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGgb GaaeitaaqabaGcdaqadeqaamaaeiqabaGaeqiUdeNaaGPaVdGaayjc SdGaaGPaVlaahMhacaaMc8+aaeWabeaacaaMi8UaamOBaiaayIW7ai aawIcacaGLPaaaaiaawIcacaGLPaaacaaMe8UaaGPaVlabg2Hi1kaa ysW7caaMc8UaeqiWda3aaeWabeaacaaMi8UaeqiUdeNaaGjcVdGaay jkaiaawMcaaiaaysW7daqeWbqaaiaaykW7caWGMbGaaGPaVpaabmqa baGaaCyEamaaBaaaleaacaWGPbaabeaakiaaiUdacaaMe8UaeqiUde hacaGLOaGaayzkaaaaleaacaWGPbGaaGypaiaaigdaaeaacaWGUbaa niabg+GivdGccaaISaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7ca GGOaGaaGOmaiaac6cacaaI1aGaaiykaaaa@74CE@

where the subscript FL indicates that it is based on the full likelihood. In contrast, we consider

L i,PL ( θ )= 1j<km L ijk ( θ ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGmbWaaSbaaSqaaiaadMgacaaISa GaaGjbVlaabcfacaqGmbaabeaakmaabmqabaGaaGjcVlabeI7aXjaa yIW7aiaawIcacaGLPaaacaaMe8UaaGypaiaaysW7daqeqbqaaiaayk W7caWGmbWaaSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGcdaqadeqa aiaayIW7cqaH4oqCcaaMi8oacaGLOaGaayzkaaaaleaacaaIXaGaaG jbVlabgsMiJkaaysW7caWGQbGaaGjbVlaaiYdacaaMe8Uaam4Aaiaa ysW7cqGHKjYOcaaMe8UaamyBaaqab0Gaey4dIunakiaaiYcaaaa@6166@

where L ijk ( θ )= f y|u ( y ij | u i ;θ ) f y|u ( y ik | u i ;θ ) f u ( u i )d u i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGmbWaaSbaaSqaaiaadMgacaWGQb Gaam4AaaqabaGcdaqadeqaaiaayIW7cqaH4oqCcaaMi8oacaGLOaGa ayzkaaGaaGjbVlaai2dacaaMe8+aa8qaaeaacaaMc8UaamOzamaaBa aaleaadaabceqaaiaadMhacaaMc8oacaGLiWoacaaMc8UaamyDaaqa baGcdaqadeqaamaaeiqabaGaamyEamaaBaaaleaacaWGPbGaamOAaa qabaGccaaMc8oacaGLiWoacaaMc8UaamyDamaaBaaaleaacaWGPbaa beaakiaaiUdacaaMe8UaeqiUdehacaGLOaGaayzkaaGaaGjbVlaadA gadaWgaaWcbaWaaqGabeaacaWG5bGaaGPaVdGaayjcSdGaaGPaVlaa dwhaaeqaaOWaaeWabeaadaabceqaaiaadMhadaWgaaWcbaGaamyAai aadUgaaeqaaOGaaGPaVdGaayjcSdGaaGPaVlaadwhadaWgaaWcbaGa amyAaaqabaGccaaI7aGaaGjbVlabeI7aXbGaayjkaiaawMcaaiaays W7caWGMbWaaSbaaSqaaiaadwhaaeqaaOWaaeWabeaacaWG1bWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaGjbVlaadsgacaWG1b WaaSbaaSqaaiaadMgaaeqaaaqabeqaniabgUIiYdGccaGGSaaaaa@7FC9@  and then define

p PL ( θ|y( n ) )π( θ ) i=1 n L i,PL ( θ ) (2.6) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGqb GaaeitaaqabaGcdaqadeqaamaaeiqabaGaeqiUdeNaaGPaVdGaayjc SdGaaGPaVlaahMhadaqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkai aawMcaaaGaayjkaiaawMcaaiaaysW7caaMc8UaeyyhIuRaaGjbVlaa ykW7cqaHapaCcaaMc8+aaeWabeaacaaMi8UaeqiUdeNaaGjcVdGaay jkaiaawMcaaiaaysW7daqeWbqaaiaaykW7caWGmbWaaSbaaSqaaiaa dMgacaaISaGaaGjbVlaabcfacaqGmbaabeaakmaabmqabaGaaGjcVl abeI7aXjaayIW7aiaawIcacaGLPaaaaSqaaiaadMgacaaI9aGaaGym aaqaaiaad6gaa0Gaey4dIunakiaaywW7caaMf8UaaGzbVlaaywW7ca aMf8UaaiikaiaaikdacaGGUaGaaGOnaiaacMcaaaa@7631@

to be the “pairwise” posterior density of θ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCcaGGUaaaaa@3415@  We wish to compare the variances of θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  derived from p FL ( θ|y( n ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGgb GaaeitaaqabaGcdaqadeqaamaaeiqabaGaeqiUdeNaaGPaVdGaayjc SdGaaGPaVlaahMhacaaMc8+aaeWabeaacaaMi8UaamOBaiaayIW7ai aawIcacaGLPaaaaiaawIcacaGLPaaaaaa@461A@  and p PL ( θ|y( n ) ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGqb GaaeitaaqabaGcdaqadeqaamaaeiqabaGaeqiUdeNaaGPaVdGaayjc SdGaaGPaVlaahMhacaaMc8+aaeWabeaacaaMi8UaamOBaiaayIW7ai aawIcacaGLPaaaaiaawIcacaGLPaaacaGGSaaaaa@46D4@  shown in the following theorem, of which the derivations are straightforward.

Theorem: Assume that π( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8+aaeWabeaacaaMi8 UaeqiUdeNaaGjcVdGaayjkaiaawMcaaaaa@3B57@  is a uniform prior. Then

(a)  p FL ( θ|y( n ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGgb GaaeitaaqabaGcdaqadeqaamaaeiqabaGaeqiUdeNaaGPaVdGaayjc SdGaaGPaVlaahMhacaaMc8+aaeWabeaacaaMi8UaamOBaiaayIW7ai aawIcacaGLPaaaaiaawIcacaGLPaaaaaa@461A@ is a normal density with mean y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWG5bGbaebaaaa@32C3@  and variance σ e 2 +m σ u 2 mn ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaWcbaWcbaGaeq4Wdm3aa0baaWqaai aadwgaaeaacaaIYaaaaSGaaGjbVlabgUcaRiaaysW7caWGTbGaeq4W dm3aa0baaWqaaiaadwhaaeaacaaIYaaaaaWcbaGaamyBaiaad6gaaa GccaGG7aaaaa@40B9@

(b)  p PL ( θ|y( n ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGqb GaaeitaaqabaGcdaqadeqaamaaeiqabaGaeqiUdeNaaGPaVdGaayjc SdGaaGPaVlaahMhacaaMc8+aaeWabeaacaaMi8UaamOBaiaayIW7ai aawIcacaGLPaaaaiaawIcacaGLPaaaaaa@4624@ is a normal density with mean y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWG5bGbaebaaaa@32C3@  and variance σ e 2 +2 σ u 2 m( m1 )n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaWcbaWcbaGaeq4Wdm3aa0baaWqaai aadwgaaeaacaaIYaaaaSGaaGjbVlabgUcaRiaaysW7caaIYaGaeq4W dm3aa0baaWqaaiaadwhaaeaacaaIYaaaaaWcbaGaamyBaiaaysW7da qadeqaaiaad2gacaaMe8UaeyOeI0IaaGjbVlaaigdaaiaawIcacaGL PaaacaaMe8UaamOBaaaaaaa@4A12@  where y ¯ = ( mn ) 1 i=1 n j=1 m y ij . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWG5bGbaebacaaMe8UaaGypaiaays W7daqadeqaaiaayIW7caWGTbGaamOBaiaayIW7aiaawIcacaGLPaaa daahaaWcbeqaaiabgkHiTiaaigdaaaGccaaMc8+aaabmaeaacaaMc8 +aaabmaeaacaaMc8UaamyEamaaBaaaleaacaWGPbGaamOAaaqabaaa baGaamOAaiaai2dacaaIXaaabaGaamyBaaqdcqGHris5aaWcbaGaam yAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOGaaiOlaaaa@5237@

The theorem shows that when m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbaaaa@329F@  is greater than 2, the variance derived from the “pairwise” posterior density p PL ( θ|y( n ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGqb GaaeitaaqabaGcdaqadeqaamaaeiqabaGaeqiUdeNaaGPaVdGaayjc SdGaaGPaVlaahMhacaaMc8+aaeWabeaacaaMi8UaamOBaiaayIW7ai aawIcacaGLPaaaaiaawIcacaGLPaaaaaa@4624@  is smaller than that of the posterior density p FL ( θ|y( n ) ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGgb GaaeitaaqabaGcdaqadeqaamaaeiqabaGaeqiUdeNaaGPaVdGaayjc SdGaaGPaVlaahMhadaqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkai aawMcaaaGaayjkaiaawMcaaiaac6caaaa@4541@  This finding is intuitively reasonable, because the pairwise likelihood is effectively taking all m( m1 )/ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaWcgaqaaiaad2gacaaMc8+aaeWabe aacaWGTbGaaGjbVlabgkHiTiaaysW7caaIXaaacaGLOaGaayzkaaGa aGPaVdqaaiaaykW7caaIYaaaaaaa@3F50@  pairs of observations within each cluster to be independent. It motivates us to examine an adjusted version of p PL ( θ|y( n ) ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGqb GaaeitaaqabaGcdaqadeqaamaaeiqabaGaeqiUdeNaaGPaVdGaayjc SdGaaGPaVlaahMhadaqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkai aawMcaaaGaayjkaiaawMcaaiaacYcaaaa@4549@  to be discussed in the sequel.

For the case where σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3553@  is also unknown, it can be shown that a similar kind of adjustment is needed. Assuming independent uniform priors for θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  and σ u 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaGccaGGSaaaaa@360D@  it is straightforward to show that

p FL ( θ, σ u 2 |y( n ) ) | Σ m | n/ 2 exp[ 0.5tr( Σ m 1 S 0 ) ](2.7) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGgb GaaeitaaqabaGcdaqadeqaaiabeI7aXjaaiYcacaaMe8+aaqGabeaa cqaHdpWCdaqhaaWcbaGaamyDaaqaaiaaikdaaaGccaaMc8oacaGLiW oacaaMc8UaaCyEaiaaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGa ayjkaiaawMcaaaGaayjkaiaawMcaaiaaysW7cqGHDisTcaaMe8+aaq WabeaacaaMi8UaaC4OdmaaBaaaleaacaWGTbaabeaakiaayIW7aiaa wEa7caGLiWoadaahaaWcbeqaaiabgkHiTmaalyaabaGaamOBaiaayk W7aeaacaaMc8UaaGOmaaaaaaGccaqGLbGaaeiEaiaabchacaaMe8+a amWabeaacqGHsislcaqGWaGaaeOlaiaabwdacaaMc8UaaeiDaiaabk hacaaMc8+aaeWabeaacaWHJoWaa0baaSqaaiaad2gaaeaacqGHsisl caaIXaaaaOGaaC4uamaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawM caaaGaay5waiaaw2faaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Ua aiikaiaaikdacaGGUaGaaG4naiaacMcaaaa@8046@

where S 0 = i=1 n ( y i μ m ) ( y i μ m ) T ,μ m =θ 1 m , Σ m = σ e 2 I m + σ u 2 1 m 1 m T , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHtbWaaSbaaSqaaiaaicdaaeqaaO GaaGjbVlaai2dacaaMe8+aaabmaeaacaaMc8+aaeWabeaacaWH5bWa aSbaaSqaaiaadMgaaeqaaOGaaGjbVlabgkHiTiaaysW7caWH8oWaaS baaSqaaiaad2gaaeqaaaGccaGLOaGaayzkaaGaaGPaVlaaykW7daqa deqaaiaahMhadaWgaaWcbaGaamyAaaqabaGccaaMe8UaeyOeI0IaaG jbVlaahY7adaWgaaWcbaGaamyBaaqabaaakiaawIcacaGLPaaadaah aaWcbeqaaiaabsfaaaaabaGaamyAaiaai2dacaaIXaaabaGaamOBaa qdcqGHris5aOGaaGilaiaaysW7caWH8oGaaGjcVpaaBaaaleaacaWG TbaabeaakiaaysW7caaI9aGaaGjbVlabeI7aXjaayIW7caaMe8UaaC ymamaaBaaaleaacaWGTbaabeaakiaaiYcacaaMe8UaaC4OdmaaBaaa leaacaWGTbaabeaakiaaysW7caaI9aGaaGjbVlabeo8aZnaaDaaale aacaWGLbaabaGaaGOmaaaakiaaykW7caWHjbWaaSbaaSqaaiaad2ga aeqaaOGaaGjbVlabgUcaRiaaysW7cqaHdpWCdaqhaaWcbaGaamyDaa qaaiaaikdaaaGccaaMe8UaaCymamaaBaaaleaacaWGTbaabeaakiaa ysW7caWHXaWaa0baaSqaaiaad2gaaeaacaqGubaaaOGaaiilaaaa@873E@   1 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCymamaaBaaaleaacaWGTb aabeaaaaa@3516@  represents the m×1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbGaaGjbVlabgEna0kaaysW7ca aIXaaaaa@388B@  unit vector, and I m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHjbWaaSbaaSqaaiaad2gaaeqaaa aa@339D@  stands for the m×m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbGaaGjbVlabgEna0kaaysW7ca WGTbaaaa@38C2@  identity matrix.

After some algebra the pairwise composite likelihood posterior (PL) can be shown to be

p PL ( θ, σ u 2 |y( n ) ) | Σ 2 | nm( m1 )/ 4 exp[ 0.5tr( Σ 2 1 S 0PL ) ](2.8) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGqb GaaeitaaqabaGccaaMc8+aaeWabeaacqaH4oqCcaaISaGaaGjbVpaa eiqabaGaeq4Wdm3aa0baaSqaaiaadwhaaeaacaaIYaaaaOGaaGPaVd GaayjcSdGaaGPaVlaayIW7caWH5bGaaGPaVpaabmqabaGaaGjcVlaa d6gacaaMi8oacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaGjbVlaayk W7cqGHDisTcaaMe8UaaGPaVpaaemqabaGaaGjcVlaaho6adaWgaaWc baGaaGOmaaqabaGccaaMi8oacaGLhWUaayjcSdWaaWbaaSqabeaada Wcgaqaaiaad6gacaWGTbGaaGPaVpaabmqabaGaamyBaiaaykW7cqGH sislcaaMc8UaaGymaaGaayjkaiaawMcaaiaaykW7aeaacaaMc8UaaG inaaaaaaGccaqGLbGaaeiEaiaabchacaaMc8+aamWabeaacqGHsisl caqGWaGaaeOlaiaabwdacaaMc8UaaeiDaiaabkhacaaMc8+aaeWabe aacaWHJoGaaGjcVpaaDaaaleaacaaIYaaabaGaeyOeI0IaaGymaaaa kiaahofadaWgaaWcbaGaaGimaiaabcfacaqGmbaabeaaaOGaayjkai aawMcaaaGaay5waiaaw2faaiaaywW7caaMf8UaaGzbVlaaywW7caaM f8UaaiikaiaaikdacaGGUaGaaGioaiaacMcaaaa@9214@

where, with z ijk = ( y ij θ, y ik θ ) T , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH6bWaaSbaaSqaaiaadMgacaWGQb Gaam4AaaqabaGccaaMe8UaaGypaiaaysW7daqadeqaaiaadMhadaWg aaWcbaGaamyAaiaadQgaaeqaaOGaaGjbVlabgkHiTiaaysW7cqaH4o qCcaaISaGaaGjbVlaaysW7caWG5bWaaSbaaSqaaiaadMgacaWGRbaa beaakiaaysW7cqGHsislcaaMe8UaeqiUdehacaGLOaGaayzkaaWaaW baaSqabeaacaqGubaaaOGaaGilaaaa@524F@

S 0PL = i=1 n j<k z ijk z ijk T . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHtbWaaSbaaSqaaiaaicdacaqGqb GaaeitaaqabaGccaaMe8UaaGypaiaaysW7daaeWbqaaiaaykW7daae qbqaaiaaykW7caWH6bWaaSbaaSqaaiaadMgacaWGQbGaam4Aaaqaba GccaWH6bWaa0baaSqaaiaadMgacaWGQbGaam4Aaaqaaiaabsfaaaaa baGaamOAaiaaysW7caaI8aGaaGjbVlaadUgaaeqaniabggHiLdaale aacaWGPbGaaGjbVlaai2dacaaMe8UaaGymaaqaaiaad6gaa0Gaeyye Iuoakiaai6caaaa@5643@

Note that Σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaC4OdmaaBaaaleaacaaIYa aabeaaaaa@3555@  is defined in (2.7) with m=2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbGaaGjbVlaai2dacaaMe8UaaG Omaiaac6caaaa@37EE@

Assuming independent uniform priors for θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  and σ u 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaGccaGGSaaaaa@360D@  we consider the posterior density of σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3553@  with θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  integrated out. To assess the relative precisions of Bayesian inference in the two cases, we must use approximations because of the complexity of the two posterior densities. Specifically, we compare the curvature of the log posterior and the log pairwise posterior densities for σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3553@  at their modes. The ratio of the latter to the former can be shown to be equal for large n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbaaaa@32A0@  to

2( m1 ) ( σ e 2 +m σ u 2 ) 2 m ( σ e 2 +2 σ u 2 ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaWcaaqaaiaaikdacaaMc8+aaeWabe aacaWGTbGaaGjbVlabgkHiTiaaysW7caaIXaaacaGLOaGaayzkaaGa aGPaVpaabmqabaGaeq4Wdm3aa0baaSqaaiaadwgaaeaacaaIYaaaaO GaaGjbVlabgUcaRiaaysW7caWGTbGaeq4Wdm3aa0baaSqaaiaadwha aeaacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaa GcbaGaamyBaiaaykW7daqadeqaaiabeo8aZnaaDaaaleaacaWGLbaa baGaaGOmaaaakiaaysW7cqGHRaWkcaaMe8UaaGOmaiabeo8aZnaaDa aaleaacaWG1baabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaaaaGccaaISaaaaa@5D3F@

implying that using the unadjusted pairwise posterior density for m>2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbGaaGjbVlaai6dacaaMe8UaaG Omaaaa@373D@  would overestimate the precision of estimation of σ u 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaGccaGGUaaaaa@360F@

Thus, for both θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  and σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3553@  (or σ u ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaWgaaWcbaGaamyDaaqaba GccaGGPaGaaiilaaaa@35FD@  basing an approximate log likelihood for Bayesian inference directly on the pairwise composite likelihood would lead to posterior intervals that are too narrow.

Note: In Section 3 the parameter vector η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaC4Tdaaa@3481@  is set to be ( θ, σ u ) T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqadeqaaiabeI7aXjaaiYcacaaMe8 Uaeq4Wdm3aaSbaaSqaaiaadwhaaeqaaaGccaGLOaGaayzkaaWaaWba aSqabeaacaqGubaaaaaa@3B27@  (with variance σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3553@  replaced by standard deviation σ u ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaWgaaWcbaGaamyDaaqaba GccaGGPaGaaiilaaaa@35FD@  and a half-Cauchy prior distribution is used for σ u . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaWgaaWcbaGaamyDaaqaba GccaGGUaaaaa@3552@  However, the comparison of full and log pairwise posterior densities will remain similar under the appropriate transformations.

2.3 Curvature adjustment for the log pairwise likelihood

In this section we motivate the curvature adjustment for the log pairwise likelihood from the standpoint of estimating function theory, as presented, for example by Jørgensen and Knudsen (2004).

First, we note that if X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHybaaaa@328E@  has a q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbaaaa@32A3@  -variate normal distribution with mean vector μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiVdaaa@3486@  and variance-covariance matrix Σ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHJoGaaiilaaaa@338C@  the logarithm of the multivariate density of X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHybaaaa@328E@  has form

q 2 log( 2π ) 1 2 log| Σ | 1 2 ( xμ ) T Σ 1 ( xμ ).(2.9) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqGHsisldaWcaaqaaiaadghaaeaaca aIYaaaaiaaysW7caqGSbGaae4BaiaabEgadaqadeqaaiaayIW7caaI YaGaeqiWdaNaaGjcVdGaayjkaiaawMcaaiaaysW7cqGHsislcaaMe8 +aaSaaaeaacaaIXaaabaGaaGOmaaaacaaMe8UaaeiBaiaab+gacaqG NbGaaGjbVpaaemqabaGaaGjcVlaaho6acaaMi8oacaGLhWUaayjcSd GaaGjbVlaaykW7cqGHsislcaaMe8UaaGPaVpaalaaabaGaaGymaaqa aiaaikdaaaWaaeWabeaacaWH4bGaaGjbVlabgkHiTiaaysW7caWH8o aacaGLOaGaayzkaaWaaWbaaSqabeaacaqGubaaaOGaaC4OdmaaCaaa leqabaGaeyOeI0IaaGymaaaakmaabmqabaGaaCiEaiaaysW7cqGHsi slcaaMe8UaaCiVdaGaayjkaiaawMcaaiaai6cacaaMf8UaaGzbVlaa ywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaiMdacaGGPaaaaa@7B3B@

The expression in (2.9) as a function of x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH4baaaa@32AE@  has its maximum at μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiVdaaa@3486@  and curvature or second derivative matrix (Hessian) at the maximum equal to Σ 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqGHsislcaaMi8UaaC4OdmaaCaaale qabaGaeyOeI0IaaGymaaaakiaac6caaaa@37EB@  Intuitively, this correspondence between the curvature of the log density at the maximum and inverse of the covariance matrix can be expected to hold approximately for a multivariate density that is close to being normal.

Consider a model in which the distribution of the observation variable Y( n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHzbGaaGPaVpaabmqabaGaaGjcVl aad6gacaaMi8oacaGLOaGaayzkaaaaaa@39B9@  depends on a vector parameter η. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oGaaiOlaaaa@33A2@  Given an observation Y( n )=y( n ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHzbGaaGPaVpaabmqabaGaaGjcVl aad6gacaaMi8oacaGLOaGaayzkaaGaaGjbVlaai2dacaaMe8UaaCyE aiaaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaai aacYcaaaa@4676@  the log likelihood is denoted l( η;y( n ) )=log( f( y( n );η ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqWItecBcaaMc8UaaGPaVpaabmqaba GaaC4TdiaayIW7caaI7aGaaGjbVlaahMhacaaMc8+aaeWabeaacaaM i8UaamOBaiaayIW7aiaawIcacaGLPaaaaiaawIcacaGLPaaacaaMe8 UaaGypaiaaysW7caqGSbGaae4BaiaabEgacaaMc8+aaeWabeaacaWG MbGaaGPaVpaabmqabaGaaCyEaiaaykW7daqadeqaaiaayIW7caWGUb GaaGjcVdGaayjkaiaawMcaaiaaiUdacaaMe8UaaC4TdaGaayjkaiaa wMcaaaGaayjkaiaawMcaaaaa@5E52@  where f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGMbaaaa@3298@  is the density of Y( n ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHzbGaaGPaVpaabmqabaGaaGjcVl aad6gacaaMi8oacaGLOaGaayzkaaGaaiOlaaaa@3A6B@  Under regularity conditions, (e.g., Lehmann, 1999, Chapter 7) the MLE η ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaaaaa@3300@  is found by solving the system

s( η;y( n ) )=0,(2.10) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHZbGaaGPaVpaabmqabaGaaC4Tdi aaykW7caaI7aGaaGjbVlaahMhacaaMc8+aaeWabeaacaaMi8UaamOB aiaayIW7aiaawIcacaGLPaaaaiaawIcacaGLPaaacaaMe8UaaGypai aaysW7caWHWaGaaGilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Ua aiikaiaaikdacaGGUaGaaGymaiaaicdacaGGPaaaaa@545B@

where s( η;y( n ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHZbGaaGjbVpaabmqabaGaaC4Tdi aaykW7caaI7aGaaGjbVlaahMhacaaMc8+aaeWabeaacaaMi8UaamOB aiaayIW7aiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@430C@  denotes the score function, the gradient of l( η;y( n ) ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqWItecBcaaMe8+aaeWabeaacaWH3o GaaGPaVlaaiUdacaaMe8UaaCyEaiaaykW7daqadeqaaiaayIW7caWG UbGaaGjcVdGaayjkaiaawMcaaaGaayjkaiaawMcaaiaac6caaaa@43F3@  The system (2.10) is an unbiased (vector) estimating equation, and is optimally efficient, having minimal asymptotic variance-covariance matrix (in the sense of positive definite difference) among solutions of unbiased estimating equation systems. In regular cases (e.g., Lehmann, 1999, Chapter 7) the score function satisfies the second Bartlett identity (e.g., Lindsay, 1988):

Var η [ s( η;y( n ) ) ]= E η [ s( η;y( n ) ) ]= E η [ 2 l( η;y( n ) ) ],(2.11) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGwbGaaeyyaiaabkhadaWgaaWcba GaaC4TdaqabaGccaaMe8+aamWabeaacaWHZbGaaGPaVpaabmqabaGa aC4TdiaaykW7caaI7aGaaGjbVlaahMhacaaMc8+aaeWabeaacaaMi8 UaamOBaiaayIW7aiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUfa caGLDbaacaaMe8UaaGPaVlaai2dacaaMe8UaaGPaVlabgkHiTiaadw eadaWgaaWcbaGaaC4TdaqabaGccaaMc8+aamWabeaacqGHhis0caWH ZbGaaGPaVpaabmqabaGaaC4TdiaaykW7caaI7aGaaGjbVlaahMhaca aMc8+aaeWabeaacaaMi8UaamOBaiaayIW7aiaawIcacaGLPaaaaiaa wIcacaGLPaaaaiaawUfacaGLDbaacaaMe8UaaGPaVlaai2dacaaMe8 UaaGPaVlabgkHiTiaadweadaWgaaWcbaGaaC4TdaqabaGccaaMc8+a amWabeaacqGHhis0daahaaWcbeqaaiaaikdaaaGccqWItecBcaaMc8 +aaeWabeaacaWH3oGaaGPaVlaaiUdacaaMe8UaaCyEaiaaykW7daqa deqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaaGaayjkaiaawM caaaGaay5waiaaw2faaiaaiYcacaaMf8UaaGzbVlaaywW7caaMf8Ua aGzbVlaacIcacaaIYaGaaiOlaiaaigdacaaIXaGaaiykaaaa@99A5@

where Var denotes a variance-covariance matrix, and MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqGHhis0aaa@3333@  represents a gradient. As well, asymptotically, through a Taylor series approximation of s( η ^ ;y( n ) )s( η;y( n ) )=0s( η;y( n ) ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHZbGaaGPaVpaabmqabaGabC4Tdy aajaGaaGPaVlaaiUdacaaMe8UaaCyEaiaaykW7daqadeqaaiaayIW7 caWGUbGaaGjcVdGaayjkaiaawMcaaaGaayjkaiaawMcaaiaaysW7cq GHsislcaaMe8UaaC4CaiaaykW7daqadeqaaiaahE7acaaMc8UaaG4o aiaaysW7caWH5bGaaGPaVpaabmqabaGaaGjcVlaad6gacaaMi8oaca GLOaGaayzkaaaacaGLOaGaayzkaaGaaGjbVlaai2dacaaMe8UaaCim aiaaysW7cqGHsislcaaMe8UaaC4CaiaaykW7daqadeqaaiaahE7aca aMc8UaaG4oaiaaysW7caWH5bGaaGPaVpaabmqabaGaaGjcVlaah6ga caaMi8oacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaiilaaaa@7330@  we have:

η ^ η [ s( η;y( n ) ) ] 1 s( η;y( n ) ).(2.12) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaacaaMe8UaeyOeI0IaaG jbVlaahE7acaaMe8UaaGjcVdbaaaaaaaaapeGaeS4qISZdaiaaysW7 cqGHsisldaWadeqaaiabgEGirlaahohacaaMc8+aaeWabeaacaWH3o GaaGPaVlaaiUdacaaMe8UaaCyEaiaaykW7daqadeqaaiaayIW7caWG UbGaaGjcVdGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5waiaaw2 faamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahohacaaMc8+aaeWa beaacaWH3oGaaGPaVlaaiUdacaaMe8UaaCyEaiaaykW7daqadeqaai aayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaaGaayjkaiaawMcaaiaa i6cacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaai OlaiaaigdacaaIYaGaaiykaaaa@740F@

Thus, standard (frequentist) likelihood inference estimates the variance-covariance of η ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaaaaa@3300@  as the reciprocal of the observed Fisher information matrix

I= 2 η η T l( η;y( n ) )| η ^ = 2 l( η;y( n ) )| η ^ ,(2.13) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHjbGaaGjbVlaaykW7caaI9aGaaG jbVlaaykW7cqGHsisldaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOm aaaaaOqaaiabgkGi2kaayIW7caWH3oGaaGjcVlabgkGi2kaayIW7ca WH3oWaaWbaaSqabeaacaqGubaaaaaakiaaysW7daabceqaaiablori SjaaysW7daqadeqaaiaahE7acaaMc8UaaG4oaiaaysW7caWH5bWaae WabeaacaaMi8UaamOBaiaayIW7aiaawIcacaGLPaaaaiaawIcacaGL PaaacaaMe8oacaGLiWoadaWgaaWcbaGabC4Tdyaajaaabeaakiaays W7caaMc8UaaGypaiaaysW7caaMc8UaeyOeI0Iaey4bIe9aaWbaaSqa beaacaaIYaaaaOWaaqGabeaacqWItecBcaaMe8+aaeWabeaacaWH3o GaaGPaVlaaiUdacaaMe8UaaCyEaiaaykW7daqadeqaaiaayIW7caWG UbGaaGjcVdGaayjkaiaawMcaaaGaayjkaiaawMcaaiaaykW7aiaawI a7amaaBaaaleaaceWH3oGbaKaaaeqaaOGaaGilaiaaywW7caaMf8Ua aGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGymaiaaiodaca GGPaaaaa@8B78@

which is the negative of the Hessian (curvature matrix) of the log likelihood function at its maximum.

In Bayesian inference, if π( η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8+aaeWabeaacaWH3o aacaGLOaGaayzkaaaaaa@37C2@  is a prior density for η, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oGaaiilaaaa@33A0@  the logarithm of the posterior density for η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oaaaa@32F0@  is

logπ( η|y( n ) )=logπ( η )+l( η;y( n ) )K( y( n ) ),(2.14) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGSbGaae4BaiaabEgacaaMi8UaaG PaVlabec8aWjaaykW7daqadeqaamaaeiqabaGaaC4TdiaaykW7aiaa wIa7aiaaykW7caWH5bWaaeWabeaacaaMi8UaamOBaiaayIW7aiaawI cacaGLPaaaaiaawIcacaGLPaaacaaMe8UaaGPaVlaai2dacaaMe8Ua aGPaVlaabYgacaqGVbGaae4zaiaayIW7caaMc8UaeqiWdaNaaGPaVp aabmqabaGaaC4TdaGaayjkaiaawMcaaiaaysW7caaMc8Uaey4kaSIa aGjbVlaaykW7cqWItecBcaaMc8+aaeWabeaacaWH3oGaaGPaVlaayI W7caaI7aGaaGjbVlaahMhacaaMc8+aaeWabeaacaaMi8UaamOBaiaa yIW7aiaawIcacaGLPaaaaiaawIcacaGLPaaacaaMe8UaeyOeI0IaaG jbVlaadUeacaaMc8+aaeWabeaacaWH5bGaaGPaVpaabmqabaGaaGjc Vlaad6gacaaMi8oacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaGilai aaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGa aGymaiaaisdacaGGPaaaaa@92F2@

where

K( y( n ) )=log{ π( η )f( y( n );η )dη }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGlbGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaaGa ayjkaiaawMcaaiaaysW7caaMc8UaaGypaiaaysW7caaMc8UaaeiBai aab+gacaqGNbGaaGjbVpaacmaabaWaa8qaaeaacaaMc8UaeqiWdaNa aGPaVpaabmqabaGaaC4TdaGaayjkaiaawMcaaiaaykW7caWGMbGaaG PaVpaabmqabaGaaCyEamaabmqabaGaaGjcVlaad6gacaaMi8oacaGL OaGaayzkaaGaaGPaVlaaiUdacaaMe8UaaC4TdaGaayjkaiaawMcaai aaysW7caWGKbGaaGjcVlaahE7acaaMi8oaleqabeqdcqGHRiI8aaGc caGL7bGaayzFaaGaaGOlaaaa@6DC1@

If the prior density is flat in areas of appreciable likelihood, the posterior density of η, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oGaaiilaaaa@33A0@  which quantifies the inference about η, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oGaaiilaaaa@33A0@  approximates a density with mode at η ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaaaaa@3300@  and the curvature of its logarithm equal to the negative of the Fisher information, making the posterior variance-covariance of η ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaaaaa@3300@  approximately equal to the reciprocal of I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHjbaaaa@327F@  in (2.13). Thus the Bayesian estimation of η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oaaaa@32F0@  is efficient in the frequentist sense; alternatively, the frequentist inference is close to the Bayesian inference.

Suppose that in the frequentist context, the score function is replaced by another estimating function g( y( n );η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaa ykW7caaI7aGaaGjcVlaaysW7caWH3oaacaGLOaGaayzkaaaaaa@448F@  that is unbiased in the sense of having expectation 0. See, for example, Lindsay, Yi and Sun (2011). Then the estimator η ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaaaaa@3300@  is no longer optimally efficient. However, it is consistent, and its variance can be estimated by the delta method, or linearization of the function g. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbGaaiOlaaaa@334F@  We might wish to think of treating g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbaaaa@329D@  as a stand-in for a score vector, or as the gradient with respect to η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oaaaa@32F0@  of a substitute for the log likelihood function. In particular, composite likelihood equations might be thought of as stand-ins for score estimating equations.

A question is then whether a substitute for the log likelihood function having gradient g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbaaaa@329D@  could play the role of the log likelihood in Bayesian inference, and lead to an approximately correct posterior when substituted into (2.14), and if not, whether there are principled ways in which we could correct it.

Thus, suppose we have an alternative to the score function, namely estimating function g( y( n );η ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaa ykW7caaI7aGaaGjcVlaaysW7caWH3oaacaGLOaGaayzkaaGaaiilaa aa@453F@  that is unbiased for η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oaaaa@32F0@  in the sense of having

E η [ g( y( n );η ) ]=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGfbWaaSbaaSqaaiaahE7aaeqaaO WaamWabeaacaWHNbGaaGPaVpaabmqabaGaaCyEaiaaykW7daqadeqa aiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaaykW7caaI7aGaaG jbVlaahE7aaiaawIcacaGLPaaaaiaawUfacaGLDbaacaaMe8UaaGyp aiaaysW7caWHWaGaaGOlaaaa@4C85@

Suppose the solution η ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaaaaa@3300@  of the equation g( y( n );η )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaa ykW7caaI7aGaaGjcVlaaysW7caWH3oaacaGLOaGaayzkaaGaaGjbVl aaykW7caaI9aGaaGjbVlaaykW7caWHWaaaaa@4C3F@  maximizes a function h( y( n );η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaa ykW7caaI7aGaaGjcVlaaysW7caWH3oaacaGLOaGaayzkaaaaaa@448C@  which we would like to think of as an alternative to the log likelihood function; for example, h( y( n );η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaa ykW7caaI7aGaaGjcVlaaysW7caWH3oaacaGLOaGaayzkaaaaaa@448C@  could be a log pairwise composite likelihood function, and g( y( n );η )=h( y( n );η ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaa ykW7caaI7aGaaGjcVlaaysW7caWH3oaacaGLOaGaayzkaaGaaGjbVl aaykW7caaI9aGaaGjbVlaaykW7cqGHhis0caWGObGaaGPaVpaabmqa baGaaCyEaiaaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkai aawMcaaiaaykW7caaI7aGaaGjbVlaahE7aaiaawIcacaGLPaaacaGG Uaaaaa@5F0C@  Then h( y( n );η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaa ykW7caaI7aGaaGjcVlaaysW7caWH3oaacaGLOaGaayzkaaaaaa@448C@  would be approximately equal to what the log posterior density would be if the prior were non-informative, and if we took h( y( n );η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaa ykW7caaI7aGaaGjcVlaaysW7caWH3oaacaGLOaGaayzkaaaaaa@448C@  to be a stand-in for the log likelihood function. The stand-in posterior variance-covariance of η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oaaaa@32F0@  would be approximately the inverse of the negative of the curvature matrix of h( y( n );η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaa ykW7caaI7aGaaGjcVlaaysW7caWH3oaacaGLOaGaayzkaaaaaa@448C@  at η ^ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaacaGGUaaaaa@33B2@  By estimating function theory (e.g., Heyde, 1997), using the same kind of Taylor series approximation as in (2.12), the frequentist variance-covariance of η ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaaaaa@3300@  satisfies

Var η ( η ^ T ) { E η [ g( y( n );η ) ] } 1 Var η [ g( y( n );η ) ] { E η [ g( y( n );η ) ]  T } 1 .(2.15) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGwbGaaeyyaiaabkhadaWgaaWcba GaaC4TdaqabaGccaaMc8+aaeWabeaaceWH3oGbaKaadaahaaWcbeqa aiaabsfaaaaakiaawIcacaGLPaaacaaMe8UaeS4qISZaaiWabeaaca WGfbWaaSbaaSqaaiaayIW7caWH3oaabeaakmaadmqabaGaey4bIeTa aC4zaiaaykW7daqadeqaaiaahMhacaaMc8+aaeWabeaacaaMi8Uaam OBaiaayIW7aiaawIcacaGLPaaacaaI7aGaaGjbVlaahE7acaaMi8oa caGLOaGaayzkaaaacaGLBbGaayzxaaGaaGPaVdGaay5Eaiaaw2haam aaCaaaleqabaGaeyOeI0IaaGymaaaakiaabAfacaqGHbGaaeOCamaa BaaaleaacaWH3oaabeaakiaaykW7daWadeqaaiaahEgacaaMe8+aae WabeaacaWH5bGaaGjbVpaabmqabaGaaGjcVlaad6gacaaMi8oacaGL OaGaayzkaaGaaG4oaiaayIW7caaMe8UaaC4TdaGaayjkaiaawMcaaa Gaay5waiaaw2faaiaaysW7daGadeqaaiaadweadaWgaaWcbaGaaC4T daqabaGcdaWadeqaaiabgEGirlaahEgacaaMe8+aaeWabeaacaWH5b GaaGjbVpaabmqabaGaaGjcVlaad6gacaaMi8oacaGLOaGaayzkaaGa aG4oaiaaysW7caWH3oaacaGLOaGaayzkaaaacaGLBbGaayzxaaWaaW baaSqabeaacaqGubaaaaGccaGL7bGaayzFaaWaaWbaaSqabeaacqGH sislcaaIXaaaaOGaaGOlaiaaywW7caaMf8UaaGzbVlaaywW7caGGOa GaaGOmaiaac6cacaaIXaGaaGynaiaacMcaaaa@9CB2@

If h( y;η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObGaaGjbVpaabmqabaGaamyEai aaykW7caaI7aGaaGjbVlaahE7aaiaawIcacaGLPaaaaaa@3BCF@  were the log pairwise composite likelihood function, we would have, in the notation of RCD,

Var η ( η ^ T ) 1 n [ H( η 0 )J ( η 0 ) 1 H( η 0 ) ] 1 ,(2.16) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGwbGaaeyyaiaabkhadaWgaaWcba GaaC4TdaqabaGcdaqadeqaaiqahE7agaqcamaaCaaaleqabaGaaeiv aaaaaOGaayjkaiaawMcaaiaaysW7cqWIdjYocaaMe8+aaSaaaeaaca aIXaaabaGaamOBaaaacaaMe8+aamWabeaacaWHibGaaGPaVpaabmqa baGaaC4TdmaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaiaays W7caWHkbGaaGPaVpaabmqabaGaaC4TdmaaBaaaleaacaaIWaaabeaa aOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahI eacaaMc8+aaeWabeaacaWH3oWaaSbaaSqaaiaaicdaaeqaaaGccaGL OaGaayzkaaaacaGLBbGaayzxaaWaaWbaaSqabeaacqGHsislcaaIXa aaaOGaaGilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaa ikdacaGGUaGaaGymaiaaiAdacaGGPaaaaa@67A1@

where η 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oWaaSbaaSqaaiaaicdaaeqaaa aa@33D6@  is the true value of η, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaC4TdiaacYcaaaa@3531@   nH( η 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbGaaCisaiaaykW7daqadeqaai aahE7adaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaaaaa@38B9@  is minus the expectation of h, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqGHhis0caWGObGaaiilaaaa@34D0@  and nJ( η 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbGaaCOsaiaaykW7daqadeqaai aahE7adaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaaaaa@38BB@  is equal to the variance-covariance matrix of g, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbGaaiilaaaa@334D@  the gradient of h. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObGaaiOlaaaa@334C@

If g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbaaaa@329D@  had the property (analogous to (2.11)) that

Var η [ g( y( n );η ) ]= E η [ g( y( n );η ) ],(2.17) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGwbGaaeyyaiaabkhadaWgaaWcba GaaC4TdaqabaGcdaWadeqaaiaahEgacaaMc8+aaeWabeaacaWH5bGa aGPaVpaabmqabaGaaGjcVlaad6gacaaMi8oacaGLOaGaayzkaaGaaG 4oaiaaysW7caWH3oaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaaGjb VlaaykW7caaI9aGaaGjbVlaaykW7cqGHsislcaWGfbWaaSbaaSqaai aahE7aaeqaaOWaamWabeaacqGHhis0caWHNbGaaGPaVpaabmqabaGa aCyEaiaaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawM caaiaaiUdacaaMe8UaaC4TdaGaayjkaiaawMcaaaGaay5waiaaw2fa aiaaiYcacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYa GaaiOlaiaaigdacaaI3aGaaiykaaaa@71B5@

so that J( η 0 )=H( η 0 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHkbGaaGPaVpaabmqabaGaaC4Tdm aaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaiaaysW7caaMc8Ua aGypaiaaysW7caaMc8UaeyOeI0IaaCisaiaaykW7daqadeqaaiaahE 7adaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaacaGGSaaaaa@4675@  then the right-hand side of (2.15) or of (2.16) would be approximately the same as the stand-in posterior variance-covariance of η. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oGaaiOlaaaa@33A2@

The property (2.17) is called information unbiasedness of an estimating function (Lindsay, 1982). Given a g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbaaaa@329D@  that does not satisfy (2.17), then to produce a g * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbWaaWbaaSqabeaacaGGQaaaaa aa@3378@  approximately satisfying (2.17), we could set

h * ( y( n );η )=h( y( n ); η ^ +C( η η ^ ) )=h( y( n ); η * )(2.18) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObWaaWbaaSqabeaacaGGQaaaaO WaaeWabeaacaWH5bGaaGPaVpaabmqabaGaaGjcVlaad6gacaaMi8oa caGLOaGaayzkaaGaaG4oaiaaysW7caWH3oaacaGLOaGaayzkaaGaaG jbVlaaykW7caaI9aGaaGjbVlaaykW7caWGObGaaGPaVpaabmqabaGa aCyEaiaaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawM caaiaaiUdacaaMe8UabC4TdyaajaGaey4kaSIaaC4qaiaaykW7daqa deqaaiaahE7acqGHsislceWH3oGbaKaaaiaawIcacaGLPaaaaiaawI cacaGLPaaacaaMe8UaaGPaVlaai2dacaaMe8UaaGPaVlaadIgacaaM c8+aaeWabeaacaWH5bGaaGPaVpaabmqabaGaaGjcVlaad6gacaaMi8 oacaGLOaGaayzkaaGaaG4oaiaaysW7caWH3oWaaWbaaSqabeaacaGG QaaaaaGccaGLOaGaayzkaaGaaGzbVlaaywW7caaMf8UaaGzbVlaayw W7caGGOaGaaGOmaiaac6cacaaIXaGaaGioaiaacMcaaaa@8382@

for a constant matrix C, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHdbGaaiilaaaa@3329@  so that the gradient of h * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObWaaWbaaSqabeaacaGGQaaaaa aa@3375@  is C T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHdbWaaWbaaSqabeaacaqGubaaaa aa@337D@  times the gradient of h, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObGaaiilaaaa@334A@  while the point estimate of η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oaaaa@32F0@  that maximizes h * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObWaaWbaaSqabeaacaGGQaaaaO Gaaiilaaaa@342F@  and its approximate variance-covariance, are unchanged.

We want Var η ( g * )= E η g * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGwbGaaeyyaiaabkhadaWgaaWcba GaaC4TdaqabaGcdaqadeqaaiaahEgadaahaaWcbeqaaiaacQcaaaaa kiaawIcacaGLPaaacaaMe8UaaGPaVlaai2dacaaMe8UaaGPaVlabgk HiTiaadweadaWgaaWcbaGaaC4TdaqabaGccqGHhis0caWHNbWaaWba aSqabeaacaGGQaaaaOGaaiilaaaa@4769@  and it can be shown that this is equivalent to

H( η 0 )J ( η 0 ) 1 H( η 0 )= C T H( η 0 )C,(2.19) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHibGaaGPaVpaabmqabaGaaC4Tdm aaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaiaaysW7caWHkbGa aGPaVpaabmqabaGaaC4TdmaaBaaaleaacaaIWaaabeaaaOGaayjkai aawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahIeacaaMc8+a aeWabeaacaWH3oWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaa GaaGjbVlaaykW7caaI9aGaaGjbVlaaykW7caWHdbWaaWbaaSqabeaa caqGubaaaOGaaCisaiaaykW7daqadeqaaiaahE7adaWgaaWcbaGaaG imaaqabaaakiaawIcacaGLPaaacaaMe8UaaC4qaiaaiYcacaaMf8Ua aGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaigdaca aI5aGaaiykaaaa@6569@

which is a curvature adjustment like the one in RCD, who suggest taking the solution of (2.19) that sets C= M 1 M A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHdbGaaGjbVlaaykW7caaI9aGaaG jbVlaaykW7caWHnbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaCyt amaaBaaaleaacaWGbbaabeaakiaacYcaaaa@3EA7@  where M A T M A =H( η 0 )J ( η 0 ) 1 H( η 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHnbWaa0baaSqaaiaadgeaaeaaca qGubaaaOGaaCytamaaBaaaleaacaWGbbaabeaakiaaysW7caaMc8Ua aGypaiaaysW7caaMc8UaaCisaiaaykW7daqadeqaaiaahE7adaWgaa WcbaGaaGimaaqabaaakiaawIcacaGLPaaacaaMe8UaaCOsaiaaykW7 daqadeqaaiaahE7adaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPa aadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWHibGaaGPaVpaabmqa baGaaC4TdmaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaaaa@52D9@  and M T M=H( η 0 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHnbWaaWbaaSqabeaacaqGubaaaO GaaCytaiaaysW7caaMc8UaaGypaiaaysW7caaMc8UaaCisaiaaykW7 daqadeqaaiaahE7adaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPa aacaGGUaaaaa@4229@


Date modified: